
s

Preface, Contents

Introducing the Product and
Installing the Software 1

Basics of Designing a Program 2

Startup and Operation 3
Setting Up and Editing
the Project 4

Configuring the Hardware 5

Programming Blocks 6
Establishing an Online
Connection and
Making CPU Settings

7

Import, Export, Save As 8
Downloading to the CPU and
Uploading to the PG 9

Debugging 10

Diagnostics 11

Printing Project Documentation 12

Tips and Tricks 13

Appendix A

Index

SIMATIC

Programming with
STEP 7 Lite V3.0

Manual

Edition 04/2004
A5E00293884-01

Copyright © Siemens AG 2004 All rights reserved

The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable for damages. All rights, including rights
created by patent grant or registration of a utility model or design,
are reserved.

Siemens AG
Bereich Automation and Drives
Geschaeftsgebiet Industrial Automation Systems
Postfach 4848, D- 90327 Nuernberg

Disclaimer of Liability

We have checked the contents of this manual for agreement with
the hardware and software described. Since deviations cannot be
precluded entirely, we cannot guarantee full agreement. However,
the data in this manual are reviewed regularly and any necessary
corrections included in subsequent editions. Suggestions for
improvement are welcomed.

©Siemens AG 2004
Technical data subject to change.

Siemens Aktiengesellschaft A5E00293884-01

Safety Guidelines

This manual contains notices intended to ensure personal safety, as well as to protect the products and

connected equipment against damage. These notices are highlighted by the symbols shown below and

graded according to severity by the following texts:

!
Danger
indicates that death, severe personal injury or substantial property damage will result if proper
precautions are not taken.

!
Warning
indicates that death, severe personal injury or substantial property damage can result if proper
precautions are not taken.

!
Caution
indicates that minor personal injury can result if proper precautions are not taken.

 Caution

indicates that property damage can result if proper precautions are not taken.

 Notice

draws your attention to particularly important information on the product, handling the product, or to a
particular part of the documentation.

Qualified Personnel

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons

are defined as persons who are authorized to commission, to ground and to tag circuits, equipment, and

systems in accordance with established safety practices and standards.

Correct Usage

Note the following:

!
Warning
This device and its components may only be used for the applications described in the catalog or the

technical description, and only in connection with devices or components from other manufacturers

which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed
correctly, and operated and maintained as recommended.

Trademarks

SIMATIC®, SIMATIC HMI® and SIMATIC NET® are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to trademarks

might infringe upon the rights of the trademark owners.

Programming with STEP 7 Lite V3.0
A5E00293884-01 iii

Preface

Purpose
This manual provides a complete overview of programming with STEP 7 Lite. It is
designed to support you when installing and commissioning the software. It
explains how to proceed when creating and structuring user programs and
describes the language elements.

The manual is intended for people who are involved in carrying out control tasks
using STEP 7 Lite and SIMATIC automation systems.

We recommend that you familiarize yourself with the examples in the manual "First
Steps with STEP 7 Lite." It provides an easy introduction to "Programming with
STEP 7 Lite."

Basic Knowledge Required

In order to understand this manual, general knowledge of automation technology is
required.

In addition, you must be familiar with using computers or PC-similar tools
(for example, programming devices) with the MS Windows 2000 Professional,
MS Windows XP Home and MS Windows XP Professional operating systems.

Scope of the Manual

This manual is valid for release 3.0 of the STEP 7 Lite programming software
package.

Preface

 Programming with STEP 7 Lite V3.0
iv A5E00293884-01

STEP 7 Lite Documentation Packages

This manual is part of the software package STEP 7 Lite.

The following table displays an overview of the STEP 7 Lite documentation:

Documentation Purpose Order Number

Programming with
STEP 7 Lite

Provides background information
for realizing control tasks with
STEP 7 Lite.

Part of the software package
STEP 7 Lite

First Steps with
STEP 7 Lite

Describes the most important
procedures using practical
excercises.

Part of the software package
STEP 7 Lite

Online Help Purpose Order Number

Help on STEP 7 Lite Provides background information
for realizing control tasks with
STEP 7 Lite.

Part of the software package
STEP 7 Lite

Reference helps on
STL/LAD/FBD

Reference helps on
block libraries

Context-sensitive reference
information.

Part of the software package
STEP 7 Lite

ToolTips and direct
help

Offers information on the current
context, for example, on menu
commands, elements of the user
interface and dialog boxes

Part of the software package
STEP 7 Lite

Documentation Reply Form

If you have comments about this manual or the online help, please fill out the
questionnaire at the end of this manual and send it the address shown. Please
take the time to add your own evaluation grade.

http://www.ad.siemens.de/partner

You will find a guide to the technical documentation offered for the individual
SIMATIC Products and Systems here at:

 http://www.siemens.com/simatic-tech-doku-portal

Training Centers

Siemens offers a number of training courses to familiarize you with the SIMATIC
S7 automation system. Please contact your regional training center or our central
training center in D 90327 Nuremberg, Germany for details:
Telephone: +49 (911) 895-3200.

http://www.sitrain.com/

http://www.ad.siemens.de/partner
http://www.siemens.com/simatic-tech-doku-portal
http://www.sitrain.com/

 Preface

Programming with STEP 7 Lite V3.0
A5E00293884-01 v

Automation and Drives, Service & Support

Available worldwide, around the clock:

Beijing
Peking

Nuernberg

Johnson City

Worldwide (Nuernberg)

Technical Support

24 hours a day, 365 days a year

Phone: +49 (180) 5050-222

Fax: +49 (180) 5050-223

mailto:adsupport@siemens.com

GMT: +1:00

Europe / Africa (Nuernberg)

Authorization

Local time: Mon.-Fri. 8:00 to 5:00 PM

Phone: +49 (180) 5050-222

Fax: +49 (180) 5050-223

mailto:adsupport@siemens.com

GMT: +1:00

United States (Johnson City)

Technical Support and
Authorization

Local time: Mon.-Fri. 8:00 to 5:00 PM

Phone: +1 (423) 262 2522

Fax: +1 (423) 262 2289

mailto:simatic.hotline@sea.siemens.com

GMT: -5:00

Asia / Australia (Beijing)

Technical Support and
Authorization

Local time: Mon.-Fri. 8:00 to 5:00 PM

Phone: +86 10 64 75 75 75

Fax: +86 10 64 74 74 74

mailto:adsupport.asia@siemens.com

GMT: +8:00

The languages of the SIMATIC Hotlines and the authorization hotline are generally German and English.

mailto:adsupport@siemens.com
mailto:adsupport@siemens.com
mailto:simatic.hotline@sea.siemens.com
mailto:adsupport.asia@siemens.com

Preface

 Programming with STEP 7 Lite V3.0
vi A5E00293884-01

Service & Support on the Internet

In addition to our documentation, we offer our Know-how online on the internet at:

http://www.siemens.com/automation/service&support

where you will find the following:

• The newsletter, which constantly provides you with up-to-date information on
your products.

• The right documents via our Search function in Service & Support.

• A forum, where users and experts from all over the world exchange their
experiences.

• Your local representative for Automation & Drives.

• Information on field service, repairs, spare parts and more under "Services".

http://www.siemens.com/automation/service&support

Programming with STEP 7 Lite V3.0
A5E00293884-01 vii

Contents

1 Introducing the Product and Installing the Software 1-1

1.1 Overview STEP 7 Lite ...1-1
1.2 Project Window and Views in STEP 7 Lite ...1-5
1.3 Help and Documentation on STEP 7 Lite ...1-9
1.4 Installation ...1-9
1.4.1 Automation License Manager ...1-9
1.4.1.1 User Rights Through the Automation License Manager...................................1-9
1.4.1.2 Installing the Automation License Manager ..1-11
1.4.1.3 Guidelines for Handling License Keys ..1-12
1.4.2 Installing STEP 7 Lite..1-13
1.4.2.1 Installation Procedure ...1-14
1.4.2.2 Setting the PG/PC Interface..1-16
1.4.3 Uninstalling STEP 7 Lite ...1-17

2 Basics of Designing a Program 2-1

2.1 Programs in a CPU ...2-1
2.2 Blocks in the User Program ..2-2
2.2.1 Organization Blocks and Program Structure...2-3
2.2.2 Call Hierarchy in the User Program ..2-8
2.2.3 Cyclic Program Processing and CPU Settings ...2-10
2.2.3.1 Organization Block for Cyclic Program Processing (OB1)..............................2-10
2.2.3.2 Communication Load ..2-12
2.2.4 Interrupt-Driven Program Processing ...2-14
2.2.4.1 Organization Blocks for Interrupt-Driven Program Processing2-14
2.2.4.2 Time-of-Day Interrupt Organization Blocks (OB10 to OB17)..........................2-15
2.2.4.3 Delay Interrupt Organization Blocks (OB20 to OB23)2-17
2.2.4.4 Cyclic Interrupt Organization Blocks (OB30 to OB38)2-18
2.2.4.5 Hardware Interrupt Organization Blocks (OB40 to OB47)2-20
2.2.4.6 Startup Organization Blocks (OB100 / OB102)...2-21
2.2.4.7 Background Organization Block (OB90) ...2-23
2.2.4.8 Error Handling Organization Blocks (OB80 to OB87 / OB121 to OB122)2-24
2.2.5 Block Types for Structured Programming ...2-26
2.2.5.1 Functions (FC) ..2-26
2.2.5.2 Function Blocks (FB)...2-26
2.2.5.3 Instance Data Blocks ..2-29
2.2.6 Shared Data Blocks (DB) ..2-31
2.2.6.1 System Function Blocks (SFB) and System Functions (SFC)........................2-32

Contents

 Programming with STEP 7 Lite V3.0
viii A5E00293884-01

3 Startup and Operation 3-1

3.1 Starting STEP 7 Lite..3-1
3.2 Calling the Help Functions ..3-2
3.3 User Interface and Operation..3-3
3.3.1 Structure of the User Interface..3-3
3.3.2 Symbols in the Project Window ..3-5
3.3.3 Elements in Windows and Dialog Boxes ..3-6
3.3.4 Session Memory ...3-9
3.3.5 Changing the Window Arrangement ...3-9
3.3.6 Saving and Restoring the Window Layout ..3-9
3.3.7 Finding and Replacing Terms ...3-10
3.3.8 How to Manage Objects..3-12
3.3.8.1 Renaming Objects...3-12
3.3.8.2 Moving Objects ...3-12
3.3.8.3 Deleting Objects..3-12
3.4 Keyboard Control ..3-13
3.4.1 Shortcut Keys for Menu Commands ...3-13
3.4.2 Key Combinations for Moving the Cursor ...3-15
3.4.3 Shortcut Keys for Marking Text...3-17
3.4.4 Shortcut Keys for Access to the Online Help ..3-17
3.4.5 Shortcut Keys for Switching Windows ..3-17
3.5 Using TeleService ...3-18

4 Setting Up and Editing the Project 4-1

4.1 What is a STEP 7 Lite Project...4-1
4.2 Setting Up a Project ..4-4
4.2.1 Creating a Project ...4-4
4.2.2 Inserting a Program...4-4
4.3 Editing a Project ..4-6
4.3.1 Applying and Saving Changes..4-6
4.3.2 How to Edit Projects..4-8
4.3.2.1 Copying a Project..4-8
4.3.2.2 Copying Part of a Project ..4-8
4.3.2.3 Configuring Hardware (General) ...4-8
4.3.2.4 Creating the Software in the Project (General) ...4-9
4.4 Deleting and Renaming a Project ...4-9

5 Configuring the Hardware 5-1

5.1 Basics of Configuring Hardware with STEP 7 Lite..5-1
5.1.1 Introduction to Configuring Hardware ...5-1
5.1.2 Basic Procedure for Configuring Hardware ..5-2
5.1.2.1 Basic Steps for Configuring a Station ...5-3
5.1.2.2 Layout of the 'Hardware Configuration' View..5-4
5.1.2.3 Configuration Table as a Representation of a Rack ...5-5
5.1.2.4 Setting the Properties of Components ..5-5
5.1.2.5 What You Should Know About Slot Rules and Other Rules.............................5-6
5.2 Configuring Modules ...5-7
5.2.1 Rules for Arranging Modules (SIMATIC 300) ...5-7
5.2.1.1 Special Rules for the Dummy Module (DM 370 Dummy)5-8
5.2.1.2 Special Rules for the Digital Simulation Module (SIM 374 IN/OUT 16)5-8
5.2.2 Rules for Arranging Modules (ET 200S and ET 200X).....................................5-9
5.2.2.1 Rules for Arranging Modules with ET 200S ..5-9
5.2.2.2 Rules for Arranging Modules with ET 200X ..5-9

 Contents

Programming with STEP 7 Lite V3.0
A5E00293884-01 ix

5.2.3 How to Configure Modules..5-10
5.2.3.1 Overview: Procedure for Configuring

and Assigning Parameters to a Station ..5-10
5.2.3.2 Selecting a Station Type ...5-10
5.2.3.3 Arranging Modules in a Rack..5-11
5.2.3.4 Displaying the Version of the CPU Operating System in the Module List5-12
5.2.3.5 Arranging C7 Control Systems (Special Features) ...5-12
5.2.3.6 Assigning Properties to Modules/Interfaces..5-13
5.2.3.7 Assigning Addresses...5-14
5.2.3.8 Assigning I/O Addresses...5-14
5.2.3.9 Tips for Editing Station Configurations..5-15
5.2.4 What You Should Know About ET 200S Motor Starters (High Feature)5-17
5.2.4.1 Detecting Plant Status Using Motor Current Values.......................................5-17
5.2.4.2 Blocking Current..5-17
5.2.4.3 Blocking Time..5-17
5.2.4.4 Response to No Current Detection ...5-18
5.2.4.5 Asymmetry ..5-18
5.2.4.6 Thermal Motor Model ..5-18
5.2.4.7 Recovery Time ..5-18
5.2.4.8 Overview: Possible Motor Starter Actions...5-19
5.2.4.9 Motor Starter Assignments in the Process Image ..5-20
5.3 Saving a Configuration and Consistency Check...5-21

6 Programming Blocks 6-1

6.1 Defining Symbols ..6-1
6.1.1 Absolute and Symbolic Addressing ..6-1
6.1.2 Shared and Local Symbols ...6-3
6.1.3 Displaying Shared or Local Symbols ..6-4
6.1.4 Setting the Address Priority (absolute/symbolic) ..6-4
6.1.5 Symbol Table for Shared Symbols ...6-6
6.1.5.1 Structure and Components of the Symbol Table ..6-6
6.1.5.2 Addresses and Data Types Permitted in the Symbol Table6-8
6.1.5.3 Incomplete and Ambiguous Symbols in the Symbol Table...............................6-9
6.1.6 Entering Shared Symbols ...6-10
6.1.6.1 General Tips on Entering Symbols ...6-11
6.1.6.2 Entering Single Shared Symbols in a Dialog Box...6-12
6.1.6.3 Entering Multiple Shared Symbols in the Symbol Table.................................6-13
6.1.6.4 Exporting and Importing Symbol Tables ...6-14
6.1.7 How to Edit the Symbol Table...6-14
6.1.7.1 Opening a Symbol Table...6-14
6.1.7.2 Defining Individual Symbols ..6-14
6.1.7.3 Inserting Symbol Rows ...6-15
6.1.7.4 Deleting Symbol Rows ..6-15
6.1.7.5 Filtering the Symbol Table ..6-16
6.1.7.6 Unused Symbols ...6-16
6.1.7.7 Addresses without a Symbol...6-17
6.1.7.8 Sorting the Symbol Table..6-17
6.1.7.9 Selecting Symbol Rows ..6-17
6.1.7.10 Copying Symbol Rows to the Clipboard ...6-17
6.1.7.11 Saving a Symbol Table ...6-17
6.1.8 How to Change the Window Settings ...6-18
6.1.8.1 Toggling the Toolbar On/Off..6-18
6.1.8.2 Toggling the Status Bar On/Off ...6-18
6.1.8.3 Positioning the Toolbar ...6-18
6.1.8.4 Setting the Size of a Window for Display ..6-18

Contents

 Programming with STEP 7 Lite V3.0
x A5E00293884-01

6.2 Working with Blocks ..6-19
6.2.1 Block Editor ...6-19
6.2.2 Selecting the Programming Language..6-20
6.2.2.1 Programming Languages of the Block Editor ...6-20
6.2.2.2 Ladder Logic Programming Language (LAD) ...6-21
6.2.2.3 Function Block Diagram Programming Language (FBD)6-22
6.2.2.4 Statement List Programming Language (STL) ...6-22
6.2.3 Creating Blocks ...6-23
6.2.3.1 User-Defined Data Types (UDT)...6-23
6.2.3.2 Block Properties ..6-24
6.2.3.3 Setting Block Protection ..6-26
6.2.3.4 Permitted Block Properties for Each Block Type ..6-27
6.2.3.5 Displaying Block Lengths ..6-27
6.2.3.6 Comparing Blocks ...6-28
6.2.4 Working with Libraries...6-29
6.2.4.1 Overview of Block Libraries...6-29
6.3 Creating Logic Blocks ...6-30
6.3.1 Basics of Creating Logic Blocks..6-30
6.3.1.1 Basic Procedure for Creating Logic Blocks...6-30
6.3.1.2 Default Settings for the LAD/STL/FBD Block Editor6-31
6.3.1.3 Instructions from the Command Libraries ...6-31
6.3.1.4 Defining the Block Editor View..6-33
6.3.2 Editing the Variable Declaration Table..6-35
6.3.2.1 Using the Variable Declaration in Logic Blocks ..6-35
6.3.2.2 Relationship between the Variable Declaration Table

and the Statement Section ...6-36
6.3.2.3 Structure of the Variable Declaration Table ..6-36
6.3.2.4 General Notes on Variable Declaration Tables...6-38
6.3.2.5 How to Work with the Variable Declaration Table ..6-39
6.3.3 Multiple Instances in the Variable Declaration Table......................................6-43
6.3.3.1 Using Multiple Instances ...6-43
6.3.3.2 Rules for Declaring Multiple Instances..6-44
6.3.3.3 Entering a Multiple Instance in the Variable Declaration Table6-44
6.3.4 General Notes on Entering Statements and Comments.................................6-45
6.3.4.1 Structure of the Statement Section ...6-45
6.3.4.2 Procedure for Entering Statements...6-46
6.3.4.3 Entering Shared Symbols in a Program..6-47
6.3.4.4 Title and Comments for Blocks and Networks..6-47
6.3.4.5 Entering Block Comments and Network Comments.......................................6-48
6.3.4.6 Search Function for Errors in the Statement Section6-49
6.3.4.7 Rewiring ..6-49
6.3.5 Editing LAD Elements in the Code Section...6-50
6.3.5.1 Settings for Ladder Logic Programming ...6-50
6.3.5.2 Rules for Entering Ladder Logic Elements ...6-51
6.3.5.3 Illegal Logic Operations in Ladder ..6-53
6.3.5.4 How to Enter Ladder Elements ...6-54
6.3.6 Editing FBD Elements in the Code Section ..6-61
6.3.6.1 Settings for Function Block Diagram Programming..6-61
6.3.6.2 Rules for Entering FBD Elements ...6-61
6.3.6.3 How to Enter FBD Elements ...6-63
6.3.7 Editing STL Statements in the Code Section..6-67
6.3.7.1 Settings for Statement List Programming ...6-67
6.3.7.2 Rules for Entering STL Statements ..6-67
6.3.7.3 How to Enter STL Statements...6-68
6.3.8 Updating Block Calls ...6-70

 Contents

Programming with STEP 7 Lite V3.0
A5E00293884-01 xi

6.4 Creating Data Blocks ..6-71
6.4.1 Basic Information on Creating Data Blocks ..6-71
6.4.2 Declaration View of Data Blocks...6-72
6.4.3 Data View of Data Blocks..6-73
6.4.4 Editing and Saving Data Blocks..6-74
6.4.4.1 Entering the Data Structure of Shared Data Blocks6-74
6.4.4.2 Entering and Displaying the Data Structure of

Data Blocks Referencing an FB (Instance DBs)...6-74
6.4.4.3 Entering the Data Structure of User-Defined Data Types (UDT)....................6-76
6.4.4.4 Entering and Displaying the Structure of Data Blocks Referencing a UDT6-76
6.4.4.5 Editing Data Values in the Data View ...6-77
6.4.4.6 Resetting Data Values to their Initial Values...6-78
6.5 Displaying References ..6-79
6.5.1 Overview of the Available References ..6-79
6.5.2 Address Overview ...6-80
6.5.3 Cross-Reference List ..6-80
6.5.4 Addresses Used..6-82
6.5.5 Program Structure...6-84
6.5.6 Working with Reference Data ...6-89
6.5.6.1 Finding Address Locations in the Program Quickly ..6-89
6.5.6.2 Example of Working with Address Locations..6-90
6.5.6.3 How to Work with Reference Data..6-92
6.6 Ensuring Program Consistency and Time Stamps as a Block Property.........6-93
6.6.1 Ensuring Program Consistency ..6-93
6.6.2 Time Stamps and Time Stamp Conflicts...6-94
6.6.3 Time Stamps in Logic Blocks..6-95
6.6.4 Time Stamps in Shared Data Blocks ..6-96
6.6.5 Time Stamps in Instance Data Blocks ..6-96
6.6.6 Time Stamps in UDTs and Data Blocks Derived from UDTs..........................6-97
6.6.7 Avoiding Errors when Calling Blocks ..6-98
6.6.8 Notes on Changing the Contents of Registers..6-100

7 Establishing an Online Connection and Making CPU Settings 7-1

7.1 Establishing Online Connections ..7-1
7.1.1 Password Protection for Access to Programmable Controllers7-2
7.2 Displaying and Changing the Operating Mode ...7-3
7.3 Displaying and Setting the Time and Date..7-3

8 Import, Export, Save As 8-1

8.1 Import, Export, Save As ..8-1
8.2 Saving Projects on Disks ..8-2
8.3 Storing Project Data on a Micro Memory Card (MMC)8-2
8.4 Using a Micro Memory Card ...8-5
8.5 Exchanging Project Data Between STEP 7 Lite and STEP 7...........................8-6
8.6 Exporting Project Data for External Editors ..8-8
8.6.1 Data Format for Importing/Exporting a Symbol Table8-8
8.6.2 Managing Multilingual Text ...8-8
8.6.2.1 Types of Multilingual Text ...8-10
8.6.2.2 Structure of the Export File ...8-10
8.6.2.3 How to Manage Multilingual Text..8-12
8.6.2.4 Tips for Translation ...8-14

Contents

 Programming with STEP 7 Lite V3.0
xii A5E00293884-01

9 Downloading to the CPU and Uploading to the PG 9-1

9.1 Downloading from the PG/PC to the CPU ..9-1
9.1.1 Prerequisites for Downloading ..9-1
9.1.2 What Is Downloaded When?...9-2
9.1.3 Differences Between Saving and Downloading Blocks9-3
9.1.4 Load Memory and Work Memory in the CPU ...9-3
9.1.5 Download Methods Dependent on the Load Memory9-4
9.1.6 Downloading Blocks and a Configuration to the CPU

and Saving to Memory Card ...9-5
9.1.6.1 Reloading Blocks in the CPU..9-5
9.1.6.2 Saving Downloaded Blocks on Integrated EPROM

or on S7 Memory Card in the CPU...9-6
9.1.6.3 Downloading a Configuration to a Programmable Logic Controller..................9-7
9.2 Uploading from the CPU to the PG/PC...9-8
9.2.1 What Can Be Uploaded When?..9-9
9.2.2 How to Upload Objects from the CPU to the PG/PC9-10
9.2.3 Editing Uploaded Blocks in the PG/PC ...9-10
9.2.4 Editing a Downloaded Hardware Configuration in a

Programming Device/PC...9-11
9.3 Deleting on the CPU ...9-12
9.3.1 Erasing the Load/Work Memory and Resetting the CPU9-12
9.3.2 Deleting Individual Blocks on the CPU ...9-13
9.3.3 Deleting the Memory Card in the CPU..9-14
9.4 Compressing the User Memory (RAM)...9-15
9.4.1 Gaps in the User Memory (RAM)..9-15
9.4.2 Compressing the Memory Contents of a CPU..9-16

10 Debugging 10-1

10.1 Overview of the Different Debugging Modes ..10-1
10.2 Testing with the Variable Tables and Force Tables..10-1
10.2.1 Introduction to Testing with Variable Tables and Force Tables......................10-1
10.2.2 Basic Procedure When Monitoring and Modifying with the Variable Table10-2
10.2.3 Basic Procedure When Monitoring and Forcing with the Force Table10-2
10.2.4 Editing and Saving Variable Tables and Force Tables...................................10-3
10.2.4.1 Creating and Opening a Variable Table..10-3
10.2.4.2 Creating and Opening a Force Table..10-3
10.2.4.3 Copying/Duplicating Variable Tables ..10-4
10.2.4.4 Copying/Duplicating Force Tables ..10-4
10.2.4.5 Saving a Variable Table ..10-5
10.2.4.6 Saving a Force Table ..10-5
10.2.5 Entering Variables in Variable Tables and Force Tables................................10-6
10.2.5.1 Entering Addresses or Symbols in a Variable Table10-6
10.2.5.2 Entering Addresses or Symbols in a Force Table...10-7
10.2.5.3 Inserting a Contiguous Address Range in a Variable Table10-8
10.2.5.4 Inserting a Contiguous Address Range in a Force Table10-9
10.2.5.5 Upper Limits for Entering Timers ..10-9
10.2.5.6 Upper Limits for Entering Counters...10-10
10.2.5.7 Examples...10-11
10.2.6 Editing Variables in Variable Tables and Force Tables10-15
10.2.6.1 Selecting the Display Format ..10-15
10.2.6.2 Cutting Selected Areas to the Clipboard...10-15
10.2.6.3 Pasting Areas from the Clipboard into the Variable Table or Force Table ...10-15
10.2.6.4 Copying Selected Areas to the Clipboard ...10-15

 Contents

Programming with STEP 7 Lite V3.0
A5E00293884-01 xiii

10.2.7 Monitoring Variables ...10-16
10.2.7.1 Introduction to Monitoring of Variables ...10-16
10.2.7.2 Defining the Monitoring Mode ...10-16
10.2.7.3 Monitoring Variables ...10-17
10.2.7.4 Monitoring Variables Once and Immediately ..10-18
10.2.8 Modifying Variables...10-19
10.2.8.1 Introduction to Modifying Variables...10-19
10.2.8.2 Defining the Modifying Mode...10-19
10.2.8.3 Modifying Variables...10-21
10.2.8.4 Modifying Variables Immediately ..10-21
10.2.8.5 Modify: Initialize CPU in STOP Mode with Its Own Values10-22
10.2.8.6 Modifying the Peripheral Outputs When the CPU is in STOP Mode10-22
10.2.9 Forcing Variables ..10-23
10.2.9.1 Introduction to Forcing Variables ..10-23
10.2.9.2 Safety Measures When Forcing Variables..10-24
10.2.9.3 Displaying Values Forced by the CPU..10-24
10.2.9.4 Forcing Values ..10-24
10.2.9.5 Deleting a Force Job ...10-25
10.2.9.6 Differences Between Forcing and Modifying Variables10-25
10.3 Testing Using Program Status ..10-26
10.3.1 Testing Using Program Status ..10-26
10.3.2 Program Status Display ..10-27
10.3.3 Program Status of Data Blocks...10-28
10.3.4 How to Test in Program Status ...10-29
10.3.4.1 Setting the Display for Program Status...10-29
10.3.4.2 Setting the Call Environment for a Block ..10-30
10.3.4.3 Setting Debug Mode ...10-31
10.3.4.4 Modifying Variables in Program Status...10-32
10.3.4.5 Activating and Deactivating the Test using Program Status.........................10-32

11 Diagnostics 11-1

11.1 Diagnostic Functions...11-1
11.2 Diagnosing Hardware and Troubleshooting..11-2
11.3 Comparing the 'Online/Offline/Physics' Configuration11-2
11.4 Layout of the 'Hardware Comparison' View ..11-4
11.5 Detecting Faulty Modules..11-5
11.6 Layout of the 'Hardware Diagnostics' View...11-6
11.7 Module Information ...11-7
11.7.1 Calling the Module Information ...11-7
11.7.2 Module Information Functions...11-9
11.7.3 Scope of the Module Type-Dependent Information11-11
11.8 Diagnosing in STOP Mode..11-12
11.8.1 Basic Procedure for Determining the Cause of a STOP...............................11-12
11.8.2 Stack Contents in STOP Mode ...11-13
11.8.3 Opening the Block for a Diagnostic Buffer or Stack Entry11-14
11.8.3.1 Opening the Block for a Diagnostic Buffer Entry...11-14
11.8.3.2 Opening the Block from the B Stack List ..11-15
11.8.3.3 Opening the Block from the I Stack List..11-15
11.9 Controlling Scan Cycle Times to Avoid Time Errors.....................................11-16
11.10 Flow of Diagnostic Information..11-17
11.10.1 Flow of Diagnostic Informatio..11-17
11.10.2 System Status List SSL...11-18
11.10.3 Sending Your Own Diagnostic Messages...11-20

Contents

 Programming with STEP 7 Lite V3.0
xiv A5E00293884-01

11.11 Program Measures for Handling Errors ..11-21
11.11.1 Evaluating the Output Parameter RET_VAL...11-22
11.11.2 Error OBs as a Reaction to Detected Errors...11-23
11.11.3 Inserting Substitute Values for Error Detection...11-26
11.11.4 Time Error (OB80)...11-29
11.11.5 Power Supply Error (OB81) ..11-30
11.11.6 Diagnostic Interrupt (OB82) ..11-31
11.11.7 CPU Hardware Fault (OB84) ..11-32
11.11.8 Program Execution Error (OB85) ..11-33
11.11.9 Rack Failure (OB86) ...11-34
11.11.10 Communication Error (OB87)..11-35
11.11.11 Programming Error (OB121) ...11-36
11.11.12 I/O Access Error (OB122) ...11-37

12 Printing Project Documentation 12-1

12.1 Project Documentation Overview..12-1
12.2 Creating the Project Documentation ...12-3
12.3 Print Objects..12-5
12.4 Options, Determining the Font Type and Page Layout...................................12-7
12.5 Defining and Using Templates ..12-10
12.6 Printing Project Documentation...12-13

13 Tips and Tricks 13-1

13.1 Exchanging Modules in the Hardware Configuration......................................13-1
13.2 Testing with the Variable Table...13-1
13.3 Working Without Original Project on the Programming Device/PC13-2

A Appendix A-1

A.1 Operating Modes.. A-1
A.1.1 Operating Modes and Mode Transitions.. A-1
A.1.2 STOP Mode ... A-4
A.1.3 STARTUP Mode .. A-4
A.1.4 RUN Mode.. A-9
A.1.5 HOLD Mode ... A-10
A.2 Memory Areas of S7 CPUs.. A-11
A.2.1 Splitting the Memory Areas .. A-11
A.2.2 Load Memory and Work Memory... A-12
A.2.3 System Memory ... A-14
A.2.3.1 Using the System Memory Areas .. A-14
A.2.3.2 Process-Image Input/Output Tables .. A-16
A.2.3.3 Local Data Stack .. A-17
A.2.3.4 Interrupt Stack.. A-18
A.2.3.5 Block Stack... A-19
A.2.3.6 Diagnostic Buffer.. A-20
A.2.3.7 Evaluating the Diagnostic Buffer.. A-20
A.2.3.8 Retentive Memory Areas on S7-300 CPUs ... A-22

 Contents

Programming with STEP 7 Lite V3.0
A5E00293884-01 xv

A.3 Data Types and Parameter Types ... A-25
A.3.1 Introduction to Data Types and Parameter Types ... A-25
A.3.2 Elementary Data Types.. A-26
A.3.2.1 Format of the Data Type INT (16-Bit Integers) .. A-27
A.3.2.2 Format of the Data Type DINT (32-Bit Integers).. A-27
A.3.2.3 Format of the Data Type REAL (Floating-Point Numbers) A-28
A.3.2.4 Format of the Data Type WORD.. A-32
A.3.2.5 Format of the Data Type DWORD... A-32
A.3.2.6 Format of the Data Types WORD and DWORD in

Binary Coded Decimal Numbers ... A-33
A.3.2.7 Format of the Data Type S5TIME (Time Duration) .. A-34
A.3.2.8 Format of the Data Type TIME... A-35
A.3.3 Complex Data Types.. A-36
A.3.3.1 Format of the Data Type DATE_AND_TIME ... A-37
A.3.3.2 Format of the Data Type STRING ... A-38
A.3.3.3 Format of the Data Type ARRAY... A-39
A.3.3.4 Format of the Data Type STRUCT .. A-40
A.3.3.5 Using Complex Data Types ... A-41
A.3.3.6 Using Arrays to Access Data ... A-42
A.3.3.7 Using Structures to Access Data ... A-45
A.3.3.8 Using User-Defined Data Types to Access Data ... A-47
A.3.4 Parameter Types.. A-49
A.3.4.1 Format of the Parameter Types BLOCK, COUNTER, and TIMER................ A-50
A.3.4.2 Format of the Parameter Type POINTER.. A-51
A.3.4.3 Using the Parameter Type POINTER .. A-52
A.3.4.4 Block for Changing the Pointer .. A-53
A.3.4.5 Format of the Parameter Type ANY .. A-56
A.3.4.6 Using the Parameter Type ANY... A-58
A.3.4.7 Assigning Data Types to Local Data of Logic Blocks A-62
A.3.4.8 Permitted Data Types when Transferring Parameters A-63
A.3.4.9 Transferring to In_Out Parameters of a Function Block A-68
A.4 Sample Programs .. A-68
A.4.1 Sample Projects and Sample Programs.. A-68
A.4.2 Example of Masking and Unmasking Synchronous Errors............................ A-69
A.4.3 Example of Disabling and Enabling Interrupts

and Asynchronous Errors (SFC39 and SFC40)... A-73
A.4.4 Example of the Delayed Processing of Interrupts

and Asynchronous Errors (SFC41 and SFC42)... A-74
A.4.5 Sample Program for an Industrial Blending Process A-75
A.4.5.1 Sample Program for an Industrial Blending Process A-75
A.4.5.2 Defining Logic Blocks... A-78
A.4.5.3 Assigning Symbolic Names.. A-79
A.4.5.4 Creating the FB for the Motor... A-81
A.4.5.5 Creating the FC for the Valves... A-85
A.4.5.6 Creating OB1 ... A-87
A.4.6 Example of Handling Time-of-Day Interrupts... A-93
A.4.6.1 Structure of the User Program "Time-of-Day Interrupts" A-93
A.4.6.2 FC12... A-95
A.4.6.3 OB10 .. A-97
A.4.6.4 OB1 and OB80... A-99
A.4.7 Example of Handling Time-Delay Interrupts .. A-100
A.4.7.1 Structure of the User Program "Time-Delay Interrupts"............................... A-100
A.4.7.2 OB20 .. A-102
A.4.7.3 OB1 .. A-103

Contents

 Programming with STEP 7 Lite V3.0
xvi A5E00293884-01

A.5 Accessing Process and I/O Data Areas... A-105
A.5.1 Accessing the Process Data Area ... A-105
A.5.2 Accessing the Peripheral Data Area .. A-106
A.6 Setting the Operating Behavior .. A-108
A.6.1 Setting the Operating Behavior .. A-108
A.6.2 Changing the Behavior and Properties of Modules A-108
A.6.3 Using the CPU Clock Functions... A-110
A.6.4 Using Clock Memory and Timers... A-111

Index

Programming with STEP 7 Lite V3.0
A5E00293884-01 1-1

1 Introducing the Product and Installing the
Software

1.1 Overview STEP 7 Lite

Hardware Supported

STEP 7 Lite is the software package used for configuring and programming
SIMATIC programmable logic controllers of the S7-300 and C7 families, as well as
the ET 200X and ET 200S family (stand-alone).

How to Create an Automation Solution

When you create an automation solution with STEP 7 Lite, there are a series of
basic tasks. The following figure shows the tasks that need to be performed for
most projects and assigns them to a basic procedure.

Introducing the Product and Installing the Software

 Programming with STEP 7 Lite V3.0
1-2 A5E00293884-01

Start STEP 7 Lite and create project
Examine project properties

• View project properties
• Specify documentation settings
• Print project documentation

Configure HW and assign parameters to modules
• Position module
• Determine addresses
• Set parameters

Specify symbols for symbolic programming instead
of absolute programming

Create user program
• Program the blocks
• Call up block in the program
• Set local symbols
Load blocks

Evaluate reference data
• Cross-reference list
• Addresses used
• Program structure
• Rewire program

Test program and diagnose errors. Configure
variables for "Monitor and Modify."

Load program

 Cross reference

 Hardware

 Symbol table

 OB

 DB

 Monitor/Modify

 Documentation

 Program

HW diagnostics
 Hardware

 Introducing the Product and Installing the Software

Programming with STEP 7 Lite V3.0
A5E00293884-01 1-3

Brief Description of the Individual Steps

• Installation and authorization
The first time you use STEP 7 Lite, install it and transfer the authorization from
diskette to the hard disk (see also Installing STEP 7 Lite and Authorization).

• Design the program structure
Turn the tasks described in the draft of your controller design into a program
structure using the blocks available in STEP 7 Lite (see also Blocks in the User
Program).

• Start STEP 7 Lite
You start STEP 7 Lite from the Windows user interface (see also Starting
STEP 7 Lite).

• Create a project
A project is like a folder in which all data are stored in a hierarchical structure
and are available to you at any time. After you have created a project, all other
tasks are executed in this project (see also Project Structure).

• Configure a station
When you configure the station you specify the programmable controller you
want to use; for example, SIMATIC 300.

• Configure hardware
When you configure the hardware, you specify which modules you want to use
for your automation solution and which addresses are to be used to access the
modules from the user program. The properties of the modules can also be
assigned using parameters (see also Basic Procedure for Configuring
Hardware).

• Define symbols
You can define local or shared symbols, which have more descriptive names, in
a symbol table to use instead of absolute addresses in your user program (see
also Opening a Symbol Table).

• Create the program
Using one of the available programming languages, create a program and store
it as blocks (see also Basic Procedure for Creating Logic Blocks).

• Evaluate reference data
You can make use of these reference data to make debugging and modifying
your program easier (see also Overview of the Available Reference Data).

• Download programs to the CPU
After all configuration, parameter assignment, and programming tasks are
completed, you can download your entire program or individual blocks to the
CPU. (See also Requirements for Downloading.) The CPU already contains the
operating system.

• Test the programs
For testing, you can either display the values of variables from your user
program or a CPU, assign values to the variables, and create a variable table
for the variables that you want to display or modify (see also Introduction to
Testing with the Variable Table).

• Monitor operation, diagnose hardware
You determine the cause of a module fault by displaying online information
about a module. You determine the causes for errors in program processing
with the help of the diagnostic buffer and the stack contents. You can also

Introducing the Product and Installing the Software

 Programming with STEP 7 Lite V3.0
1-4 A5E00293884-01

check whether a program can run on a particular CPU (see also Diagnosing
Hardware and Displaying Module Information).

• Print

Programming Languages

The SIMATIC programming languages used in STEP 7 Lite comply with the
DIN EN 6.1131-3 standard.

• LAD (Ladder Logic) is a graphical programming language. The instruction
syntax resembles a circuit diagram. LAD easily allows you to follow the signal
flow between current paths by means of contacts, complex elements, and coils.

• STL (Statement List) is a textual, machine-oriented programming language. If a
program is programmed in STL, the individual instruction correspond in large
part to the steps the CPU takes to execute the program. Several high-level
language constructs (such as structured data access and block parameters)
have been added to STL to facilitate programming.

• FBD (Function Block Diagram) is a graphical language that uses the familiar
logical boxes from Boolean algebra to represent logic. In addition, complex
functions (such as mathematical functions) can be represented directly in
contact with the logical boxes.

 Introducing the Product and Installing the Software

Programming with STEP 7 Lite V3.0
A5E00293884-01 1-5

1.2 Project Window and Views in STEP 7 Lite

Project Window and Views

After you start STEP 7 Lite, the project window appears in the left part of the
project window.

You can access all local objects (such as the program) and functions (such as
Monitor and Modify) with STEP 7 Lite by means of the project window.

If you click on the "Online CPU" tab at the bottom of the project window, beside the
"Project" tab, you can see the objects in the CPU (see Switching to Online CPU).

Project view (Projects) References to Explanations

Project

Hardware

Symbol table

Monitor and Modify

Cross Reference

Project Documentation

Program

Blocks

Symbols in the Project Window

Import, Export, Save As

If you double-click on an element in the project window, a window with one or more
views opens in the work area. If an element has several views, you can switch
among them by means of tabs on the lower border of the window.

Example

The element "Hardware" has the views "Hardware configuration", Hardware
comparison" and "Hardware diagnostics."

Introducing the Product and Installing the Software

 Programming with STEP 7 Lite V3.0
1-6 A5E00293884-01

Project

You can change the default name "New Project" using the menu command File >
Save or Save as.

Possible Views Explanation See Also

Project overview Hardware configuration as well as an
overview of all blocks in the project
with information on the properties,
such as block symbol, size, language
in which it was created, etc.

Blocks in the User Program

Hardware

You cannot change the default name in the project window.

Possible Views Explanation See Also

HW Comparison For the comparison between planned
configuration and the one downloaded
to the CPU: visualization of
differences (such as different module
type or missing modules)

Comparison between
Downloaded and Planned
Configuration

HW Configuration For the arrangement of modules from
a catalog in racks and parameter
assignment of modules.

Introduction to Configuring
Hardware

Setting the Properties of
Components

HW Diagnostics For the visualization of the module
states: from this view, you can call up
detailed diagnostics information

Diagnosing Hardware and
Troubleshooting

Symbol Table

You cannot change the default name in the project window.

Possible Views Explanation See Also

Symbol Table For displaying and editing global
symbols for blocks and addresses

Symbol Table for Global
Symbols

Monitor and Modify

You cannot change the default name in the project window.

Possible Views Explanation See Also

Monitor/Modify For monitoring the status of
addresses in a variable table as well
as for modifying addresses

Introduction to Monitoring
Variables

Introduction to Modifying
Variables

Force For the forcing of addresses and for
deleting force jobs

Introduction to Forcing
Variables

 Introducing the Product and Installing the Software

Programming with STEP 7 Lite V3.0
A5E00293884-01 1-7

Cross References

You cannot change the default name in the project window.

Possible Views Explanation See Also

Cross-Reference List For all addresses used, displays in
which blocks and in which positions
they are used

Cross-Reference List

Rewiring

Addresses Used Displays how addresses are
accessed (bit, byte, word, or double-
word access)

Address Used

Program Structure Graphic display of all available
blocks and the call-up hierarchy
between the blocks

Program Structure

Project Documentation

You cannot change the default name in the project window.

Possible Views Explanation See Also

Project-
Documentation

For creating project documentation;
layout of print objects such as cross-
references or symbol tables;
managing print templates and
customizing their layout before
printing.

Project Documentation
Overview

Program

You cannot change the default name in the project window.

Possible Views Explanation See Also

Overview Overview of all blocks in the project
with specification of the properties,
such as block symbol, size,
programming language, etc.

Blocks in the User Program

Ensuring Program
Consistency

Introducing the Product and Installing the Software

 Programming with STEP 7 Lite V3.0
1-8 A5E00293884-01

Blocks

The name in the project window is the result of the block type and number that you
specify when you create a new block.

Possible Views Explanation See Also

Block Editor Editor with declaration and
statement section for creating the
local block program

Block Editor

Editing STL Instructions in the
Code Section

Editing FBD Instructions in the
Code Section

Editing LAD Instructions in the
Code Section

Testing Using Program Status

Properties For displaying block properties
such as name, length, memory
requirement, etc. For
entering/changing the symbol,
various comments, and block
attributes

Block Properties

Setting Block Properties

Switching to "Online CPU"

You can switch from within the project window itself. At the lower border of the
project window, you can switch to the "Online CPU" tab that allows you to access
the contents of the CPU (downloaded blocks and downloaded hardware
configuration) or to access the Memory Card / Micro Memory Card in the CPU.
In contrast to the "Offline" project window, this view has a color background.

You cannot make any changes in the "Online CPU" view.

Example:

"Online CPU" View Links to Explanations

Special Features:

Symbols on the right-hand side of the online view indicate, for
example, whether or not the online object and the offline object
(such as program or HW configuration) are the same.

If blocks are saved in a project that were not downloaded to the
CPU, the "Offline Blocks" symbol appears.

Hardware

What You Should Know about Micro Memory Cards (MMC)

Program

Blocks

Symbols in the Project Window

Prerequisites for Downloading

Working without a Project on the Programming Device/PC

 Introducing the Product and Installing the Software

Programming with STEP 7 Lite V3.0
A5E00293884-01 1-9

1.3 Help and Documentation on STEP 7 Lite

The documentation for STEP 7 Lite is available in the form of online Help. The
online Help is divided into two parts:

• You can get information on the immediate context of a function by using the
"What's This" button or by pressing SHIFT+F1.

• Online Help content that goes beyond function is based on HTML format and
can be accessed through the menu command Help > STEP 7 Lite Help.

In addition to online Help, electronic manuals are available in PDF format. You can
find these manuals on the task bar under Start > Simatic > Documentation.

You can also obtain paper documentation, as always, from your Siemens
representative.

You will find more information on how to use the documentation in the section
"Notes on Documentation" in the Readme.wri file on your STEP 7 Lite CD. This file
also contains any changes made to the online Help and electronic manuals since
their publication.

1.4 Installation

1.4.1 Automation License Manager

1.4.1.1 User Rights Through the Automation License Manager

Automation License Manager

To use STEP 7 Lite programming software, you require a product-specific license
key (user rights). Starting with STEP 7 Lite V3.0, this key is installed with the
Automation License Manager.

The Automation License Manager is a software product from Siemens AG. It is
used to manage the license keys (license modules) for all systems.

The Automation License Manager is located in the following places:

• On the installation device for a software product requiring a license key

• On a separate installation device

• As a download from the Internet page of A&D Customer Support at Siemens
AG

The Automation License Manager has its own integrated online help. To obtain
help after the license manager is installed, press F1 or select the Help > Help on
License Manager. This online help contains detailed information on the
functionality and operation of the Automation License Manager.

Introducing the Product and Installing the Software

 Programming with STEP 7 Lite V3.0
1-10 A5E00293884-01

Licenses

Licenses are required to use STEP 7 Lite program packages whose legal use is
protected by licenses. A license gives the user a legal right to use the product.
Evidence of this right is provided by the following:

• The CoL (Certificate of License), and

• The license key

Certificate of License (CoL)

The "Certificate of License" that is included with a product is the legal evidence that
a right to use this product exists. This product may only be used by the owner of
the Certificate of License (CoL) or by those persons authorized to do so by the
owner.

License Keys

The license key is the technical representation (an electronic "license stamp") of a
license to use software.

SIEMENS AG issues a license key for all of its software that is protected by a
license. When the computer has been started, such software can only be used in
accordance with the applicable license and terms of use after the presence of a
valid license key has been verified.

 Notes

• You can use the standard software without a license key to familiarize yourself
with the user interface and functions.

• However, a license is required and necessary for full, unrestricted use of the
STEP 7 Lite software in accordance with the license agreement

• If you have not installed the license key, you will be prompted to do so at
regular intervals.

License Keys can be stored and transferred among various types of storage
devices as follows:

• On license key diskettes

• On the local hard disk

• On network hard disk

If software products for which no license is available are installed, you can then
determine which license key is needed and order it as required.

For further information on obtaining and using license keys, please refer to the
online help for the Automation License Manager.

 Introducing the Product and Installing the Software

Programming with STEP 7 Lite V3.0
A5E00293884-01 1-11

Types of Licenses

The following different types of application-oriented user licenses are available for
software products from Siemens AG. The actual behavior of the software is
determined by which type license key is installed for it. The type of use can be
found on the accompanying Certificate of License.

License Type Description

Single License The software can be used on any single computer desired for an unlimited
amount of time.

Floating License The software can be used on a computer network ("remote use") for an
unlimited amount of time.

Trial License The software can be used subject to the following restrictions:

• A period of validity of up to a maximum of 14 days,

• A total number of operating days after the day of first use,

• A use for tests and validation (exemption from liability).

Upgrade License Certain requirements in the existing system may apply with regard to software
upgrades:

• An upgrade license may be used to convert an "old version X" of the
software to a newer version X+.

• An upgrade may be necessary due to an increase in the volume of data
being handled in the given system.

1.4.1.2 Installing the Automation License Manager

The Automation License Manager is installed by means of an MSI setup process.
The installation software for the Automation License Manager is included on the
STEP 7 Lite product CD.

You can install the Automation License Manager at the same time you install
STEP 7 Lite or at a later time.

 Notes

• For detailed information on how to install the Automation License Manager,
please refer to the current "Readme.wri" file

• The online help for the Automation License Manager contains all the
information you need on the function and handling of License Keys.

Introducing the Product and Installing the Software

 Programming with STEP 7 Lite V3.0
1-12 A5E00293884-01

Subsequent installation of license keys

If you start the STEP 7 Lite software and no license keys are available, a warning
message indicating this condition will be displayed.

 Notes

• You can use the standard software without a license key to familiarize yourself
with the user interface and functions.

• However, a license is required and necessary for full, unrestricted use of the
STEP 7 Lite software in accordance with the license agreement

• If you have not installed the license key, you will be prompted to do so at
regular intervals.

You can subsequently install license keys in the following ways:

• Install license keys from diskettes

• Install license keys downloaded from the Internet. In this case, the license keys
must be ordered first.

• Use floating license keys available in a network

For detailed information on installing license keys, refer to the online help for the
Automation License Manager. To access this help, press F1 or select the Help >
Help on License Manager menu command.

 Notes

• In Windows 2000/XP, license keys authorization will only be operational if they
are if it is installed on a local hard disk and have write-access status.

• Floating licenses can also be used within a network ("remote" use).

1.4.1.3 Guidelines for Handling License Keys

!
Caution

Please note the information on handling license keys that is available in the online
help on the Automation License Manager and also in the STEP 7 Readme.wri file
on the installation CD-ROM. If you do not follow these guidelines, the license keys
may be irretrievably lost.

To access online help for the Automation License Manager, press F1 for context-
sensitive help or select the Help > Help on License Manager menu command.

This help section contains all the information you need on the function and
handling of license keys.

 Introducing the Product and Installing the Software

Programming with STEP 7 Lite V3.0
A5E00293884-01 1-13

1.4.2 Installing STEP 7 Lite

STEP 7 Lite contains a Setup program which executes the installation
automatically. Prompts on the screen guide you step by step through the whole
installation procedure. You call the Setup program using the standard Windows
software installation procedure.

The main stages in the installation are:

• Copying the data to your programming device

• Entering the ID number

• Setting the drivers for the communication

• Authorization (if required at this time)

Requirements for Installation

• The package runs under the operating system

- Microsoft Windows XP Home

- Microsoft Windows XP Professional

- Microsoft Windows 2000

• Basic hardware:
Programming device or PC with the recommended system requirements for
your operating system. You will find the system requirements of your operating
system in the operating system documentation or on the Microsoft Web site.

A programming device (PG) is a personal computer with a special compact design
suitable for industrial use. It is fully equipped for programming SIMATIC
programmable logic controllers.

• Memory capacity:
Refer to the readme file "README.WRI" for the required hard disk space.

• Multipoint interface (optional):
A multipoint interface (MPI) between the programming device or PC and the
programmable logic controller is only required if you want to communicate via
the MPI with the programmable logic controller in STEP 7 Lite.

You therefore require either:

• A PC adapter and a zero-modem cable (RS232), which are connected to the
communications port of your device, or

• An MPI module (such as CP 5611), which is installed in your device.

Programming devices have the multipoint interface already built in.

 Note

See also the notes for Installing STEP 7 Lite in the README.WRI file.

You can find the Readme file in the Start menu under Start > Simatic > Product
Notes.

Introducing the Product and Installing the Software

 Programming with STEP 7 Lite V3.0
1-14 A5E00293884-01

1.4.2.1 Installation Procedure

Preparing for Installation

Before you can start installing the software, the Windows operating system must
be started.

• You do not require an external data medium if the STEP 7 Lite software was
shipped on the hard disk of your programming device.

• To install from CD-ROM, insert the CD-ROM in the CD-ROM drive of your PC.

Starting the Installation Program

To install the software, proceed as follows:

1. Insert the CD-ROM and double click on the file ”SETUP.EXE".

2. Follow the instructions displayed by the installation program step by step.

The program guides you step by step through the installation process. You can
switch to the next step or the previous step from any position.

During installation, queries are shown in dialog boxes for you to answer and
options are displayed for you to select. Read the following notes so you can reply
to the queries faster and easier.

If a Version of STEP 7 Lite Is Already Installed...

If the installation program finds another version of STEP 7 Lite on the programming
device, it reports this and prompts you to decide how to proceed:

• Abort the installation so that you can uninstall the old STEP 7 Lite version under
Windows and then start the installation again, or

• Continue the installation and overwrite the old version with the new version.

Your software is better organized if you uninstall any older versions before
installing the new version. Overwriting an old version with a new version has the
disadvantage that if you then uninstall, any remaining components of the old
version are not removed.

Selecting the Installation Options

You have three options open to you to select the scope of the installation:

• Standard configuration: all languages for the user interface. Refer to the current
Product Information for the memory capacity required for this configuration.

• Minimum configuration: only one language. Refer to the current Product
Information for the memory capacity required for this configuration.

• User-defined configuration: you can determine the scope of the installation,
selecting which programs, databases, etc. you want to install.

 Introducing the Product and Installing the Software

Programming with STEP 7 Lite V3.0
A5E00293884-01 1-15

ID Number

You will be prompted during installation for an ID number. Enter this ID number
which you will find on the Software Product Certificate or your authorization
diskette.

Installing License Keys

During setup, the program checks to see whether a corresponding license key is
installed on the hard disk. If no valid license key is found, a message stating that
the software can be used only with a license key is displayed. If you want, you can
install the license key immediately or continue setup and then install the key later.
If you want to install the license key now, insert the authorization diskette when
prompted to do so.

PG/PC Interface Settings

During installation, a dialog box is displayed where you can assign parameters to
the programming device/PC interface. You will find more information on it in
"Setting the PG/PC Interface."

If Errors Occur during the Installation

The following errors may cause the installation to fail:

• If an initialization error occurs immediately after starting Setup, the program was
probably not started under Windows.

• Not enough memory: you need to have at least 100 Mbytes of free space on
your hard disk for the standard software, regardless of the scope of your
installation.

• Bad CD-ROM: verify that the CD-ROM is bad, then call your local Siemens
representative.

• Operator error: start the installation again and read the instructions carefully.

Completing the Installation

If the installation was successful, a message appears on the screen to tell you this.

If any changes were made to system files during the installation, you are prompted
to restart Windows. When you have done this, you can start STEP 7 Lite.

Once the installation has been completed successfully, a program group is created
for STEP 7 Lite.

Introducing the Product and Installing the Software

 Programming with STEP 7 Lite V3.0
1-16 A5E00293884-01

1.4.2.2 Setting the PG/PC Interface

With the settings you make here, you set up the communication link between the
programming device/PC and the programmable logic controller. During installation,
a dialog box is displayed where you can assign parameters to the programming
device/PC interface. You can display the dialog box following installation by calling
the program ”Setting PG/PC Interface" in the STEP 7 Lite program group. This
enables you to change the interface parameters independently of the installation.

Basic Procedure

To operate an interface, you will require the following:

• Settings in the operating system

• Suitable interface parameters

If you are using a programming device via a multipoint interface (MPI) connection,
no further operating system-specific adaptations are required.

If you are using a PC with an MPI card or communications processors (CP), you
should check the interrupt and address assignments in the Windows "Control
Panel" to ensure that there are no interrupt conflicts and no address areas overlap.

In order to make it easier to assign parameters to the programming device/PC
interface, a set of predefined basic parameters (interface parameters) are
displayed in a dialog box for you to select.

Assigning Parameters to the PG/PC Interface

To set the module parameters, follow the steps outlined below (a more detailed
description can be found in the online help):

1. Double-click on ”Setting PG/PC Interface" in the ”Control Panel."

2. Set the ”Access Point of Application" to ”S7ONLINE."

3. In the list "Interface parameter set used," select the required interface
parameter assignment. If the interface parameters you require are not
displayed, you must install a module or protocol first using the ”Select" button.
The interface parameters are then created automatically.

- If you select an interface which automatically recognizes the bus
parameters (for example, CP 5611 (Auto)), you can connect the
programming device or the PC to MPI or PROFIBUS without having to set
bus parameters. With a transmission rate of less than 187.5 kbps, there may
be a delay of up to one minute while the bus parameters are read.
Requirement for automatic recognition: Masters which distribute cyclic
bus parameters are connected to the bus. All new MPI components do this;
with PROFIBUS subnets, the cyclic distribution of bus parameters must be
enabled (default PROFIBUS network setting).

• If you select an interface which does not automatically recognize the bus
parameters, you can display the properties and adapt them to match the
subnet.

 Introducing the Product and Installing the Software

Programming with STEP 7 Lite V3.0
A5E00293884-01 1-17

Changes will be necessary if conflicts with other settings arise (for example, with
interrupt or address assignments). In this case, make the appropriate changes with
the hardware recognition and control panel in Windows (see below).

!
Caution

Do not remove the module parameter assignment ”TCP/IP" if it is shown.

This could prevent other applications from functioning correctly.

Checking the Interrupt and Address Assignments

If you use a PC with an MPI card, you should always check whether the default
interrupt and the default address area are free and, if necessary, select a free
interrupt and/or address area.

Windows 2000

Under Windows 2000 you can view the resources under Control Panel >
Administrative Tools > Computer Management > System Tools > System
Information > Hardware Resources.

Windows XP

Under Windows XP you can view the resources under START > All Programs >
Accessories > System > System programs > System Information > Hardware
Resources.

1.4.3 Uninstalling STEP 7 Lite

Use the usual Windows procedure to uninstall STEP 7 Lite:

1. Start the dialog box for installing software under Windows by double-clicking on
the ”Add/Remove Programs" icon in the ”Control Panel."

2. Select the STEP 7 Lite entry in the displayed list of installed software. Click the
button to ”Add/Remove" the software.

3. If the dialog boxes ”Remove Shared File" appear, click the ”No" button if you
are in doubt as to how to respond.

Introducing the Product and Installing the Software

 Programming with STEP 7 Lite V3.0
1-18 A5E00293884-01

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-1

2 Basics of Designing a Program

2.1 Programs in a CPU

In a CPU, two different programs are always executing:

• The operating system

• The user program

Operating System

Every CPU has an operating system that organizes all the functions and
sequences of the CPU that are not associated with a specific control task. The
tasks of the operating system include the following:

• Handling startup

• Updating the process image table of the inputs and outputting the process
image table of the outputs

• Calling the user program

• Detecting interrupts and calling the interrupt OBs

• Detecting and dealing with errors

• Managing the memory areas

• Communicating with programming devices and other communications partners

If you change operating system parameters (the operating system default settings),
you can influence the activities of the CPU in certain areas.

User Program

You yourself must create the user program and download it to the CPU. This
contains all the functions required to process your specific automation task. The
tasks of the user program include the following:

• Specifying the conditions for startup on the CPU (for example, initializing signals
with a particular value)

• Processing process data (for example, logically combining binary signals,
reading in and evaluating analog signals, specifying binary signals for output,
outputting analog values)

• Specifying the reaction to interrupts

• Handling disturbances in the normal running of the program

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-2 A5E00293884-01

2.2 Blocks in the User Program

The STEP 7 Lite programming software allows you to structure your user program,
in other words to break down the program into individual, self-contained program
sections. This has the following advantages:

• Extensive programs are easier to understand.

• Individual program sections can be standardized.

• Program organization is simplified.

• It is easier to make modifications to the program.

• Debugging is simplified since you can test separate sections.

• Commissioning your system is made much easier.

Block Types

There are several different types of blocks you can use within a user program:

Block Brief Description of Function See Also

Organization blocks (OB) OBs determine the structure of the user
program.

Organization Blocks and
Program Structure

System function blocks
(SFB) and system functions
(SFC)

SFBs and SFCs are integrated in the S7 CPU
and allow you access to some important
system functions.

System Function Blocks
(SFB) and System
Functions (SFC)

Function blocks (FB) FBs are blocks with a "memory" which you
can program yourself.

Function Blocks (FB)

Functions (FC) FCs contain program routines for frequently
used functions.

Functions (FC)

Instance data blocks
(instance DB)

Instance DBs are associated with the block
when an FB/SFB is called. They are created
automatically during compilation.

Instance Data Blocks

Data blocks (DB) DBs are data areas for storing user data. In
addition to the data that are assigned to a
function block, shared data can also be
defined and used by any blocks.

Shared Data Blocks (DB)

OBs, FBs, SFBs, FCs, and SFCs contain sections of the program and are therefore
also known as logic blocks. The permitted number of blocks per block type and the
permitted length of the blocks is CPU-specific.

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-3

2.2.1 Organization Blocks and Program Structure

Organization blocks (OBs) are the interface between the operating system and the
user program. They are called by the operating system and control cyclic and
interrupt-driven program execution and how the programmable logic controller
starts up. They also handle the response to errors. By programming the
organization blocks you specify the reaction of the CPU.

Organization Block Priority

Organization blocks determine the order in which the individual program sections
are executed. The execution of an OB can be interrupted by calling a different OB.
Which OB is allowed to interrupt another OB depends on its priority. Higher priority
OBs can interrupt lower priority OBs. The background OB has the lowest priority.

Types of Interrupt and Priority Classes

The events that lead to an OB being called are known as interrupts. The following
table shows the types of interrupt in STEP 7 Lite and the priority of the organization
blocks assigned to them. Not all listed organization blocks and their priority classes
are available in all S7 CPUs (see, for example, S7-300 Programmable Controller,
Hardware and Installation Manual).

Type of
Interrupt

Organization Block Priority Class
(Default)

See also

Main program
scan

OB1 1 Organization Block for Cyclic
Program Processing (OB1)

Time-of-day
interrupts

OB10 to OB17 2 Time-of-Day Interrupt Organization
Blocks (OB10 to OB17)

Time-delay
interrupts

OB20

OB21

OB22

OB23

 3

 4

 5

 6

Time-Delay Interrupt Organization
Blocks (OB20 to OB23)

Cyclic interrupts OB30

OB31

OB32

OB33

OB34

OB35

OB36

OB37

OB38

 7

 8

 9

 10

 11

 12

 13

 14

 15

Cyclic Interrupt Organization Blocks
(OB30 to OB38)

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-4 A5E00293884-01

Type of
Interrupt

Organization Block Priority Class
(Default)

See also

Hardware
interrupts

OB40

OB41

OB42

OB43

OB44

OB45

OB46

OB47

 16

 17

 18

 19

 20

 21

 22

 23

Hardware Interrupt Organization
Blocks (OB40 to OB47)

Asynchronous
errors

OB80 Time Error

OB82 Diagnostic Interrupt

OB84 CPU Hardware Fault

OB85 Priority Class Error

OB86 Rack Failure

OB87 Communication Error

26

(or 28 if the
asynchronous
error OB exists in
the startup
program)

"Error Handling Organization
Blocks (OB80 to OB87 / OB121 to
OB122)"

Startup OB100 Warm Restart

OB102 Cold Restart

 27

 27

Startup Organization Blocks
(OB100/OB102)

Synchronous
errors

OB121 Programming Error

OB122 Access Error

Priority of the OB
that caused the
error

"Error Handling Organization
Blocks (OB80 to OB87 / OB121 to
OB122)"

Changing the Priority

The priority of the organization blocks cannot be changed.

Error OBs started by synchronous errors are executed in the same priority class as
the block being executed when the error occurred.

Local Data

When creating logic blocks (OBs, FCs, FBs), you can declare temporary local data.
The local data area on the CPU is divided among the priority classes.

Start Information of an OB

Every organization block has start information of 20 bytes of local data that the
operating system supplies when an OB is started. The start information specifies
the start event of the OB, the date and time of the OB start, errors that have
occurred, and diagnostic events.

For example, OB40, a hardware interrupt OB, contains the address of the module
that generated the interrupt in its start information.

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-5

Deselected Interrupt OBs

If you assign priority class 0 or assign less than 20 bytes of local data to a priority
class, the corresponding interrupt OB is deselected. The handling of deselected
interrupt OBs is restricted as follows:

• In RUN mode, they cannot be copied or linked into your user program.

• In STOP mode, they can be copied or linked into your user program, but when
the CPU goes through a warm restart they stop the startup and an entry is
made in the diagnostic buffer.

By deselecting interrupt OBs that you do not require, you increase the amount of
local data area available, and this can be used to save temporary data in other
priority classes.

Cyclic Program Processing

Cyclic program processing is the ”normal" type of program execution on
programmable logic controllers, meaning the operating system runs in a program
loop (the cycle) and calls the organization block OB1 once in every loop in the
main program. The user program in OB1 is therefore executed cyclically.

Power on

Main
program

Cycle

Operating system User program

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-6 A5E00293884-01

Event-Driven Program Processing

Cyclic program processing can be interrupted by certain events (interrupts). If such
an event occurs, the block currently being executed is interrupted at a command
boundary and a different organization block that is assigned to the particular event
is called. Once the organization block has been executed, the cyclic program is
resumed at the point at which it was interrupted.

Power on

Main
program

mm

<Interrupt>

<Error>

Interrupt
program

Error
handling

Cycle

Operating system User program

Startup
program

Inter-
ruption

Inter-
ruption

This means it is possible to process parts of the user program that do not have to
be processed cyclically only when needed. The user program can be divided up
into ”subroutines" and distributed among different organization blocks. If the user
program is to react to an important signal that occurs relatively seldom (for
example, a limit value sensor for measuring the level in a tank reports that the
maximum level has been reached), then this part of the user program should be
located in an OB whose processing is event-driven.

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-7

Linear Versus Structured Programming

You can write your entire user program in OB1 (linear programming). This is only
advisable with simple programs written for the S7-300 CPU and requiring little
memory.

Complex automation tasks can be controlled more easily by dividing them into
smaller tasks reflecting the technological functions of the process or that can be
used more than once. These tasks are represented by corresponding program
sections, known as the blocks (structured programming).

Main program
= OB 1

Linear programming

Main program

OB 1

FB 1

FC 1

Structured programming

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-8 A5E00293884-01

2.2.2 Call Hierarchy in the User Program

For the user program to function, the blocks that make up the user program must
be called. This is done using special STEP 7 Lite instructions, the block calls, that
can only be programmed and started in logic blocks.

Order and Nesting Depth

The order and nesting of the block calls is known as the call hierarchy. The number
of blocks that can be nested (the nesting depth) depends on the particular CPU.

The following figure illustrates the order and nesting depth of the block calls within
a scan cycle.

FB 1

Instance DB 1

OB 1

O
pe

ra
tin

g
sy

st
em

Start of
cycle

Nesting depth

FC 1

FB 2

Instance DB 2

FC 1

FB 1

Instance DB 1

SFC 1

DB 1

There is a set order for creating blocks:

• You create the blocks from top to bottom, so you start with the top row of
blocks.

• Every block that is called must already exist, meaning that within a row of
blocks the order for creating them is from right to left.

• The last block to be created is OB1.

Putting these rules into practice for the example in the figure produces the
following sequence for creating the blocks:

FC1 > FB1 + instance DB1 > DB1 > SFC1 > FB2 + instance DB2 > OB1

 Notice

If the nesting is too deep (too many levels), the local data stack may overflow (Also
refer to Local Data Stack).

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-9

Block Calls

The following figure shows the sequence of a block call within a user program. The
program calls the second block whose instructions are then executed completely.
Once the second or called block has been executed, execution of the interrupted
block that made the call is resumed at the instruction following the block call.

Instruction that calls
another block

Block end

Calling block
(OB, FB, FC)

Called block
(FB, FC, SFB or SFC)

Program
execution

Program
execution

Before you program a block, you must specify which data will be used by your
program, in other words, you must declare the variables of the block.

 Note

OUT parameters must be described for each block call.

 Notice

The operating system resets the instances of SFB3 "TP" when a cold restart is
performed. If you want to initialize instances of this SFB after a warm restart, you
must call up the relevant instances of the SFB with PT = 0 ms via OB100. You can
do this, for example, by performing an initialization routine in the blocks which
contain instances of the SFB.

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-10 A5E00293884-01

2.2.3 Cyclic Program Processing and CPU Settings

2.2.3.1 Organization Block for Cyclic Program Processing (OB1)

Cyclic program processing is the ”normal" type of program execution on
programmable logic controllers. The operating system calls OB1 cyclically and with
this call it starts cyclic execution of the user program.

Sequence of Cyclic Program Processing

The following table shows the phases of cyclic program processing:

Step Sequence (for CPUs from 10/98)

1 The operating system starts the cycle monitoring time.

2 The CPU writes the values from the process image table of the outputs to the
output modules.

3 The CPU reads the state of the inputs of the input modules and updates the
process image table of the inputs.

4 The CPU processes the user program and executes the instructions contained
in the program.

5 At the end of a cycle, the operating system executes any tasks that are
pending, for example downloading and deleting blocks, receiving and sending
global data.

6 Finally, the CPU returns to the start of the cycle and restarts the cycle
monitoring time.

Process Images

So that the CPU has a consistent image of the process signals during cyclic
program processing, the CPU does not address the input (I) and output (Q)
address areas directly on the I/O modules but rather accesses an internal memory
area of the CPU that contains an image of the inputs and outputs.

Programming Cyclic Program Processing

You program cyclic program processing by writing your user program in OB1 and
in the blocks called within OB1 using STEP 7 Lite.

Cyclic program processing begins as soon as the startup program is completed
without errors.

Interrupts

Cyclic program processing can be interrupted by the following:

• An interrupt

• A STOP command (mode selector, menu option on the programming device,
SFC46 STP, SFB20 STOP)

• A power outage

• The occurrence of a fault or program error

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-11

Scan Cycle Time

The scan cycle time is the time required by the operating system to run the cyclic
program and all the program sections that interrupt the cycle (for example,
executing other organization blocks) and system activities (for example, updating
the process image). This time is monitored.

The scan cycle time (TC) is not the same in every cycle. The following figure shows
different scan cycle times for CPUs that are caused by inserting a time-of-day
interrupt OB10 (interrupts OB1):

Current cycle

OB10

OB1 OB1

Updates
process
image output
table

Updates
process
image input

Updates
process
image output
table

Tcycle 1 Tcycle 2

Next cycle

Updates
process
image output

OB1
Updates
process
image input

Upda
proc
inpu

Next cycle

Different Scan Cycle Times for CPUs (10/98)

Scan Cycle Monitoring Time

With STEP 7 Lite, you can modify the default scan cycle monitoring time. If this
time expires, the CPU either changes to STOP mode or OB80 is called in which
you can specify how the CPU should react to this error.

Minimum Cycle Time

With STEP 7 Lite, you can set a minimum cycle time, provided the CPU supports
this function. This is useful in the following situations:

• When the interval at which program execution starts in OB1 (main program
scan) should always be the same or

• When the process image tables would be updated unnecessarily often if the
cycle time is too short.

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-12 A5E00293884-01

The following figure shows the function of the scan cycle monitoring time and the
minimum cycle time in program processing.

Current cycle Next cycle

OB10

OB40

PC07

PC01

TC

Tmin

Tmax

Twart

PC16

OB10

OB1 OB1
Updating of the
process image
output table

Updating of the
process image
input table

Updating of the
process image
output table

Reserve

OB90 OB90 OB90PC29

Tmax
Tmin
Tc
Twart

PC

Scan Cycle Monitoring Time and Minimum Cycle Time

Upd
proc
inpu

= Maximum cycle time that can be set
= Minimum cycle time that can be set
= Actual scan cycle time
= Difference between Tmin and actual cycle time. In this time, occurred interrupts and
 and the background OB can be processed
= Priority class

2.2.3.2 Communication Load

You can use the CPU parameter Scan Cycle Load from Communication" to control
within a given framework the duration of communication processes that always
increase the scan cycle time. Examples of communication processes include
transmitting data to another CPU by means of MPI or loading blocks by means of a
programming device.

Test functions with a programming device are barely influenced by this parameter.
However, you can increase the scan cycle time considerably. In the process mode,
you can limit the time set for test functions.

How the "Communication Load" Parameter Works

The operating system of the CPU constantly provides the communication with the
configured percent of the entire CPU processing capacity (time slice technique). If
this processing capacity is not needed for the communication, it is available to the
rest of the processing.

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-13

Effect on the Actual Scan Cycle Time

Without additional asynchronous events, the OB1 scan cycle time is extended by a
factor that can be calculated according to the following formula:

100

100 - "Scan cycle load from communication (%)"

Example 1 (no additional asynchronous events):

When you set the load added to the cycle by communication to 50%, the OB1 scan
cycle time can be doubled.

At the same time, the OB1 scan cycle time is also influenced by asynchronous
events (such as hardware interrupts or cyclic interrupts). From a statistical point of
view, even more asynchronous events occur within an OB1 scan cycle because of
the extension of the scan cycle time by the communication portion. This causes an
additional increase in the OB1 scan cycle. This increase depends on how many
events occur per OB1 scan cycle and on the duration of event processing

Example 2 (additional asynchronous events considered):

For a pure OB1 execution time of 500 ms, a communication load of 50% can result
in an actual scan cycle time of up to 1000 ms (provided that the CPU always has
enough communication jobs to process). If, parallel to this, a cyclic interrupt with 20
ms processing time is executed every 100 ms, this cyclic interrupt would extend the
scan cycle by a total of 5*20 ms = 100 ms without communication load. That is, the
actual scan cycle time would be 600 ms. Because a cyclic interrupt also interrupts
communication, it affects the scan cycle time by 10*20 ms with 50%
communication load. That is, in this case, the actual scan cycle time amounts to
1200 ms instead of 1000 ms.

Notes

• Check the effects of changing the value of the "Scan Cycle Load from
communication" parameter while the system is running.

• The communication load must be taken into account when setting the minimum
scan cycle time; otherwise time errors will occur.

Recommendations

• Where possible, apply the default value.

• Increase this value only if you are using the CPU primarily for communication
purposes and your user program is not time critical.

• In all other cases, only reduce the value.

• Set the process mode and limit the time needed there for test functions.

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-14 A5E00293884-01

2.2.4 Interrupt-Driven Program Processing

2.2.4.1 Organization Blocks for Interrupt-Driven Program Processing

By providing interrupt OBs, the S7 CPUs allow the following:

• Program sections can be processed time-driven

• Your program can react to external signals from the process.

The cyclic user program does not need to query continuously whether or not
interrupt events have occurred. Rather, if an interrupt does occur, the operating
system executes in the interrupt OB the specific part of the user program which
determines the reaction of the PLC to this interrupt.

Interrupt Types and Applications

The following table shows how the different types of interrupt can be used.

Type of Interrupt Interrupt OBs Application Examples

Time-of-day
interrupt

OB10 to OB17 Calculating the flow volume of a blending process at the end
of a shift

Time-delay interrupt OB20 to OB23 Controlling a fan that must continue to run for 20 seconds
after a motor is switched off

Cyclic interrupt OB30 to OB38 Scanning a signal level for an automated control system

Hardware interrupt OB40 to OB47 Signaling that the maximum level of a tank has been
reached

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-15

2.2.4.2 Time-of-Day Interrupt Organization Blocks (OB10 to OB17)

The S7 CPUs provide the time-of-day interrupt OBs that can be executed at a
specified date or at certain intervals.

Time-of-day interrupts can be triggered as follows:

• Once at a particular time (specified in absolute form with the date)

• Periodically by specifying the start time and the interval at which the interrupt
should be repeated (for example, every minute, every hour, daily).

Rules for Time-of-Day Interrupts

Time-of-day interrupts can only be executed when the interrupt has been assigned
parameters and a corresponding organization block exists in the user program. If
this is not the case, an error message is entered in the diagnostic buffer and
asynchronous error handling is executed (OB80, see Error Handling Organization
Blocks (OB80 to OB87 / OB121 to OB122)).

Periodic time-of-day interrupts must correspond to a real date. Repeating an OB10
monthly starting on January 31st is not possible. In this case, the OB would only be
started in the months that have 31 days.

A time-of-day interrupt activated during startup (restart (warm start) or hot restart)
is only executed after the startup is completed.

Time-of-day interrupt OBs that are deselected by the parameter assignment cannot
be started. The CPU recognizes a programming error and changes to STOP mode.

Following a restart (warm start), time-of-day interrupts must be set again (for
example, using SFC30 ACT_TINT in the startup program).

Special case: the configured start time lies in the past
The configuration is as follows:

• Execution: once

• Active: yes

• Start date/time-of-day: lies in the past (relative to the CPU realtime clock)

CPU behavior: Following a start or restart (warm start), the respective time-of-day
interrupt OB is called once by the operating system!

Starting the Time-of-Day Interrupt

To allow the CPU to start a time-of-day interrupt, you must first set and then
activate the time-of-day interrupt. There are three ways of starting the interrupt:

• Automatic start of the time-of-day interrupt by assigning appropriate parameters
with STEP 7 Lite (parameter block ”time-of-day interrupts")

• Setting and activating the time-of-day interrupt with SFC28 SET_TINT and
SFC30 ACT_TINT from within the user program

• Setting the time-of-day interrupt by assigning parameters with STEP 7 Lite and
activating the time-of-day interrupt with SFC30 ACT_TINT in the user program.

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-16 A5E00293884-01

Querying the Time-of-Day Interrupt

To query which time-of-day interrupts are set and when they are set to occur, you
can do one of the following:

• Call SFC31 QRY_TINT

• Request the list ”interrupt status" of the system status list.

Deactivating the Time-of-Day Interrupt

You can deactivate time-of-day interrupts that have not yet been executed with
SFC29 CAN_TINT. Deactivated time-of-day interrupts can be set again using
SFC28 SET_TINT and activated with SFC30 ACT_TINT.

Priority of the Time-of-Day Interrupt OBs

All eight time-of-day interrupt OBs have the same priority class (2) as default and
are therefore processed in the order in which their start event occurs. You can,
however, change the priority class by selecting suitable parameters.

Changing the Set Time

You can change the time-of-day set for the interrupt as follows:

• A clock master synchronizes the time for masters and slaves.

• SFC0 SET_CLK can be called in the user program to set a new time.

Reaction to Changing the Time

The following table shows how time-of-day interrupts react after the time has been
changed.

If... Then...

If the time was moved ahead and one or
more time-of-day interrupts were skipped,

OB80 is started and the time-of-day
interrupts that were skipped are entered in
the start information of OB80.

You have not deactivated the skipped
time-of-day interrupts in OB80,

the skipped time-of-day interrupts are no
longer executed.

You have not deactivated the skipped
time-of-day interrupts in OB80,

the first skipped time-of-day interrupt is
executed, the other skipped time-of-day
interrupts are ignored.

By moving the time back, the start events for
the time-of-day interrupts occur again,

the execution of the time-of-day interrupt is
not repeated.

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-17

2.2.4.3 Delay Interrupt Organization Blocks (OB20 to OB23)

The S7 CPUs provide delay OBs with which you can program the delayed
execution of parts of your user program.

Rules for Delay Interrupts

Delay interrupts can only be executed when the corresponding organization block
exists in the CPU program. If this is not the case, an error message is entered in
the diagnostic buffer and asynchronous error handling is executed (OB80, see
Error Handling Organization Blocks (OB80 to OB87 / OB121 to OB122)).

Delay interrupt OBs that were deselected by the parameter assignment cannot be
started. The CPU recognizes a programming error and changes to STOP mode.

Delay interrupts are triggered when the delay time specified in SFC32 SRT_DINT
has expired.

Starting the Delay Interrupt

To start a delay interrupt, you must specify the delay time in SFC32 after which the
corresponding delay interrupt OB is called. Refer to the S7-300 Programmable
Controller, Hardware and Installation Manual for the maximum permitted length of
the delay time.

Priority of Delay Interrupt OBs

The default priority of delay interrupt OBs is priority class 3 to 6. You can assign
parameters to change the priority classes.

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-18 A5E00293884-01

2.2.4.4 Cyclic Interrupt Organization Blocks (OB30 to OB38)

The S7 CPUs provide cyclic interrupt OBs that interrupt cyclic program execution at
certain intervals.

Cyclic interrupts are triggered at intervals. The time at which the interval starts is
the mode transition from STOP to RUN.

Rules for Cyclic Interrupts

When you specify the intervals, make sure that there is enough time between the
start events of the individual cyclic interrupts for processing the cyclic interrupts
themselves.

If you assign parameters to deselect cyclic interrupt OBs, they can no longer be
started. The CPU recognizes a programming error and changes to STOP mode.

Starting the Cyclic Interrupt

To start a cyclic interrupt, you must specify the interval in the cyclic interrupts
parameter block using STEP 7 Lite. The interval is always a whole multiple of the
basic clock rate of 1 ms.

Interval = n X basic clock rate 1 ms

Each of the nine available cyclic interrupt OBs has a default interval (see the
following table). The default interval becomes effective when the cyclic interrupt OB
assigned to it is loaded. You can, however, assign parameters to change the
default values. Refer to your S7-300 Programmable Controller, Hardware and
Installation Manual for the upper limit.

Phase Offset in Cyclic Interrupts

To avoid cyclic interrupts of different cyclic interrupt OBs being started at the same
point and possibly causing a time error (cycle time exceeded) you can specify a
phase offset. The phase offset ensures that the execution of a cyclic interrupt is
delayed by a certain time after the interval has expired.

Phase offset = m X basic clock rate (where 0 ≤ m < n)

The following figure shows how a cyclic interrupt OB with phase offset (OB37) is
executed in contrast to a cyclic interrupt without phase offset (OB38).

0 8 16 24 32 40 4816 + 5 32 + 5 48 +5

Clock pulse:

OB38
(n=8, m=0)

OB37
(n=16, m=5)

t [ms]

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-19

Priority of the Cyclic Interrupt OBs

The following table shows the default intervals and priority classes of the cyclic
interrupt OBs. You can assign parameters to change the interval and the priority
class.

Cyclic Interrupt OB Interval in ms Priority Class

OB30 5000 7

OB31 2000 8

OB32 1000 9

OB33 500 10

OB34 200 11

OB35 100 12

OB36 50 13

OB37 20 14

OB38 10 15

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-20 A5E00293884-01

2.2.4.5 Hardware Interrupt Organization Blocks (OB40 to OB47)

The S7 CPUs provide hardware interrupt OBs that react to signals from the
modules (for example, signal modules (SMs), communications processors (CPs),
and function modules (FMs)). With STEP 7 Lite, you can decide which signal from
a configurable digital or analog module starts the OB. With CPs and FMs, use the
appropriate parameter assignment dialogs.

Hardware interrupts are triggered when a signal module with hardware interrupt
capability and with an enabled hardware interrupt passes on a received process
signal to the CPU or when a function module of the CPU signals an interrupt.

Rules for Hardware Interrupts

Hardware interrupts can only be executed when the corresponding organization
block exists in the CPU program. If this is not the case, an error message is
entered in the diagnostic buffer and asynchronous error handling is executed
(OB80, see Error Handling Organization Blocks (OB80 to OB87 / OB121 to
OB122)).

If you have deselected hardware interrupt OBs in the parameter assignment, these
cannot be started. The CPU recognizes a programming error and changes to
STOP mode.

Assigning Parameters to Signal Modules with Hardware Interrupt Capability

Each channel of a signal module with hardware interrupt capability can trigger a
hardware interrupt. For this reason, you must specify the following in the parameter
sets of signal modules with hardware interrupt capability using STEP 7 Lite:

• What will trigger a hardware interrupt.

• Which hardware interrupt OB will be executed (the default for executing all
hardware interrupts is OB40).

Using STEP 7 Lite, you activate the generation of hardware interrupts on the
function blocks. You assign the remaining parameters in the parameter assignment
dialogs of these function modules.

Priority of the Hardware Interrupt OBs

The default priority for the hardware interrupt OBs is priority class 16 to 23. You
can assign parameters to change the priority classes.

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-21

2.2.4.6 Startup Organization Blocks (OB100 / OB102)

Startup Types

There are three distinct types of startup:

• Warm restart

• Cold restart

The following table shows which OB the operating system calls in each startup
type.

Startup Type Related OB

Warm restart OB100

Cold restart OB102

Start Events for Startup OBs

The CPU executes a startup after the following events:

• After power up

• After you switch the mode selector from STOP to RUN/RUN-P

• After a request from a communication function

• After synchronizing in multicomputing mode

• In an H system after link-up (only on the standby CPU)

Depending on the start event, the CPU used, and its set parameters the relevant
startup OB (OB100, or OB102) is called.

Startup Program

You can specify the conditions for starting up your CPU (initialization values for
RUN, startup values for I/O modules) by writing your program for the startup in the
organization blocks OB100 for warm restart, or OB102 for cold restart.

There are no restrictions to the length of the startup program and no time limit
since the cycle monitoring is not active. Time-driven or interrupt-driven execution is
not possible in the startup program. During the startup, all digital outputs have the
signal state 0.

Startup Type After Manual Restart

On S7-300 CPUs only a manual warm restart or cold restart (CPU 318-2 only) is
possible.

Startup Type After Automatic Restart

On S7-300 CPUs, only a warm restart is possible following power up.

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-22 A5E00293884-01

Module Exists/Type Monitoring

In the parameters, you can decide whether the modules in the configuration table
are checked to make sure they exist and that the module type matches before the
startup.

If the module check is activated, the CPU will not start up if a discrepancy is found
between the configuration table and the actual configuration.

Monitoring Times

To make sure that the programmable controller starts up without errors, you can
select the following monitoring times:

• The maximum permitted time for transferring parameters to the modules

• The maximum permitted time for the modules to signal that they are ready for
operation after power up

Once the monitoring times expire, the CPU either changes to STOP, or only a
warm restart is possible.

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-23

2.2.4.7 Background Organization Block (OB90)

If you have specified a minimum scan cycle time with STEP 7 Lite and this is
longer than the actual scan cycle time, the CPU still has processing time available
at the end of the cyclic program. This time is used to execute the background OB.
If OB90 does not exist on your CPU, the CPU waits until the specified minimum
scan cycle time has elapsed. You can therefore use OB90 to allow processes
where time is not critical to run and thus avoid wait times.

Priority of the Background OB

The background OB has priority class 29, which corresponds to priority 0.29. It is
therefore the OB with the lowest priority. Its priority class cannot be changed by
reassigning parameters.

The following figure shows an example of processing the background cycle, the
main program cycle, and OB10 (in existing CPUs).

OB10

OB1 OB1

Updating of the
process image
input table

Updating of the
process image
output table

TC

Next cycle

OB10

OB90 OB90

Tmin

t

Priority

Twait

Tc

Tmin

Twait

= the actual cycle time required for a main program cycle
= the minimum cycle time specified with STEP 7
= the time available before the start of the next cycle

Programming OB90

The run time of OB90 is not monitored by the CPU operating system so that you
can program loops of any length in OB90. Ensure that the data you use in the
background program are consistent by observing the following when programming:

• The reset events of OB90 (see the System Software for S7-300 and S7-400,
System and Standard Functions Reference Manual)

• The process image update asynchronous to OB90.

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-24 A5E00293884-01

2.2.4.8 Error Handling Organization Blocks (OB80 to OB87 / OB121 to
OB122)

Types of Errors

The errors that can be detected by the S7 CPUs and to which you can react with
the help of organization blocks can be divided into two basic categories:

• Synchronous errors: these errors can be assigned to a specific part of the user
program. The error occurs during the execution of a particular instruction. If the
corresponding synchronous error OB is not loaded, the CPU changes to STOP
mode when the error occurs.

• Asynchronous errors: these errors cannot be directly assigned to the user
program being executed. These are priority class errors, faults on the
programmable logic controller (for example, a defective module), or redundancy
errors. If the corresponding asynchronous error OB is not loaded, the CPU
changes to STOP mode when the error occurs.

The following table shows the types of errors that can occur, divided up into the
categories of the error OBs.

Asynchronous Errors/Redundancy
Errors

Synchronous Errors

OB80 Time Error (for example, scan cycle
time exceeded)

OB121 Programming Error (for example, DB
is not loaded)

OB82 Diagnostic Interrupt (for example,
short circuit in the input module)

OB122 I/O Access Error (for example,
access to a signal module that does not
exist)

OB84 CPU Hardware Error (fault at the
interface to the MPI network)

OB85 Priority Class Error (for example, OB
is not loaded)

OB86 Rack Failure

OB87 Communication Error (for example,
incorrect message frame ID for global data
communication)

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-25

 Using OBs for Synchronous Errors

Synchronous errors occur during the execution of a particular instruction. When
these errors occur, the operating system makes an entry in the I stack and starts
the OB for synchronous errors.

The error OBs called as a result of synchronous errors are executed as part of the
program in the same priority class as the block that was being executed when the
error was detected. OB121 and OB122 can therefore access the values in the
accumulators and other registers as they were at the time when the interrupt
occurred. You can use the values to react to the error condition and then to return
to processing your program (for example, if an access error occurs on an analog
input module, you can specify a substitute value in OB122 using SFC44
RPL_VAL). The local data of the error OBs, do, however, take up additional space
in the L stack of this priority class.

Using OBs for Asynchronous Errors

If the operating system of the CPU detects an asynchronous error, it starts the
corresponding error OB (OB80 to OB87). The OBs for asynchronous errors have
the highest priority and they cannot be interrupted by other OBs if all asynchronous
error OBs have the same priority. If more than one asynchronous error OB with the
same priority occurs simultaneously, they are processed in the order they
occurred.

Masking Start Events

Using system functions (SFCs), you can mask, delay, or disable the start events for
several OBs. For more detailed information about these SFCs and the organization
blocks, refer to the System Software for S7-300 and S7-400, System and Standard
Functions Reference Manual.

Type of Error OB SFC Function of the SFC

Synchronous error OBs SFC36 MSK_FLT Masks individual synchronous errors. Masked errors
do not start an error OB and do not trigger
programmed reactions

 SFC37 DMSK_FLT Unmasks synchronous errors

Asynchronous error OBs SFC39 DIS_IRT Disables all interrupts and asynchronous errors.
Disabled errors do not start an error OB in any of the
subsequent CPU cycles and do not trigger
programmed reactions

 SFC40 EN_IRT Enables interrupts and asynchronous errors

 SFC41 DIS_AIRT Delays higher priority interrupts and asynchronous
errors until the end of the OB

 SFC42 EN_AIRT Enables higher priority interrupts and asynchronous
errors

 Note

If you want interrupts to be ignored, it is more effective to disable them using an
SFC, rather than to download an empty OB (with the contents BE).

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-26 A5E00293884-01

2.2.5 Block Types for Structured Programming

2.2.5.1 Functions (FC)

Functions (FCs) belong to the blocks that you program yourself. A function is a
logic block ”without memory." Temporary variables belonging to the FC are saved
in the local data stack. This data is then lost when the FC has been executed. To
save data permanently, functions can also use shared data blocks.

Since an FC does not have any memory of its own, you must always specify actual
parameters for it. You cannot assign initial values for the local data of an FC.

Application

An FC contains a program section that is always executed when the FC is called
by a different logic block. You can use functions for the following purposes:

• To return a function value to the calling block (example: math functions)

• To execute a technological function (example: single control function with a bit
logic operation).

Assigning Actual Parameters to the Formal Parameters

A formal parameter is a dummy for the "actual" parameter. Actual parameters
replace the formal parameters when the function is called. You must always assign
actual parameters to the formal parameters of an FC (for example, an actual
parameter "I 3.6" to the formal parameter "Start"). The input, output and in/out
parameters used by the FC are saved as pointers to the actual parameters of the
logic block that called the FC.

2.2.5.2 Function Blocks (FB)

Function blocks (FBs) belong to the blocks that you program yourself. A function
block is a block ”with memory." It is assigned a data block as its memory (instance
data block). The parameters that are transferred to the FB and the static variables
are saved in the instance DB. Temporary variables are saved in the local data
stack.

Data saved in the instance DB are not lost when execution of the FB is complete.
Data saved in the local data stack are, however, lost when execution of the FB is
completed.

 Note

To avoid errors when working with FBs, read Permitted Data Types when
Transferring Parameters in the Appendix.

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-27

Application

An FB contains a program that is always executed when the FB is called by a
different logic block. Function blocks make it much easier to program frequently
occurring, complex functions.

Function Blocks and Instance Data Blocks

An instance data block is assigned to every function block call that transfers
parameters.

By calling more than one instance of an FB, you can control more than one device
with one FB. An FB for a motor type, can, for example, control various motors by
using a different set of instance data for each different motor. The data for each
motor (for example, speed, ramping, accumulated operating time etc.) can be
saved in one or more instance DBs.

The following figure shows the formal parameters of an FB that uses the actual
parameters saved in the instance DB.

Formal parameter

Start INT IN
Speed INT IN
History DT IN_OUT
Run_time TIME IN_OUT

FB20:Motor

Actual parameter

Integer (16 bits): start

Integer (16 bits): speed

Date and time (48 bits):
pointer to the address of the history

Time (32 bits): run time

DB202:Motor_2

Variables of the Data Type FB

If your user program is structured so that an FB contains calls for further already
existing function blocks, you can include the FBs to be called as static variables of
the data type FB in the variable declaration table of the calling FB. This technique
allows you to nest variables and concentrate the instance data in one instance data
block (multiple instance).

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-28 A5E00293884-01

Assigning Actual Parameters to the Formal Parameters

It is not generally necessary in STEP 7 Lite to assign actual parameters to the
formal parameters of an FB. There are, however, exceptions to this. Actual
parameters must be assigned in the following situations:

• For an in/out parameter of a complex data type (for example, STRING, ARRAY
or DATE_AND_TIME)

• For all parameter types (for example TIMER, COUNTER, or POINTER)

STEP 7 Lite assigns the actual parameters to the formal parameters of an FB as
follows:

• When you specify actual parameters in the call statement: the instructions of the
FB use the actual parameters provided.

• When you do not specify actual parameters in the call statement: the
instructions of the FB use the value saved in the instance DB.

The following table shows which variables of the FB must be assigned actual
parameters.

Variable

 Data Type

 Elementary Data Type Complex Data Type Parameter Type

Input No parameter required No parameter required Actual parameter required

Output No parameter required No parameter required Actual parameter required

In/out No parameter required Actual parameter
required

−

Assigning Initial Values to Formal Parameters

You can assign initial values to the formal parameters in the declaration section of
the FB. These values are written into the instance DB associated with the FB.

If you do not assign actual parameters to the formal parameters in the call
statement, STEP 7 Lite uses the values saved in the instance DB. These values
can also be the initial values that were entered in the variable declaration table of
an FB.

The following table shows which variables can be assigned an initial value. Since
the temporary data are lost after the block has been executed, you cannot assign
any values to them.

Variable Data Type

 Elementary Data Type Complex Data Type Parameter Type

Input Initial value permitted Initial value permitted −

Output Initial value permitted Initial value permitted −

In/out Initial value permitted − −

Static Initial value permitted Initial value permitted −

Temporary − − −

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-29

2.2.5.3 Instance Data Blocks

An instance data block is assigned to every function block call that transfers
parameters. The actual parameters and the static data of the FB are saved in the
instance DB. The variables declared in the FB determine the structure of the
instance data block. Instance means a function block call. If, for example, a
function block is called five times in the S7 user program, there are five instances
of this block.

Creating an Instance DB

Before you create an instance data block, the corresponding FB must already
exist. You specify the number of the FB when you create the instance data block.

One Instance DB for Each Separate Instance

If you assign several instance data blocks to a function block (FB) that controls a
motor, you can use this FB to control different motors.

The data for each specific motor (for example, speed, run-up time, total operating
time) are saved in different data blocks. The DB associated with the FB when it is
called determines which motor is controlled. With this technique, only one function
block is necessary for several motors (see the following figure).

FB22:Motors DB202:Motor_2

DB201:Motor_1

DB203:Motor_3

Call FB22,DB201 uses
data for motor 1

Call FB22,DB202 uses
data for motor 2

Call FB22,DB203 uses
data for motor 3

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-30 A5E00293884-01

One Instance DB for Several Instances of an FB (Multiple Instances)

You can also transfer the instance data for several motors at the same time in one
instance DB. To do this, you must program the calls for the motor controllers in a
further FB and declare static variables with the data type FB for the individual
instances in the declaration section of the calling FB.

If you use one instance DB for several instances of an FB, you save memory and
optimize the use of data blocks.

In the following figure, the calling FB is FB21 ”Motor processing," the variables are
of data type FB22, and the instances are identified by Motor_1, Motor_2, and
Motor_3.

Call FB 21 from a logic block:
CALL FB21,DB100
transfers data for Motor_1,
Motor_2, Motor_3
Call FB 22 from FB 21:

CALL Motor_1
CALL Motor_2
CALL Motor_3

Data for Motor_2

DB100

Data for Motor_3

FB21:Motor processing

Data for Motor_1

FB22:Motors

Variable declaration:
stat, Motor_1, FB 22
stat, Motor_2, FB 22
stat, Motor_3, FB 22

In this example, FB22 does not need its own instance data block, since its instance
data are saved in the instance data block of the calling FB.

One Instance DB for Several Instances of Different FBs (Multiple Instances)

In a function block you can call the instances of other existing FBs. You can assign
the instance data required for this to the instance data block of the calling FB,
meaning you do not need any additional data blocks for the called FBs in this case.

For these multiple instances in one instance data block, you must declare static
variables with the data type of the called function block for each individual instance
in the declaration section of the calling function block. The call within the function
block does not then require an instance data block, only the symbolic name of the
variable.

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-31

In the example in this figure, the assigned instance data are stored in a common
instance DB.

FB12:Motor DB12:Motor Access only for FB12, call:
CALL FB12, DB12

FB13:Pump

FB14:Agitator

DB13:Pump Access only for FB 13, call:
CALL FB13, DB13

DB14

Data for agitator

Data for Motor_10

Data for Pump_10

Variable declaration:
stat, Motor_10, FB 12
stat, Pump_10, FB 13

Access for FB 14, FB 13 and
FB 12, call:
CALL FB14,DB14
Transfers data for agitator,
Motor_10 and Pump_10
Call FB 12 from FB 14:
CALL Motor_10
Call FB 13 from FB 14:
CALL Pump_1

2.2.6 Shared Data Blocks (DB)

In contrast to logic blocks, data blocks do not contain STEP 7 Lite instructions.
They are used to store user data, in other words, data blocks contain variable data
with which the user program works. Shared data blocks are used to store user data
that can be accessed by all other blocks.

The size of DBs can vary. Refer to S7-300 Programmable Controller, Hardware
and Installation Manual for the maximum possible size.

You can structure shared data blocks in any way to suit your particular
requirements.

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-32 A5E00293884-01

Shared Data Blocks in the User Program

If a logic block (FC, FB, or OB) is called, it can occupy space in the local data area
(L stack) temporarily. In addition to this local data area, a logic block can open a
memory area in the form of a DB. In contrast to the data in the local data area, the
data in a DB are not deleted when the DB is closed, in other words, after the
corresponding logic block has been executed.

Each FB, FC, or OB can read the data from a shared DB or write data to a shared
DB. This data remains in the DB after the DB is exited.

A shared DB and an instance DB can be opened at the same time. The following
figure shows the different methods of access to data blocks.

FC10

FC11

FB12

Shared
DB

(DB 20)

Instance DB
(DB 112)

Access by all
blocks

Access only by FB12

2.2.6.1 System Function Blocks (SFB) and System Functions (SFC)

Preprogrammed Blocks

You do not need to program every function yourself. S7 CPUs provide you with
preprogrammed blocks that you can call in your user program.

Further information can be found in the reference help on system blocks and
system functions (Links to Language Descriptions and Help on Blocks).

System Function Blocks

A system function block (SFB) is a function block integrated on the S7 CPU. SFBs
are part of the operating system and are not loaded as part of the program. Like
FBs, SFBs are blocks ”with memory." You must also create instance data blocks
for SFBs and download them to the CPU as part of the program.

S7-CPUs provide the following SFBs:

• For communication via configured connections (cannot be configured in
STEP 7 Lite)

• For integrated special functions (for example, SFB29 ”HS_COUNT" on the
CPU 312 IFM and the CPU 314 IFM).

 Basics of Designing a Program

Programming with STEP 7 Lite V3.0
A5E00293884-01 2-33

System Functions

A system function is a preprogrammed function that is integrated on the S7 CPU.
You can call the SFC in your program. SFCs are part of the operating system and
are not loaded as part of the program. Like FCs, SFCs are blocks ”without
memory."

CPUs provide SFCs for the following functions:

• Copying and block functions

• Checking the program

• Handling the clock and run-time meters

• Transferring data sets

• Handling time-of-day and time-delay interrupts

• Handling synchronous errors, interrupts, and asynchronous errors

• Information on static and dynamic system data, for example, diagnostics

• Process image updating and bit field processing

• Addressing modules

• Distributed I/O (cannot be configured with STEP 7 Lite)

• Global data communication (cannot be configured with STEP 7 Lite)

• Communication via non-configured connections

• Generating block-related messages (cannot be configured with STEP 7 Lite)

Additional Information

For more detailed information about SFBs and SFCs, refer to the System Software
for S7-300 and S7-400, System and Standard Functions Reference Manual. The
S7-300 Programmable Controller, Hardware and Installation Manual explain which
SFBs and SFCs are available.

Basics of Designing a Program

 Programming with STEP 7 Lite V3.0
2-34 A5E00293884-01

Programming with STEP 7 Lite V3.0
A5E00293884-01 3-1

3 Startup and Operation

3.1 Starting STEP 7 Lite

After you have started Windows, you will find the STEP 7 Lite icon on your
Windows desktop.

The fastest way to start STEP 7 Lite is to double-click on this icon.

As an alternative, you can also start STEP 7 Lite via the ”Start" button in the
taskbar. You will find the entry under "Simatic".

 Note

For additional information on standard Windows operation and options refer to your
Windows User's Guide or to the Online Help of your Windows operating system.

Procedure

Automation tasks are created in the form of ”Projects". You can make it easier for
yourself if you read up on the following basic topics before you start work:

• User interface

• Some basic operations

• Online help

Startup and Operation

 Programming with STEP 7 Lite V3.0
3-2 A5E00293884-01

3.2 Calling the Help Functions

Online Help

The online help system provides you with information at the point where you can
use it most efficiently. You can use the online help to access information quickly
and directly without having to search through manuals. You will find the following
types of information in the online help:

• STEP 7 Lite Help: provides information on the basic procedure and the basic
knowledge required for configuring and programming a programmable logic
controller.

• What's This (SHIFT+F1): provides information about an active element - for
example, in a dialog box.

• About: provides information on the current version of the application.

Calling the Online Help

You can call the online help in any of the following ways:

• Select a menu command in the Help menu in the menu bar.

• On the toolbar, click on the "What's This" button and select the element on
which you need help.

• Press SHIFT+F1 and use the "What's This" icon to select the element on which
you need help.

• Press the F1 key to call the STEP 7 Lite Help.

Calling the ToolTip

A ToolTip on buttons in the toolbar or on elements in the command/library overview
is displayed when you position the cursor on a button and leave it there for a
moment.

An icon in the lower right corner of the ToolTip indicates where the What's This
Help can be called directly from the ToolTip. You can call the What's This Help
automatically either after an additional short waiting period or actively by clicking
on the ToolTip.

 Startup and Operation

Programming with STEP 7 Lite V3.0
A5E00293884-01 3-3

3.3 User Interface and Operation

3.3.1 Structure of the User Interface

The areas of the STEP 7 Lite user interface are shown in the following figure:

(1) System menu (Maximize, Close etc.) (7) CPU operator panel

(2) Title of the active window (8) Project window

(3) Minimize, Maximize and Close
buttons

 (9) Statusbar

(4) Title bar (10) Working area: contains information you
can view or edit

(5) Menu bar (11) Libraries

(6) Toolbar

Title Bar and Menu Bar

The title bar and menu bar are always located at the top of the window. The title
bar contains the title of the window and icons for controlling the window. The menu
bar contains all menus available in the window.

Startup and Operation

 Programming with STEP 7 Lite V3.0
3-4 A5E00293884-01

Toolbar

Toolbar icons (or tool buttons) are shortcuts to frequently used and currently
available menu commands via mouse click. A short description of the respective
button function is displayed when you position the cursor briefly on the button.

A button is grayed out it is not possible to access it in the active workspace.

CPU Operator Control Panel

The CPU operator control panel displays an image of a SIMATIC S7-300 CPU.
After an online connection is established to a CPU, the CPU mode is indicated by
LED displays and the key switch setting. The CPU can be operated with various
buttons such as RUN and STOP.

Libraries

In this area you can find all libraries known to the system under the "Blocks" tab
and LAD and FBD elements under the "Instructions" tab.

Project Window

In this area you can select project objects for editing.

Example: When you click on the "Symbol table" line in the project window, the
symbol table is opened for editing in the workspace.

Workspace

Depending on the object you have selected in the project window, the
corresponding editor view is displayed in this area.

Example: You can use the “Block Editor” to edit a block you have selected in the
project window.

Status Bar

The status bar displays context-sensitive information.

 Startup and Operation

Programming with STEP 7 Lite V3.0
A5E00293884-01 3-5

3.3.2 Symbols in the Project Window

Symbol Meaning Symbol Meaning

 Offline project Online CPU

 Hardware configuration Symbol table

 Monitor/Modify Cross-reference ("Cross-reference list",
"Used addresses", "Program structure")

 Project documentation Program (total of all logic blocks and data
blocks)

 Online/Offline blocks

Symbolizes a substitution entry for
online blocks that do not exist in the
offline project. Double-click on this
symbol opens a dialog box in which the
blocks can be downloaded from the
CPU to the offline project.

 Logic block.

The symbol appears in different colors,
depending on the block type.

 Data block Memory card

(micro memory card MMC)

 Changed not saved

The yellow star indicates that the
object has been changed but the
content has not been applied or saved.

 The objects in the project and in the online
CPU are identical

 Block protection

The padlock indicates that the block is
protected and cannot be read or
modified without special permissions.

 The object is present in the current view in
the project window, but is not present in the
non-selected view ("Project" view / "Online
CPU" view).

For more help, click on the "What's This"
button in STEP 7 Lite.

 The object in the project does not
match the object in the online CPU.

For more help, click on the "What's
This" button in STEP 7 Lite.

Startup and Operation

 Programming with STEP 7 Lite V3.0
3-6 A5E00293884-01

3.3.3 Elements in Windows and Dialog Boxes

Specific elements are available in the windows and dialog boxes for operating,
selecting, and entering information. These elements are explained in the examples
below.

(1) Dropdown lists: A downward arrow indicates that a dropdown list is available in this box.

(2) Round Option boxes: For selecting one or several options.

(3) Text boxes: For keyboard input of text or numbers.

(4) Square Option boxes: For selecting one or several options.

(5) Buttons

 Startup and Operation

Programming with STEP 7 Lite V3.0
A5E00293884-01 3-7

(1) Tabs: To improve visualization, the content of some of the windows and dialogs are split into
several tabs. Simply click on a specific tab name to "bring it to the foreground".

(2) Scrollbar: For viewing a currently hidden area of a window or dialog. Drag the scrollbar button
or click on the arrows to scroll the visible section up or down.

Startup and Operation

 Programming with STEP 7 Lite V3.0
3-8 A5E00293884-01

(1) Pin needles: Used to lock the project window and libraries. An unlocked window is
automatically hidden in order to provide a maximum working area. The project window and the
library are displayed when the mouse pointer is positioned on the right or left edge of the
STEP 7 Lite window. They are displayed as long as the mouse pointer stays in the areas which
can be hidden.

A single click on the icon toggles the locked/unlocked status.

 The project window or libraries are locked.

 The project window or libraries are unlocked.

(2) Folder: The instruction list in the libraries is subdivided into separate instruction folders. You
can open the folder with double-click and insert your instruction in the block editor per drag &
drop.

(3) Symbols for calling local objects and functions (e.g. hardware, symbols table, Monitor & Modify
etc.)

(4) Blocks of the project: Double-click on the data blocks or code blocks to open the corresponding
editor

(5) Buttons for Increasing and Reducing the size of windows.

Click on the button to zoom or reduce the size of the window. The button icon will change
according to the view.

 Startup and Operation

Programming with STEP 7 Lite V3.0
A5E00293884-01 3-9

3.3.4 Session Memory

STEP 7 Lite can save the contents of windows (that is, the open projects) and the
layout of the windows. The mnemonics that are set (English or German) are also
maintained.

• Using the menu command Window > Save Settings you save the current
window contents and the window arrangement.

• Using the menu command Window > Restore Settings you restore the window
contents and layout that you saved with the menu command Window > Save
Settings.

 Notice

Online window contents, for example, the blocks in the connected CPU, are not
saved.

Any passwords you may have entered for access to programmable controllers (for
example, S7-300) are not saved at the end of a session.

3.3.5 Changing the Window Arrangement

• To cascade all displayed windows one behind the other select the menu
command Window > Arrange > Cascade.

• To arrange all displayed windows evenly from top to bottom, select the menu
command Window > Arrange > Horizontally.

• To arrange all displayed windows evenly from the left to the right, select the
menu command Window > Arrange > Vertically.

3.3.6 Saving and Restoring the Window Layout

STEP 7 Lite lets you to save the current window arrangement and restore it at a
later stage. Choose the setting via menu command Options > Settings.

What Is Saved?

When you save the window layout, the following information is recorded:

• Active windows and their corresponding screen position

• Order of any cascaded windows

Saving the Window Layout

Select menu command Window > Save Settings to save the current window
layout.

Restoring the Window Layout

Select menu command Window > Restore Settings to restore the current window
layout.

Startup and Operation

 Programming with STEP 7 Lite V3.0
3-10 A5E00293884-01

3.3.7 Finding and Replacing Terms

When editing projects and checking through a project the search and replace
functions of STEP 7 Lite can be extremely useful. The functions are available when
configuring hardware, in the symbol table, in the cross-references, and in the block
editor. The options available in the dialog depend on the selected view. The
replace functions, for example, are only available in views in which it is possible to
edit.

Finding a Term

To find a term, you use the drop-down list and the buttons in the upper bar of the
dialog.

Follow the steps outlined below:

1. Enter the term you want to find in the input field of the drop-down list or select a
previous term from the drop-down list.

2. Start the search with the “Up” or “Down” button. The search begins at the
position of the write cursor in the specified direction. Click the button again to
continue the search.

Finding and Replacing the Term

To find and replace the term, use the drop-down list of the search function and the
drop-down list and buttons of the second row of the dialog.

 Startup and Operation

Programming with STEP 7 Lite V3.0
A5E00293884-01 3-11

Follow steps outlined below:

1. Enter the term you want to find in the input field of the search drop-down list or
select a previous term from the list.

2. Enter the term which will replace the first term in the input field of the replace
drop-down list or select a previous term from the list.

3. Start the finder and replace function. You have the following options available:

- Find and replace "down"

- Find and replace "up"

- Fine and replace "all"

Increase or Reduce the Number of Search Results Using Search Criteria

You can increase or reduce the number of search results by selecting additional
search criteria. You will find the search criteria in the lower part of the dialog if you
have extended the dialog using the "More/Less" buttons. The number and type of
criteria displayed depends on the active view. You will find more information on the
search criteria in the “What’s This” help of STEP 7 Lite.

Startup and Operation

 Programming with STEP 7 Lite V3.0
3-12 A5E00293884-01

3.3.8 How to Manage Objects

3.3.8.1 Renaming Objects

Rename objects as follows:

1. Select the required object.

2. Click the name of the selected object to activate the edit function for the name.
The name box is displayed in a frame, the mouse pointer is switched to text
cursor.

3. Edit the object name. In general, the naming conventions for your version of
Windows apply.

4. To close the renaming function you can do either of the following:

- Press the ENTER key to apply the new name. If the new name is not
allowed, the previous is restored.

- Press ESC to abort the editing procedure and restore the previous object
name.

3.3.8.2 Moving Objects

1. Block objects can be moved in the sequence of their listing in the project
window. Proceed as follows:

2. Select the block you want to move and hold the left mouse button pressed.

3. Move the mouse pointer to the target position. A black bar marks the place
where the block can be inserted.

4. Release the left mouse button to drop the block.

3.3.8.3 Deleting Objects

Delete objects as follows:

1. Select the object you want to delete.

2. To delete the object you can do either of the following:

- Select the menu command Edit > Delete.

- Press the DEL key.

3. Confirm the delete prompt with a click on the "Yes" button.

 Startup and Operation

Programming with STEP 7 Lite V3.0
A5E00293884-01 3-13

3.4 Keyboard Control

International Key Names German Key Names

HOME POS1

END ENDE

PAGE UP BILD AUF

PAGE DOWN BILD AB

CTRL STRG

ENTER Eingabetaste

DEL ENTF

INSERT EINFG

3.4.1 Shortcut Keys for Menu Commands

Every menu command can be selected by typing a key combination with the ALT
key.

Press the following keys in the order shown:

• ALT key

• The underscored letter of the menu you want to open (for example, ALT, F for
the menu "File" - if the menu "File" is included in the menu bar). The menu
opens.

• The underscored letter of the menu you want to open (for example, N for the
menu command "New"). If the menu command has a submenu, the submenu is
also opened. Proceed as above until you have selected the whole menu
command by typing the relevant letters.

Once you have entered the last letter of the key combination the menu command is
executed.

Examples:

Menu Command Shortcut keys

Window > Arrange > Cascade ALT, W, A, C

Startup and Operation

 Programming with STEP 7 Lite V3.0
3-14 A5E00293884-01

Shortcut keys for Menu Commands

Command Shortcut

New > Block (File Menu) CTRL+N

Save (File Menu) CTRL+S

Close (File Menu) CTRL+F4

Open Project (File Menu) CTRL+O

Download to CPU (File Menu) CTRL+L

Print (Object) (File Menu) CTRL+P

Exit (File Menu) ALT+F4

Undo (Edit Menu) CTRL+Z

Redo (Edit Menu) CTRL+Y

Cut (Edit Menu) CTRL+X

Copy (Edit Menu) CTRL+C

Paste (Edit Menu) CTRL+V

Delete (Edit Menu) DEL

Rename (Edit Menu) F2

Select All (Edit Menu) CTRL+A

Find/Replace (Edit Menu) CTRL+F

Go to > (Edit Menu)
Network/Row

CTRL+E

Go to > (Edit Menu)
Point of Application

CTRL+ALT+Q

Go to > (Edit Menu)
Previous Error

ALT+F7

Go to > (Edit Menu)
Next Error

ALT+F8

Open Block (Edit Menu) CTRL+ALT+O

Symbols (Edit Menu) ALT+RETURN

Network (Insert Menu) CTRL+R

Symbol (Insert Menu) CTRL+J

Monitor (Debug Menu) CTRL+F7

LAD (View Menu) CTRL+1

FBD (View Menu) CTRL+3

STL (View Menu) CTRL+2

Zoom In (View Menu) CTRL+Num+

Zoom Out (View Menu) CTRL+Num-

Symbolic Representation (View Menu) CTRL+Q

Symbol Information (View Menu) CTRL+SHIFT+Q

Symbol Selection (View Menu) CTRL+7

Comment (View Menu) CTRL+SHIFT+K

CPU Operator Panel (View Menu) CTRL+ALT+C

Project Window (View Menu) CTRL+ALT+P

Libraries (View Menu) CTRL+ALT+L

Update View (View Menu) F5

Settings (Options Menu) CTRL+ALT+E

 Startup and Operation

Programming with STEP 7 Lite V3.0
A5E00293884-01 3-15

Command Shortcut

Module Information (Options Menu) CTRL+D

Cascade (Window Menu) SHIFT+F5

Horizontally (Window Menu) SHIFT+F2

Vertically (Window Menu) SHIFT+F3

Hardware Configuration (Window Menu) CTRL+ALT+H

Symbol Table (Window Menu) CTRL+ALT+T

Monitor/Modify (Window Menu) CTRL+ALT+W

Cross References (Window Menu) CTRL+ALT+X

STEP 7 Lite Help (Help Menu) F1

What's This? (Help Menu) SHIFT+F1

(If there is a current context, such
as a selected menu command,
the corresponding Help topic is
called; if there is no current
context, the Help contents is
displayed.)

Call Pop-up Menu SHIFT+F10

3.4.2 Key Combinations for Moving the Cursor

Moving the Cursor in the Menu Bar/Pop-Up Menus

To Press

Move to the menu bar F10

call the pop-up menu SHIFT+F10

move to the menu that contains the letter or
number underlined which you typed in

ALT+ underlined character in a menu title

select the menu command whose
underlined letter or number corresponds to
the letter you have typed

Underlined character in the menu command

move one menu command to the left LEFT ARROW

move one menu command to the right RIGHT ARROW

move one menu command up UP ARROW

move one menu command down DOWN ARROW

activate the selected menu command ENTER

deselect the menu name or close the open
menu and return to the text

ESC

Startup and Operation

 Programming with STEP 7 Lite V3.0
3-16 A5E00293884-01

Moving the Cursor When Editing Text

To move Press

one line up or one character to the left in a
text consisting of only one line

UP ARROW

one line down or one character to the right
in a text consisting of only one line

DOWN ARROW

one character to the right RIGHT ARROW

one character to the left LEFT ARROW

one word to the right CTRL+RIGHT ARROW

one word to the left CTRL+LEFT ARROW

to the beginning of the line HOME

to the end of the line END

to the previous screen PAGE UP

to the next screen PAGE DOWN

to the beginning of the text CTRL+HOME

to the end of the text CTRL+END

Moving the Cursor in Dialog Boxes

To Press

move from one input box to the next (from
left to right and from top to bottom)

TAB

move one input box in the reverse direction SHIFT+TAB

move to the input box or option that
contains the letter or number underlined
which you typed in

ALT+ underlined character in a menu title

select in a list of options an arrow key

open a list of options ALT+ DOWN ARROW

select or deselect an item in a list SPACEBAR

confirm the entries and close the dialog box
("OK" button)

ENTER

close the dialog box without saving the
changes ("Cancel" button)

ESC

 Startup and Operation

Programming with STEP 7 Lite V3.0
A5E00293884-01 3-17

3.4.3 Shortcut Keys for Marking Text

To select or deselect text Press

One character at a time to the right SHIFT+RIGHT ARROW
One character to the left SHIFT+LEFT ARROW
to the beginning of a comment line SHIFT+HOME
to the end of a comment line SHIFT+END
one line of text up SHIFT+UP ARROW
one line of text down SHIFT+DOWN ARROW
to the previous screen SHIFT+PAGE UP
to the next screen SHIFT+PAGE DOWN
the text to the beginning of the file CTRL+SHIFT+HOME
the text to the end of the file CTRL+SHIFT+END

3.4.4 Shortcut Keys for Access to the Online Help

To Press

Activate the question mark symbol for
What's This help

SHIFT+F1

open the help on STEP 7 Lite F1

close the help window ALT+F4

3.4.5 Shortcut Keys for Switching Windows

To Press

toggle between the panes in a window F6
return to the previous pane, if there is no
dockable window

SHIFT+F6

toggle between the document window and a
dockable window in the document (for example,
variable declaration window).
If there are no dockable windows, you can use
this key combination to return to the previous
pane.

SHIFT+F6

toggle between document windows CTRL+F6
return to the previous document window SHIFT+CTRL+F6
toggle between non-document windows
(application framework and dockable windows
in the application framework;
when you return to the framework, this key
shortcut activates the document window that
was last active)

ALT+F6

toggle between the project window, CPU
operator panel, library window, and active
document window

CTRL+ALT+F6

return to the previous non-document window SHIFT+ALT+F6

close the current window CTRL+F4

Startup and Operation

 Programming with STEP 7 Lite V3.0
3-18 A5E00293884-01

3.5 Using TeleService

The TeleService optional software package allows you to establish an online
connection from a programming device or PC to a remote plant via the telephone
network. You can then process this remote plant as usual with STEP 7 Lite.

Owing to the longer reaction times, it is recommended that this type of operation
only be used for service purposes.

Requirements

The requirements for working with TeleService are as follows:

• The TeleService optional software package must be installed.

• A local modem must be installed and set up under Windows.

• The remote plant must be connected to a telephone network via a correctly set
TS adapter and a modem.

• With "Setting the PG/PC Interface", you must set the access point for
applications and its properties on the TS adapter.

Calling the Function

If the optional software is installed, you can start TeleService using the menu
command Options > Optional Package > TeleService.

 Note

You will find further information in the documentation and in the online help for the
optional software package.

Programming with STEP 7 Lite V3.0
A5E00293884-01 4-1

4 Setting Up and Editing the Project

4.1 What is a STEP 7 Lite Project

The project data of a STEP 7 Lite project include all data of a SIMATIC S7-300,
C7, or a modular ET 200X or ET 200S distributed I/O system (stand alone).

Projects provide an orderly way to store the data that result from the creation of an
automation solution. In a STEP 7 Lite project, the data for a station are combined,
especially:

• The configuration data on the hardware setup and the parameter assignment
data for the modules of the station

• The symbol table of the station

• The variable tables for modifying and monitoring the station

• The project documentation with information on the content and form of the
documentation.

• The user program of the station

Project Window ("Project" Tab in the Foreground)

The project window displays the following in the "Project" tab:

• The project icon with the name of the current project. By double-clicking on it,
you display and overview of the blocks and the hardware configuration.

• The hardware icon – by double-clicking on it, you open a view in which you can
assign parameters for the hardware configuration, and can use the hardware
diagnostics and hardware comparison.

• The icon of the symbol table – by double-clicking on it, you open a view in which
you can create and manage project symbols.

• The icon for "Monitor/Modify" – by double-clicking on it, you open a view in
which you care and monitor/modify or monitor/force variables.

• The cross-reference icon – by double-clicking on it, you open the view in which
you can display the cross-references, the addresses used and the program
structure.

• The icon for project documentation – by double-clicking on it, you open a view
in which you can configure and design your STEP 7 Lite project documentation.

Setting Up and Editing the Project

 Programming with STEP 7 Lite V3.0
4-2 A5E00293884-01

• An icon for the user program below which the blocks of the project are
arranged. Double-clicking on the program icon opens an overview of all the
blocks that exist in the project. By double-clicking of a block icon, you open the
block in the appropriate block editor.

If there is an online connection to the CPU, not only the icons for the project, the
hardware, and the program with its blocks are displayed but also additional icons
with the following significance.

Symbol Meaning

 Object is the same in the project and on the online CPU.

 The object in the project does not match the object on the online CPU. You can then obtain
further help with the “What’s This” pointer in STEP 7 Lite.

 The object exists in the current view of the project window, however it is missing in the
unselected view ("Project" view / "Online CPU" view). You can then obtain further help with the
“What’s This” pointer in STEP 7 Lite.

 Setting Up and Editing the Project

Programming with STEP 7 Lite V3.0
A5E00293884-01 4-3

Project Window ("Online CPU" Tab in the Foreground)

The project overview displays the following in the "Online CPU" tab assuming there
is an online connection to a CPU:

• The icon for "Online CPU". If you double-click on this icon, an overview of the
blocks stored on the CPU is displayed along with the hardware configuration
and any group entry for files on a SIMATIC Micro Memory Card (MMC). The
group entry is displayed only when using a CPU 31xC with an MMC inserted.

• The hardware icon – by double-clicking on this, you open a view in which you
can display the hardware configuration stored on the CPU and in which you can
activate hardware diagnostics.

• The icon of a memory card. The icon is only visible if you are using a CPU 31xC
with a Micro Memory Card inserted. If you double-click on the icon, you open an
overview of the files stored on the MMC.

• An icon for the user program under which the blocks of the CPU are arranged.
By double-clicking on the program icon, you open an overview of all the blocks
on the CPU (depending on the setting in Options > Settings > Display
System Blocks, this will also include system blocks). If you double-click on a
block icon, you open the block (read only) in the appropriate block editor.

Setting Up and Editing the Project

 Programming with STEP 7 Lite V3.0
4-4 A5E00293884-01

4.2 Setting Up a Project

4.2.1 Creating a Project

To construct a solution to your automation task using the framework of a project
management, you will need to create a new project.

1. Select the menu command File > New.
A new project is created with default contents in the project window (for
example, icon for the hardware configuration).
If a project is already open, it will first be closed and then the new project
opened.

2. The new project is named "New Project". Finally define the name when you
save the project (Save/Save as).

4.2.2 Inserting a Program

Existing Components

If you have created a project, the components "Hardware Configuration", "Symbol
Table", and "Program" are already created.

Inserting Blocks

1. Select the Menu Command Insert > Block.

2. In the New Block dialog box that appears, you can specify the type of block (for
example, function) and its properties (for example, symbolic name).

Grouping Blocks

With a relatively large number of blocks, you can insert categories (intermediate
titles) and use a drag-and-drop operation to sort the blocks in these categories for
a better overview.

1. Select the Menu Command Insert > Category.

2. Name the category.

3. Move the appropriate blocks under the new category.

 Setting Up and Editing the Project

Programming with STEP 7 Lite V3.0
A5E00293884-01 4-5

Using Blocks from Block Libraries

You can also use blocks from the standard libraries supplied with the software to
create user programs. You can find these blocks in the "Blocks" tab of the library
window. If the library window is not displayed, select the menu command View >
Customize > Libraries. You will find further information on standard libraries in
Overview of Block Libraries.

Creating a Symbol Table

An (empty) symbol table (”Symbol Table" object) is created automatically when the
program is created. When you select the "Symbol Table" object, the ”Symbol
Table" window opens displaying a symbol table where you can define symbols.
You will find more information under Entering Multiple Shared Symbols in the
Symbol Table.

Setting Up and Editing the Project

 Programming with STEP 7 Lite V3.0
4-6 A5E00293884-01

4.3 Editing a Project

Opening a Project

Open an already existing project as follows:

1. Select the menu command File > Open....

2. Select a project:

- Projects which have already been processed on this PG/PC are found in the
"Last edited" tab.

- Projects not yet edited are found in the "File system" tab. You can specify
the desired path and project in the Explorer view of the tab.

- A project which was saved on the Micro Memory Card of a CPU 31xC is
found in the "Memory Card" tab. Prerequisite is here an online connection to
the CPU 31xC. To avoid long transmission times when saving the data to
intermediate memory, the project is opened as a “copy“.

Copying a Project

You copy a project by saving it under a different name via menu command File >
Save As.

You copy parts of a project such as blocks to the clipboard via menu command
Edit > Copy.

You will find a step-by-step instructions on how to copy a project under Copying a
Project.

4.3.1 Applying and Saving Changes

For example, after you edit statements in the user program, a symbol in the project
window draws your attention to the fact that changes have been made and that you
have not yet saved these changes. You can now either apply or save these
changes.

 Symbol for changes not yet applied or saved (example)

 Setting Up and Editing the Project

Programming with STEP 7 Lite V3.0
A5E00293884-01 4-7

Difference between "Apply" and "Save"

Apply Changes are written to intermediate memory to keep project data consistent

and up-to-date in all active windows.

Changes will be lost if you close the project without saving it, as data in
intermediate memory is going to be deleted after you close the project.

 Save Changes are written to the project file and are therefore available again next
time you open the project.

You need to apply new filters created for the symbol table or cross-reference
list before you can save them. These filters are also saved to the project file,
along with all other changes.

Procedure Recommended

Select "Apply" if you do not want to overwrite the current project status (for
example, because the changes are only of temporary nature and need to be
adapted once again).

Select "Save" if you want to update the status of your project file in memory. All
changes to the project will be saved. You can select "Save as" to save the current
project status under a new name or path.

Special Feature for Project Documentation Templates

Project documentation templates are saved to a different file, irrespective of the
project (*.k7d) and you can then “Load“ them into any project.

The setting for your project documentation is saved along with all other project
data.

Special Feature for Working with Filters

You can create a new filter or modify an existing one for the symbol table or cross-
reference list. Click on the "Edit filter" button to open a dialog in which you can edit
the name and setting of the filter.

Besides "Abort" (exit the dialogs without making changes), you can also exit the
dialog as follows:

Click on the

"Apply" button

The filter settings are written to intermediate memory to make the filter available in the
“Filter” dropdown list after you exit the dialog.

When you save the project, the filter is also saved automatically. If you do not save
the project, this filter is not going to be available next time you open the project.

Click on the

"Filter" button

(without applying
it first)

The filter settings are written to intermediate memory to make the filter available in the
“Filter” dropdown list after you exit the dialog. However, the filter name is marked with
a small star (*). The small star indicates that this filter is not going to be saved to the
project file!

This is an appropriate procedure if you no longer need the filter and therefore do not
want to make it available in the “Filter” dropdown list.

Setting Up and Editing the Project

 Programming with STEP 7 Lite V3.0
4-8 A5E00293884-01

4.3.2 How to Edit Projects

4.3.2.1 Copying a Project

Copy a project as follows:

1. Select the menu command File > Save As.

2. In the "Save As" dialog box, enter the name of the new project and a new
storage path if necessary. Confirm with "OK."

4.3.2.2 Copying Part of a Project

If you want to copy parts of a project such as blocks to another project, proceed as
follows:

Copying with menu commands

1. Open a second instance of STEP 7 Lite.

2. Open the source project in one instance of STEP 7 Lite, the target project in the
second instance.

3. In the source project window, select the project part you want to copy

4. In the STEP 7 Lite instance with the source project, select the menu command
Edit > Copy.

5. Change to the STEP 7 Lite instance with the target project and select menu
command Edit > Paste

6. Copying directly with the mouse (Drag-and-Drop)

1. Open a second instance of STEP 7 Lite.

2. Open the source project in one instance of STEP 7 Lite and the target project in
the other.

3. In the source project window, position the mouse pointer on top of the object
part you want to copy and press the left mouse button.

4. Drag the object to the project window of the target area and release the mouse
button to drop at the corresponding position.

The procedure is the same for all project parts to be copied. Close the STEP 7 Lite
view of the source project after you have completed copying.

4.3.2.3 Configuring Hardware (General)

Configure the hardware as follows:

1. Click the ”Hardware" object to open the workspace for configuring hardware.

2. Select the station type (for example, S7-300) to configure and assign
parameters to modules in the appropriate view.

3. Select modules which you will distribute on the slots in compliance with slot
rules.

4. Set the module parameters for the individual modules, if necessary.

 Setting Up and Editing the Project

Programming with STEP 7 Lite V3.0
A5E00293884-01 4-9

4.3.2.4 Creating the Software in the Project (General)

To create the software for your project, proceed as follows:

1. Select the ”Symbols" object and assign the symbols. (This step can also be
done later.)

2. Insert new blocks (menu command Insert > Block) and edit them in the
workspace.

3. In the project window, double-click on the icon for the project documentation. In
the "Project documentation view", specify the print objects and set the print
settings or select a document template and print the project using the "Print
Documentation" button.

4.4 Deleting and Renaming a Project

To delete or rename a project, use the file explorer in your operating system.

Your project will have the name extension ".k7p".

When you delete or rename a project, make sure that the project is not open in
STEP 7 Lite.

Setting Up and Editing the Project

 Programming with STEP 7 Lite V3.0
4-10 A5E00293884-01

Programming with STEP 7 Lite V3.0
A5E00293884-01 5-1

5 Configuring the Hardware

5.1 Basics of Configuring Hardware with STEP 7 Lite

5.1.1 Introduction to Configuring Hardware

Configuring

The term "configuring" refers to the arranging of modules and interface
submodules in a graphical view that represents a station configuration (for
example, an S7-300).

Module racks are represented both graphically and also by a configuration table
that permits a specific number of modules to be inserted, just like a “real” rack. The
configuration table contains more information on the modules (such as the exact
names and addresses).

You can copy your configuration to other STEP 7 Lite projects, modify it as
necessary, and download it to one or more existing stations. When the
programmable controller starts up, the CPU compares the preset configuration
created in STEP 7 Lite with the actual configuration of the plant. Any errors are
therefore recognized immediately and reported.

Assigning Parameters

The term ”assigning parameters" refers here to setting the properties of
programmable modules in a local configuration.

For example: a CPU is a module to which you can assign parameters and its scan
cycle monitoring time is a parameter you can configure.

The parameters are downloaded to the CPU and transferred by the CPU to the
respective modules. Modules can easily be replaced because the parameters set
with STEP 7 Lite are automatically downloaded to the new module during startup.

When Should You Configure Your Hardware?

The properties of the S7 programmable controllers and modules are preset with
default values such that in many cases you do not need to configure them.

Configuration is necessary if you want to change the default parameters of a
module (for example, to enable a hardware interrupt for a module)

Configuring the Hardware

 Programming with STEP 7 Lite V3.0
5-2 A5E00293884-01

5.1.2 Basic Procedure for Configuring Hardware

Starting the Hardware Configuration

When you have created a new project, open the workspace for configuring and
assigning parameters to modules as follows:

• Double-click the "Hardware" symbol.

Workspace for Configuring

The workspace for configuring a programmable controller consists of the following
areas:

• The graphical overview, in which the racks are realistically represented with
modules.

• Table(s) which represent individual racks, but which contain additional
information about the modules (order number and addresses, etc.), in contrast
to the graphical overview.

• The "Hardware Catalog" from which you select the required hardware
components, for example, modules and interface submodules.

 Configuring the Hardware

Programming with STEP 7 Lite V3.0
A5E00293884-01 5-3

5.1.2.1 Basic Steps for Configuring a Station

Independent of which structure a station has - you always configure using the
following steps:

1. Select a hardware component in the ”Hardware Catalog".

2. Copy the selected component using drag & drop

- To a slot on the rack in the graphical view or

- To a row in the configuration table that represents the structure of the rack.

The following figure shows the basic operation:

Configuring the Hardware

 Programming with STEP 7 Lite V3.0
5-4 A5E00293884-01

5.1.2.2 Layout of the 'Hardware Configuration' View

The "Hardware Configuration" view shows two aspects of the current station
configuration:

• The graphical view with realistic arrangement of the modules in their slots

• The tabular view with detailed information on the inserted modules (for
example, addresses and order numbers)

In addition, visible in this view is the catalog with the components from which the
module racks must be equipped.

Area in Hardware Configuration View Meaning

Graphical view of the
hardware configuration with
selected slot/module.
An arrow extends from the
selected module to the
equivalent slot in the tabular
view of the hardware
configuration.
For modules that can be
assigned parameters (for
example, the CPU in this
case), you can open the
dialog box for parameter
assignment using the
"Module Parameters" button.

Selected slot/module in the
tablular view of the hardware
configuration.
Different racks can be
accessed by means of the
tabs on the top margin.

Catalog with list of modules
If you click the "+" symbol in
front of the order number, a
list is displayed of modules of
the same type, but with
different order numbers. The
most current module is
always at the top.
For modules with different
operating mode versions
(Firmware), a particular
version can be selected from
a drop-down list box.
Different module categories
can be accessed by means of
tabs on the side margin of the
catalog.

 Configuring the Hardware

Programming with STEP 7 Lite V3.0
A5E00293884-01 5-5

5.1.2.3 Configuration Table as a Representation of a Rack

For a local configuration you arrange the modules beside the CPU in a rack and
continue into additional expansion racks. The number of racks which can be
configured depends on the CPU you used.

Just as you do in a real plant, you arrange your modules in racks with STEP 7 Lite.
The difference is that in STEP 7 Lite racks are additionally represented by
”configuration tables" that have as many rows as the rack has slots for modules.

The following figure shows an example of how a real structure is converted into a
configuration table. The configuration table corresponds to the rack used.

Configuration Table
(Rack)

Slot Module Order No: 6ES7- I Address Q Address Comment
ar

5.1.2.4 Setting the Properties of Components

Once you have arranged your components in the Hardware Configuration view,
you always arrive in the following manner in a dialog box for changing the default
properties (parameters):

• Double-click the component or select the menu command Edit > Module
Parameters.

• Right mouse button: Move the cursor on the component, press the right mouse
button and select the command Module Parameters from the pop-up menu.

• Click on the "Module Parameter" button below the graphical view.

Properties of CPUs

The properties of the CPUs have a special significance for the behavior of the
system. In the dialog box for a CPU, you can set the following, for example: startup
characteristics, memory areas, retentive behavior, clock memory, protection level,
and password – to name only a few. STEP 7 Lite "knows" what can be set and
within what range limits.

Configuring the Hardware

 Programming with STEP 7 Lite V3.0
5-6 A5E00293884-01

Other Ways of Assigning Parameters

You can set the parameters for some modules in the user program (for example,
for analog modules). You need to call the system functions (SFCs) WR_PARM,
WR_DPARM, and PARM_MOD in the user program to do this. These settings are
lost following a warm restart.

You will find more detailed information about system functions in the System
Software for S7-300 and S7-400, System and Standard Functions Reference
Manual.

5.1.2.5 What You Should Know About Slot Rules and Other Rules

STEP 7 Lite offers you support with configuring a station so that a message is
generally displayed immediately if, for example, a module cannot be inserted in the
slot you want to insert it in.

Please pay attention to any displayed messages that provide details on the causes
and effects of an operation. You can also use the online help to obtain additional
information for the messages.

Other additional, temporary rules (for a specific release), such as restrictions to the
slots you can use owing to a functional restriction to individual modules, are not
taken into account. Consequently, always consult the documentation or the current
Product Information for the modules.

 Configuring the Hardware

Programming with STEP 7 Lite V3.0
A5E00293884-01 5-7

5.2 Configuring Modules

5.2.1 Rules for Arranging Modules (SIMATIC 300)

Basic Rule

Modules must be inserted in the rack without gaps.

Exception: For installations with one rack, one slot in the configuration table must
remain free (reserved for the interface module). With the S7-300, this is slot 3. In
the actual configuration there is no gap because the backplane bus would be
interrupted.

Keep slot empty

S7-300

Slot Rules (S7-300)

Rack 0:

• Slot 1: Power supply only (for example, 6ES7 307-...) or empty

• Slot 2: CPU only (for example, 6ES7 314-...)

• Slot 3: Interface module (for example, 6ES7 360-.../361-...) or empty

• Slots 4 through 11: Signal or function modules, communications processors, or
free.

Racks 1 to 3:

• Slot 1: Power supply module only (for example, 6ES7 307-...) or empty

• Slot 2: Free

• Slot 3: Interface module

• Slots 4 through 11: Signal or function modules, communications processors
(dependent on the inserted interface module), or free.

Configuring the Hardware

 Programming with STEP 7 Lite V3.0
5-8 A5E00293884-01

5.2.1.1 Special Rules for the Dummy Module (DM 370 Dummy)

A dummy module (DM 370 Dummy) is a module that you can insert instead of a
module that will be used later.

Depending on the switch setting, the module may or may not reserve address
space for a module. For example, address space is reserved for a digital
input/output module but not for an interface module.

Switch Setting on
DM 370 Dummy

Meaning Order Number

A Address space can be
reserved.

.

6ES7 370-0AA00-0AA0

NA No address space reserved. None

(Module is "not visible"; it is
not configured)

5.2.1.2 Special Rules for the Digital Simulation Module
(SIM 374 IN/OUT 16)

The SIM 374 IN/OUT 16 digital simulation module can be used to simulate digital
inputs and outputs.

You cannot find this module in the ”Hardware Catalog” window. You must place
the module you want to simulate in the configuration table instead of the SIM 374.

Switch Setting on SIM 374 IN/OUT 16 Module to Place

16xOutput 6ES7322-1BH00-0AA0

8xOutput 8xInput 6ES7323-1BH00-0AA0

16xInput 6ES7321-1BH00-0AA0

 Configuring the Hardware

Programming with STEP 7 Lite V3.0
A5E00293884-01 5-9

5.2.2 Rules for Arranging Modules (ET 200S and ET 200X)

5.2.2.1 Rules for Arranging Modules with ET 200S

Introduction

The maximum configuration of the distributed I/O device is 64 modules (including
IM 151/CPU). The modules must be inserted without empty slots between them.

The ET 200S distributed I/O device begins with an IM 151/CPU.

After the interface module or at the beginning of each potential group comes a
power module.

After the power module come digital or analog modules.

The ET 200S distributed I/O device ends with the terminating module; however, the
terminating module is not configured.

Special Features of Assigning Parameters to Reference Junctions

Note the following sequence:

1. In the configuration table (Details view) of the ET 200S: place an analog
electronic module and set a channel for the reference junction function to the
measuring range "RTD-4L Pt 100 Cl."

2. Double-click the IM 151/CPU and specify the reference junction(s) in the
Module Parameters section of the parameter dialog: slot and channel of the
RTD module. Do not forget to activate the reference junction.

3. Place an analog electronic module for measuring temperature by means of
thermocouple (TC module) and assign the reference junction number (of the
RTD module) to the analog electronic module as parameter.

5.2.2.2 Rules for Arranging Modules with ET 200X

An ET 200X station consists of a basic module (BM 147) and up to 7 expansion
modules (EMs). The modules must be inserted without empty slots between them.

Power Modules: There can be a maximum of 7 expansion module power modules
PM 148 DO 4 x DC 24V/2A per basic module.

Load Feeders (Motor Starters): You can insert a maximum of 6 load feeders
(motor starters, EM 300...). You can insert them anywhere in the ET 200X.

Pneumatic Interface Modules: A maximum of 1 pneumatic interface module (EM
148-P DO 16 P/CPV...) can be connected as the last expansion module in the ET
200X configuration.

The maximum configuration depends on the current input of the individual
modules. The manual for the ET 200X distributed I/O system lists all the
configuration possibilities and their limitations. There you can also find the
possibilities for increasing the limitations.

Configuring the Hardware

 Programming with STEP 7 Lite V3.0
5-10 A5E00293884-01

5.2.3 How to Configure Modules

5.2.3.1 Overview: Procedure for Configuring and Assigning Parameters
to a Station

Requirement

You must have opened a project or created a new project.

Basic Procedure

To configure and assign parameters to a structure, proceed as shown below:

Create a station

Call up the application "Configuring Hardware"

Determine module properties

Arrange racks

Save configuration

Download configuration to the programmable
 logic controller

Arrange modules

5.2.3.2 Selecting a Station Type

If you have selected the "Hardware Configuration" view, you must select the station
type the first time you open the hardware configuration of a station.

You must make your selection in the upper tab of the catalog - the tab is already
open and the station type S7-300 is preselected.

If you select a different option, the workspace automatically adapts to the correct
station type, for example, the maximum number of modules that can be inserted
changes.

 Configuring the Hardware

Programming with STEP 7 Lite V3.0
A5E00293884-01 5-11

5.2.3.3 Arranging Modules in a Rack

Requirement

The hardware configuration is opened. The window is configured to show the
module rack (graphical or table view) and the hardware catalog.

Procedure

1. Select a module (for example, a CPU) in the hardware catalog..

2. Drag the module to the appropriate row of the rack (configuration table).
STEP 7 Lite checks whether the slot rules have been violated (for example, an
S7-300 CPU can only be inserted into slot 2).

Symbol for violating the slot
rules

3. Repeat steps 1 and 2 until the rack is completely fitted with the required
modules.

Alternatively, you can select the appropriate row or rows in the configuration table
and double-click the required module in the "Hardware Catalog" window. If several
rows are selected, all selected rows are fitted with the module at one time.

Special Features in the Graphical View

Display in the Graphical View Meaning

You have dragged a module to a position between
two occupied slots. If you "drop" the module now, it
will be inserted into slot 5, and the modules to its
right will be automatically shifted one slot to the
right.

You have selected the space between two
modules. If you double-click an insertable module
in the catalog, this module will be inserted into slot
5, and the modules to its right will be automatically
shifted one slot to the right.

You have dragged a module to an occupied slot. If
you "drop" the module now, it will be inserted into
slot 5, and the module below will be deleted.
("Module exchange"). The configuration (for
example with a CPU) is transferred to the "new"
module.

You have selected an occupied slot. If you double-
click an insertable module in the catalog now, this
module will be inserted into slot 5, and the module
inserted originally will be deleted
("Module replacement").

Configuring the Hardware

 Programming with STEP 7 Lite V3.0
5-12 A5E00293884-01

5.2.3.4 Displaying the Version of the CPU Operating System in the
Module List

When a CPU has more than one operating system, you need to select this version
in a separate drop-down list next to the CPU with its order number.

Please check the version of your CPU's operating system and select the correct
version.

1 2

3

1 CPU type designation

2 Icon for opening/closing additional CPU order numbers of the same CPU type

3 Drop-down list box for selecting the version of the CPU operating system for an order number

5.2.3.5 Arranging C7 Control Systems (Special Features)

In a C7 control system (C7-620), the following components are integrated in one
casing:

• SIMATIC 300 CPU

• Inputs and outputs (digital and analog)

• Interface module IM 360 for connecting further SIMATIC 300 modules

• Line-oriented operator panel with a printer port

With CPUs of the series C7-621 you additionally have the option to insert signal
modules of the series S7-300 in module rack 0. here, the expansion module 6ES7
621-1AD00-6AE3 must be inserted in slot 3 of module rack 0.

Procedure

1. Select a C7 control system from the catalog. These systems can be found in the
"C7" (S7- 300 system) tab.

2. Drag the C7 control system to the station window..
The integrated inputs and outputs are automatically "distributed" to the slots
next to the CPU.

3. If you want to expand the C7 control system::
Assign modules to the racks. Important: The interface modules (IM) must be
inserted in all racks so that connecting up is possible.

 Configuring the Hardware

Programming with STEP 7 Lite V3.0
A5E00293884-01 5-13

5.2.3.6 Assigning Properties to Modules/Interfaces

Introduction

Properties of components such as modules or interfaces are addresses and
parameters. Only if you want to change the default values do you need to read the
following sections.

Requirement

You have arranged in the configuration table the component for which you want to
modify the properties.

Procedure

Every component (module or interface) has default properties; for example, default
measurement types and measuring ranges for analog input modules.

If you want to change these settings, proceed as follows:

1. Double-click in the configuration table on the component (for example, module)
that is to have parameters assigned or select the row and select the Edit >
Module Parameters menu command.
Alternative Procedure:
Using the right-hand mouse button: Move the mouse pointer to the component,
press the right-hand mouse button, and select the Module Parameters
command from the context menu. Using the "Module Parameters" button: Move
the mouse pointer to the component and click the "Module Parameters" button.

2. Use the displayed tabbed dialog boxes to assign the component properties. The
list displayed in the left field of the dialog box will help you navigate to individual
parameters.

Special Features of CPUs with Integrated Inputs and Outputs

CPUs with integrated inputs and outputs such as the CPU 31x C ("Compact
CPUs") have a "Details" button in the "E-address" column. When you click this
button, additional rows showing the addresses of the integrated inputs and outputs
are displayed. Doubling-clicking one of these lines opens the same parameters
dialog obtained by double-clicking on the row containing the CPU.

Configuring the Hardware

 Programming with STEP 7 Lite V3.0
5-14 A5E00293884-01

5.2.3.7 Assigning Addresses

There is a difference between assigning addresses to nodes and assigning
input/output addresses (I/O addresses).

Node Addresses

Node addresses are addresses of module interfaces (MPI and PROFIBUS
addresses), They are required in order to be able to address the various nodes in a
subnet, for example, an IM 151/CPU (ET 200S) on a PROFIBUS subnet. You can
assign the addresses when you configure the hardware (interface parameter). The
node address of the CPU with which the PG is connected is displayed in the title
bar of the CPU operator panel in square brackets.

The node address is retained following a memory reset on the CPU.

Note on customizing PROFIBUS addresses of the CPUs in ET 200S and ET 200X:

The address entered in the parameters must match address set with the DIP
switches of the CPU. Otherwise, the CPU will not start!

Input/Ouput Addresses

Input/output (I/O) addresses are required in order to read inputs and set outputs in
the user program.

5.2.3.8 Assigning I/O Addresses

STEP 7 Lite assigns input and output addresses when modules are placed in the
configuration table. This means every module has a start address (address of the
first channel); the addresses for the remaining channels are based on this start
address. These addresses cannot be modified; each slot has a set assigned start
address:

Slot 4: address 0 (digital module) or address 256 (analog module)

Slot 5: address 4 (digital module) or address 272 (analog module)

Etc...

 Configuring the Hardware

Programming with STEP 7 Lite V3.0
A5E00293884-01 5-15

5.2.3.9 Tips for Editing Station Configurations

Moving Modules

You can move modules or other components in a simple manner by using a drag-
and-drop operation to put them into another valid slot within the station.

Exchanging Modules

If you have already created a configuration and wish to exchange a module with
another module from the hardware catalog, proceed as follows:

1. Drag the new module (for example, a CPU) to the slot containing the module
you want to replace.

• If the module to be replaced by a new "compatible" one already has parameters
assigned to it (such as in the case of a CPU or an analog module), then these
parameters will also be applied to the new module.

• If the new module cannot use all the parameters or settings from the previous
module, you will see a message informing you of this condition. You can then
cancel the procedure, if appropriate.

• If the new module is completely different from the one to be replaced, then you
will be prompted to confirm that the old module should be deleted and the new
one inserted in its place.

2. If necessary, confirm that you want to replace the module in the dialog box that
appears.

If the modules are "compatible," the existing parameters will be applied to the new
one. If the modules are not compatible, the "old" module will be deleted and the
new one inserted during the exchange. In this case, you will have to assign
parameters to the new module.

Example: You can exchange a CPU with parameters assigned with a CPU that
has a new order number - the entire parameter assignment (for example, the MPI
address) will be adopted by the new module.

The modules that are compatible with a given inserted and selected module are
shown in the hardware catalog in the "Compatible" tab".

Tip

In each case, you can use the menu command Edit > Undo to undo the exchange.

Configuring the Hardware

 Programming with STEP 7 Lite V3.0
5-16 A5E00293884-01

Selecting a Number of Rows in the Configuration Table

If you want to select a number of rows in the configuration table, for example, to
copy or delete a number of modules, proceed as follows:

To select all rows: Select the menu command Edit > Select
All

To select a group of consecutive rows: Click on the first row of the group you want
to select.

Keep the SHIFT key pressed and click on
the last row of the group you want to select.

To select a number of rows: Press CTRL, keep it pressed, and click on
each row you want to select.

 Configuring the Hardware

Programming with STEP 7 Lite V3.0
A5E00293884-01 5-17

5.2.4 What You Should Know About ET 200S Motor Starters (High
Feature)

5.2.4.1 Detecting Plant Status Using Motor Current Values
Motor current and current limit values can be used to determine various plant statuses
and conditions:

Plant status Current value Protected by:

Plant operation slows down or
becomes sluggish, perhaps due
to bearing damage

Current draw is higher than
normal

Current limit values

Plant operation speeds up or
becomes smoother, perhaps
because it has run out of
processing material

Current draw is lower than
normal

Current limit values

Plant is blocked Current draw is very high Blocking protection

Motor is running at idle speed,
perhaps because of plant
damage or because the motor
is not yet connected (initial
placement in service)

Current draw is very low
(< 18.75 % of rated operational
current)

"No current" detection

5.2.4.2 Blocking Current

If the blocking current is exceeded, the motor detects a blocked condition. At this
time, the blocking monitoring period starts. Its duration is determined by the
blocking time, regardless of the turn-off class.

Note

If the blocking time has expired and a blocked condition still exists, the motor
starter turns off.

Setting range: 800% of the rated operational current (fixed setting)

5.2.4.3 Blocking Time

The blocking time is the time a blocked condition may continue to exist without
triggering a motor turn-off. If the blocking time has expired and a blocked condition
still exists, the motor starter turns off.

Setting range: 1 second (fixed setting).

Note

Blocking protection is active immediately after the device is turned on.

Configuring the Hardware

 Programming with STEP 7 Lite V3.0
5-18 A5E00293884-01

5.2.4.4 Response to No Current Detection

No current detection is triggered if the motor current in all 3 phases drops below
18.75 % of the rated operational current.

In assigning this device parameter, you specify how the motor starter is to behave
whenever it detects a no-current condition:

• Warning (behavior as for a "Group warning")

• Turn off (behavior as for a "Turn off without restart")

Note

When the motor is turned on, the no current detection is suppressed for
approximately 1 second.

5.2.4.5 Asymmetry

Asynchronous three-phase motors react to minor asymmetries in the supply
current by having a higher, asymmetrical current consumption. This condition
increases the temperature in the stator and rotor windings.

Note

When the motor is turned on, the asymmetry evaluation is suppressed for
approximately 500 milliseconds.

5.2.4.6 Thermal Motor Model

Using the measured motor currents and the device parameters "Rated operational
current" and "Turn-off class", the winding temperature of the motor is calculated
based on the thermal motor model. The result is used to determine whether the
motor is overloaded or is functioning within its normal operating range.

5.2.4.7 Recovery Time

The recovery time is a standard default setting governing the cool-down behavior.
After this period has expired, the overload triggering can be acknowledged. Power
failures during this time will correspondingly lengthen it. After an overload condition
has been triggered, the recovery time is approximately 90 seconds.

 Configuring the Hardware

Programming with STEP 7 Lite V3.0
A5E00293884-01 5-19

5.2.4.8 Overview: Possible Motor Starter Actions

Action Explanation

No action The "Input n – level“ is actively shown in the process image
(see byte 1).

The "Input n – level“ does not trigger a response in the motor
starter.

Turn off without restart Results in motor turn off and braking output.

The "group error" bit is set in the process image.

Acknowledgment is required after the cause of the turn-off is
eliminated (acknowledged at the process image or at the
rotary switch on the device).

Shut-off with restart (auto reset)

Note: A restart means that that the
motor starter automatically restarts
upon receiving a turn-on command
if the cause of the error has been
eliminated (auto reset).

Results in motor turn off and braking output.

The "group error" bit is set in the process image.

Automatic acknowledgment after the cause of the turn-off is
eliminated

Turn off final position-rotating right /
Turn off final position-rotating left

Motor and braking output are turned off, regardless of direction
of rotation

The "group error" bit is set in the process image.

Turn on of braking output (DO 0.2) is possible again after
Motor RIGHT (DO 0.0) and Motor LEFT (DO 0.1) and braking
output (DO 0.2) are set to 0.

Turn off final position-rotating right: Turn on of motor only
possible again with opposite command "Motor LEFT" (DO 0.1).

Turn off final position-rotating left: Turn on of motor only
possible again with opposite command "Motor RIGHT" (DO
0.0).

Group warning

(Warning)

The "group error" bit is set in the process image. The motor
starter and the braking output are not turned off

Local manual mode Control only possible through "Input n - Action: Motor-RIGHT
and Motor-LEFT" (see below)

Control not possible through field bus (automatic mode)

Automatic mode only possible again if the local manual mode
is canceled and "Input n - Action: Motor-RIGHT or Motor-
LEFT" is not active.

Emergency start Turns on motor in response to an ON command despite a
pending shut-off cause.

Also turns on braking output in response to a pending ON
command

Only possible as "normally open" contact

Motor-RIGHT / Motor-LEFT For these actions, the motor must be in "local manual"
mode.

Motor-RIGHT: Turns motor and braking output on and off
(rotating right).

Motor-LEFT: Turns motor and braking output on and off
(rotating left).

Only possible as "normally open" contact

Configuring the Hardware

 Programming with STEP 7 Lite V3.0
5-20 A5E00293884-01

5.2.4.9 Motor Starter Assignments in the Process Image

The following table shows the assignments for the motor starter in the process
image based on a start address of 0

Process image input

Process image output

 Configuring the Hardware

Programming with STEP 7 Lite V3.0
A5E00293884-01 5-21

5.3 Saving a Configuration and Consistency Check

To save a configuration with all settings for parameters and addresses, select the
menu command File > Save. Inconsistent (faulty) configurations can also be saved
this way.

Before you download, you should check the configuration by using the menu
command Options >> Check Consistency and eliminate the reported errors.

Configuring the Hardware

 Programming with STEP 7 Lite V3.0
5-22 A5E00293884-01

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-1

6 Programming Blocks

6.1 Defining Symbols

6.1.1 Absolute and Symbolic Addressing

In a STEP 7 Lite program you work with addresses such as I/O signals, bit
memory, counters, timers, data blocks, and function blocks. You can access these
addresses in your program absolutely, but your programs will be much easier to
read if you use symbols for the addresses (for example, Motor_A_On, or other
identifiers according to the code system used within your company or industry). An
address in your user program can then be accessed via this symbol.

Absolute Addresses

An absolute address comprises an address identifier and a memory location (for
example, Q 4.0, I 1.1, M 2.0, FB21).

Symbolic Addresses

You can make your program easier to read and simplify troubleshooting if you
assign symbolic names to the absolute addresses.

STEP 7 Lite can translate the symbolic names into the required absolute
addresses automatically. If you would prefer to access ARRAYs, STRUCTs, data
blocks, local data, logic blocks, and user-defined Data types using symbolic
names, you must first assign symbolic names to the absolute addresses before
you can address the data symbolically.

You can, for example, assign the symbolic name MOTOR_ON to the address
Q 4.0 and then use MOTOR_ON as an address in a program statement. Using
symbolic addresses it is easier to recognize to what extent the elements in the
program match the components of your process control project.

 Note

Two consecutive underline characters (for example, MOTOR__ON) are not
permitted in a symbolic name (variable ID).

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-2 A5E00293884-01

Support with Programming

In the programming languages Ladder Logic, Function Block Diagram, and
Statement List you can enter addresses, parameters, and block names as absolute
addresses or as symbols.

Using the menu command View > Display With > Symbolic Representation you
can toggle between the absolute and symbolic representation of addresses.

To make it easier to program using symbolic addresses you can display the
absolute address and the symbol comment that belongs with the symbol. You can
activate this information using the menu command View > Display with> Symbol
Information. This means that the line comment following every STL statement
contains more information. You cannot edit the display; you must make any
changes in the symbol table or the variable declaration table.

The following figure shows you the symbol information in STL.

FB34 - <Offline>

FB1003 : Interrupt Trigger
Network 1 : ???

 U "Sensor1" "I1.0 Temperature overrange"
 UN "Switch2" "I1.2 Fault acknowledgment"
 = "Lighton" "Q4.0 Interrupt signal"

When you print out a block, the current screen representation with statement
comments or symbol comments is printed.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-3

6.1.2 Shared and Local Symbols

A symbol allows you to work with meaningful symbolic names instead of absolute
addresses. The combination of short symbols and longer comments can be used
effectively to make programming easier and program documentation better.

You should distinguish between local (block-specific) and shared symbols.

 Shared Symbols Local Symbols

Validity • Are valid in the whole user program,

• Can be used by all blocks,

• Have the same meaning in all blocks,

• Must be unique in the whole user program.

• Only known to the block in
which it was defined,

• The same symbol can be used
in different blocks for different
purposes.

Permitted
characters

• Letters, numbers, special characters,

• Accents other than 0x00, 0xFF, and
quotation marks,

• The symbol must be placed within quotation
marks if you use special characters.

• Letters,

• Numbers,

• Underscore (_).

Use You can define shared symbols for:
• I/O signals (I, IB, IW, ID, Q, QB, QW, QD)

• I/O inputs and outputs (PI, PQ)

• Bit memory (M, MB, MW, MD)

• Timers (T)/ counters (C)

• Logic blocks (OB, FB, FC, SFB, SFC)

• Data blocks (DB)

• User-defined data types (UDT)

You can define local symbols for:

• Block parameters (input,
output, and in/out parameters),

• Static data of a block,

• Temporary data of a block.

Defined where? Symbol table Variable declaration table for the
block

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-4 A5E00293884-01

6.1.3 Displaying Shared or Local Symbols

You can distinguish between shared and local symbols in the code section of a
program as follows:

• Symbols from the symbol table (shared) are shown in quotation marks "..".

• Symbols from the variable declaration table of the block (local) are preceded by
the character "#".

You do not have to enter the quotation marks or the "#". When you enter your
program in Ladder, FBD, or STL the syntax check adds these characters
automatically.

If you are concerned that there may be some confusion because, for example, the
same symbols are used in both the symbol table and the variable declaration table,
you must code the shared symbol explicitly when you want to use it. Any symbols
without the respective coding are interpreted as block-specific (local) variables in
this case.

Coding shared symbols is also necessary if the symbol contains blanks.

 Note

Using the menu command View > Display > Symbolic Representation, you can
toggle the display between the declared shared symbols and the associated
absolute address.

6.1.4 Setting the Address Priority (absolute/symbolic)

To set the address priority to either "absolute" or "symbolic", select the menu
command
Options > Settings ("General" tab).

This setting can be used to determine whether the absolute address or the symbol
is changed in the user program if assignments in the symbol table are
subsequently changed. The address priority type setting only takes effect after the
logic block has been opened and saved.

With the "Absolute address priority" setting, the absolute address in the user
program remains in force after a change in assignment (the symbol is changed).
With the "Symbol address priority" setting, the symbolic address remains in force
(the absolute address is changed). For block calls such as CALL, CC or UC, the
first block number is the determining factor (that is, only the symbol is always
changed).

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-5

Example:

The following example shows the effect a change in the symbol table affects the
address priority in the user program.

Situation before change U "Symbol_A"

O "Symbol_B"

 (Symbol_A = I0.1)

(Symbol_B = I0.2)

Assignment change in the symbol table Symbol_A = I0.1

Symbol_B = I0.2

 -->

 -->

Symbol_A = I0.2

Symbol_B = I0.1

Block is opened with

"Absolute address priority"

U "Symbol_B"

O "Symbol_A"

 (I0.1)

(I0.2)

Block is opened with

"Symbol address priority"

U "Symbol_A"

O "Symbol_B"

 (I0.2)

(I0.1)

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-6 A5E00293884-01

6.1.5 Symbol Table for Shared Symbols

Shared symbols are defined in the symbol table.

6.1.5.1 Structure and Components of the Symbol Table

Structure of the Symbol Table

Status

The Status column indicates whether special object properties have been assigned
to a symbol:

• Indicates an unused symbol. The symbol cell is shaded blue.

• Indicates a symbol with a duplicate (absolute/symbolic). The
 corresponding cells are shaded pastel red.

• Indicates entries with syntactic errors. The corresponding cell is
 shaded red.

Symbol

The symbolic name must not be longer than 24 characters. You cannot assign
symbols in the symbol table for addresses in data blocks (DBD, DBW, DBB, DBX).
Their names are assigned in the data block declaration.

For organization blocks (OB) and some system function blocks (SFB) and system
functions (SFC) predefined symbol table entries already exist which you import into
the table when you edit the symbol table of your program.

Address

An address is the abbreviation for a particular memory area and memory location.
Example: Input I 12.1.

The syntax of the address is checked as it is entered. A check is also made to see
whether the address may be assigned the specified data type.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-7

Data Type

You can choose between a number of data types available in STEP 7 Lite. When
you enter the address, this field is automatically assigned a default data type. If this
address has several data types, the other valid data types are provided in a
selection list.

Comment

You can assign comments to all symbols. The combination of brief symbolic names
and more detailed comments makes creating programs more effective and makes
your program documentation more complete. A comment can be up to 80
characters in length.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-8 A5E00293884-01

6.1.5.2 Addresses and Data Types Permitted in the Symbol Table

Only one set of mnemonics can be used throughout a symbol table. Switching
between German and English mnemonics must be done using the menu command
Options > Settings.

English
Mnemonics

German
Mnemonics

Description Data Type Address Range

I E Input bit BOOL 0.0 to 65535.7

IB EB Input byte BYTE, CHAR 0 to 65535

IW EW Input word WORD, INT, S5TIME, DATE 0 to 65534

ID ED Input double word DWORD, DINT, REAL, TOD, TIME 0 to 65532

Q A Output bit BOOL 0.0 to 65535.7

QB AB Output byte BYTE, CHAR 0 to 65535

QW AW Output word WORD, INT, S5TIME, DATE 0 to 65534

QD AD Output double
word

DWORD, DINT, REAL, TOD, TIME 0 to 65532

M M Memory bit BOOL 0.0 to 65535.7

MB MB Memory byte BYTE, CHAR 0 to 65535

MW MW Memory word WORD, INT, S5TIME, DATE 0 to 65534

MD MD Memory double
word

DWORD, DINT, REAL, TOD, TIME 0 to 65532

PIB PEB Peripheral input
byte

BYTE, CHAR 0 to 65535

PID PED Peripheral output
double word

DWORD, DINT, REAL, TOD, TIME 0 to 65532

PIW PEW Peripheral input
word

WORD, INT, S5TIME, DATE 0 to 65534

PQB PAB Peripheral output
byte

BYTE, CHAR 0 to 65535

PQD PAD Peripheral output
double word

DWORD, DINT, REAL, TOD, TIME 0 to 65532

PQW PAW Peripheral output
word

WORD, INT, S5TIME, DATE 0 to 65534

T T Timer TIMER 0 to 65535

C Z Counter COUNTER 0 to 65535

FB FB Function block FB 0 to 65535

OB OB Organization
block

OB 1 to 65535

DB DB Data block DB, FB, SFB, UDT 1 to 65535

FC FC Function FC 0 to 65535

SFB SFB System function
block

SFB 0 to 65535

SFC SFC System function SFC 0 to 65535

UDT UDT User-defined data
type

UDT 0 to 65535

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-9

6.1.5.3 Incomplete and Ambiguous Symbols in the Symbol Table

Incomplete Symbols

It is also possible to store incomplete symbols. You can, for example, enter only
the symbol name first and then add the corresponding address at a later date. This
means you can interrupt your work on the symbol table at any time, save the
interim result, and complete your work another time. When you come to use the
symbol for creating software (without an error message appearing), you must have
entered the symbolic name, the address, and the data type.

How Ambiguous Symbols Occur

Ambiguous symbols occur when you insert a symbol in the symbol table whose
symbolic name and/or address was already used in another symbol row. This
means both the new symbol and the existing symbol are non-unique.

This happens, for example, when you copy and paste a symbol in order to change
the details in the copy slightly.

Marking Ambiguous Symbols

In the symbol table, ambiguous symbols are identified by highlighting them
graphically (color, font). This change in their representation means they still require
editing. You can either display all symbols or filter the view so that only unique or
ambiguous symbols are displayed.

Making Symbols Unique

A non-unique symbol becomes unique when you change the component (symbol
and/or address) which caused it to be ambiguous. If two symbols are ambiguous
and you change one of them to make it unique, the other one also becomes
unique.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-10 A5E00293884-01

6.1.6 Entering Shared Symbols

There are several methods of entering symbols that can be used for programming
at a later stage:

• Directly in the Symbol Table
You can enter symbols and their absolute addresses directly in a symbol table.
This procedure is recommended if you want to enter a number of symbols and
for when you create the symbol table for a project because you have the
symbols which were already assigned displayed on the screen, making it easier
to keep an overview of the symbols.

• Via a Dialog Box
You can open a dialog box in the window where you are entering a program
and define a new symbol or redefine an existing symbol. This procedure is
recommended for defining individual symbols, for example, if you realize that a
symbol is missing or you want to correct one while you are writing the program.
This saves you displaying the whole symbol table.

• Import Symbol Tables from Other Table Editors
You can create the data for the symbol table in any table editor you are
comfortable with and then import the file you created into the symbol table.

• Enter Block Symbols by means of a Dialog Box
In the project window, you can access the New Block dialog box, either by
means of the menu command File> New > Block. or by means of the pop-up
menu command New > Block. The pop-up menu appears when you right-click
the selected object. You can define the block symbol in this dialog box.

• Enter Block Symbols in the Block Editor
In the block editor, you can select the Properties view to edit or change the
name of the block in this view. Once you have made a change in the Symbol or
Symbol Comment field, the change is saved immediately. Even if you exit the
Properties view without saving changes, the changes are still saved in these
fields and are applied accordingly to all views.

• Enter Block Symbols in the Project Window
In the project window, you can change the name of a block, either by double-
clicking the block or by means of the Rename pop-up menu command. The
pop-up menu appears when you right-click the selected object.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-11

6.1.6.1 General Tips on Entering Symbols

To enter new symbols in the symbol table, position the cursor in the first empty row
of the table and fill out the cells. You can insert new rows before or after the current
row in the symbol table using the menu command Insert > Row > Before
Selection/After Selection. If the row before the cursor position already contains
an address, you will be supported when inserting new symbols by a presetting of
the "Address" and "Data Type" columns. The address is derived from the previous
row; the default data type is entered as data type.

You can copy and change existing entries with the commands in the "Edit" menu.
You can also save symbols which have not been completely defined.

When you enter the symbols in the table, you should note the following points:

Column Note

Symbol The name must be unique within the whole symbol table. When you exit the field, an
ambiguous symbol is marked. The symbol can contain up to 24 characters. Quotation
marks (") are not permitted.

Address When you exit the field, a check is made as to whether the address entered is allowed.

Data Type When you enter the address, this field is automatically assigned a default data type. If
this address has several data types, the other valid data types are provided in a
selection list.

Comment You can enter comments here to briefly explain the functions of the symbols (max. 80
characters). Entering a comment is optional.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-12 A5E00293884-01

6.1.6.2 Entering Single Shared Symbols in a Dialog Box

The procedure described below shows you how you can change symbols or define
new symbols in a dialog box while programming blocks without having to display
the symbol table.

This procedure is useful if you only want to edit a single symbol. If you want to edit
a number of symbols, you should open the symbol table and work in it directly.

Activating Symbol Display in a Block

You activate the display of symbols in the block editor of an open block using the
menu command View > Display With > Symbolic Representation. A check mark
is displayed in front of the menu command to show that the symbolic
representation is active.

Defining Symbols When Entering Programs

1. Select the absolute address in the code section of your program to which you
want to assign a symbol.

2. Select either the menu command Edit > Symbols… or the pop-up menu
command.Edit Symbols. The pop-up menu appears when you right-click the
selected object.

3. Fill out the dialog box and close it, confirming your entries with ”OK" and making
sure you enter a symbol.

The defined symbol is entered in the symbol table.

 Notes

Any entries that would lead to non-unique symbols are indicated by an equal sign
 in the dialog after closing the symbol input and in the field status column of the

symbol table. The corresponding cells have a pastel-red background color.

If the instruction which had its operand selected to call the dialog has not been
saved the symbol is marked in the "Edit Symbols" dialog and in the symbol table
with a "?" on a blue background to indicate that it is not being used.

An operand with a non-unique symbol instruction is displayed in the ladder, FBD
and STL as absolute. You cannot call up the "Edit symbols" dialog for this operand.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-13

6.1.6.3 Entering Multiple Shared Symbols in the Symbol Table

Opening the Symbol Table

There are a number of ways to open a symbol table:

• Double-click the symbol table in the project window.

• Select the symbol table in the project window, click the right mouse button to
get a pop-up menu, and execute the menu command Open.

The symbol table for the active program is displayed in its own window. You can
now create symbols or edit them. When you open a symbol table for the first time,
it is empty.

Entering Symbols

To enter new symbols in the symbol table, position the cursor in the first empty row
of the table and fill out the cells. You can insert new empty rows before or after the
current row in the symbol table using the menu command Insert > Row before
Selection/Row after Selection. You can copy and modify existing entries using
the commands in the Edit menu. Save and then close the symbol table. You can
also save symbols which have not been completely defined.

Sorting Symbols

The data records in the symbol table can be sorted alphabetically according to
symbol, address, Data type, or comment.

Click the column header so that sorting will begin. Sorting is indicated by the
vertical blue arrow that appears at the right-hand margin. The direction of sorting is
represented by the direction of the arrow.

The symbol table is sorted according to the entry in this column. You can reverse
the sort order by repeating this action.

Filtering Symbols

You can use a filter to select a subset of the records in a symbol table.

Using the "Edit Filter" button, you open the "Edit Filter" dialog box.

You can define criteria which the records must fulfil in order to be included in the
filtered view. You can filter according to:

• Symbol names, addresses, Data types, comments

• Symbols with the status "valid," "invalid (ambiguous, incomplete)"

The individual criteria are linked by an AND operation. The filtered records start
with the specified strings.

You can find out more about the options in the "Edit Filter" dialog box under
Filtering the Symbol Table.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-14 A5E00293884-01

6.1.6.4 Exporting and Importing Symbol Tables

You can export the current symbol table to a text file in order to be able to edit it
with any text editor.

You can also import tables created using another application into your symbol table
and continue to edit them there. The import function can be used, for example, to
include in the symbol table assignment lists created with STEP5/ST following
conversion.

The file format *.SDF is available to choose from.

You can export the whole symbol table, a filtered subset of the symbol table, or
rows selected in the table view.

6.1.7 How to Edit the Symbol Table

6.1.7.1 Opening a Symbol Table

The "Symbol Table" is created automatically beneath a new project. To use
symbols for shared data in a block, these must be assigned in the symbol table.

Open the "symbol table" by double-clicking the object in the project window, or
bring up a context-sensitive menu by clicking with the right mouse button. You can
then open the symbol table with the menu command Open.

A window appears in which the symbol table is displayed for you to edit it.

6.1.7.2 Defining Individual Symbols

1. Activate the symbolic view in the "Block Editor" using the menu command
View > Display > Symbolic Representation. A check mark is displayed in
front of the menu command to show that the symbolic representation is active.

2. Click in the network on the address for which you want to define a symbol.

3. Select either the menu command Edit > Symbols or the pop-up menu
command Edit Symbols. The pop-up menu appears when you right-click the
selected object.

4. In the dialog box which then appears, enter the symbol, the data type of the
address, and a comment, if required. The symbol must be unique in the whole
symbol table and must not be longer than 24 characters. Quotation marks (")
are not permitted.

5. Confirm your entries with "OK." The defined symbol is entered in the symbol
table and inserted in the code section in place of the selected address.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-15

6.1.7.3 Inserting Symbol Rows

To insert a symbol row before the cursor position, select the menu command
Insert > Row before Selection/Row after Selection.

To paste one or more symbol rows from the clipboard buffer, you can:

• Click with the left mouse button in the row (not on the row header) from which
the symbol row(s) is/are to be inserted.

• Select the menu command Edit > Paste.

• Click the corresponding button in the toolbar.

• Press CTRL + V.

6.1.7.4 Deleting Symbol Rows

To cut the selected symbol row to the clipboard buffer, you can:

• Select the menu command Edit > Cut.

• Click the corresponding button in the toolbar.

• Press CTRL + X.

To delete the selected symbol rows without retaining a backup copy, you can:

• Select the menu command Edit > Delete.

• Press DEL.

Note that if you cut or delete the special object properties, you cannot reverse this
action with Undo.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-16 A5E00293884-01

6.1.7.5 Filtering the Symbol Table

To set a filter for the display in the active window:

1. Click the "Edit Filter" button.

2. In the "Edit Filter" dialog box, select an existing filter via the corresponding
number or define a new filter.

3. To do this, click the "New Filter" button.

4. Assign a unique name to the filter.

5. Select the required settings.

6. Click the "Apply" button. You can now select the new filter in the drop-down list
box.

Only symbols which correspond to the active filter criteria are displayed. You can
use several criteria at the same time. The indicated filter criteria are linked to one
another.

or

Select an existing filter from the drop-down list box for selecting a filter

The following predefined filters are available:

• Display all: displays all symbols (predefined)

• Defective: displays all double or syntactically incorrect symbols

• Unused: displays all unused symbols

• Inputs: displays all symbols for inputs

• Outputs: displays all symbols for outputs

• Bit memory: displays all symbols for bit memory

• Blocks: displays all symbols for blocks

• Timers & Counters: displays all symbols for timers and counters

The predefined filters cannot be modified or deleted. They can, however, be
duplicated and applied under a new name.

6.1.7.6 Unused Symbols

Selecting the predefined filter "unused" in the symbol table gives you an overview
of all symbols with the following characteristics:

• The symbols are defined in the symbol table.

• The symbols are not used in the user program parts, however.

A question mark indicates an unused symbol. In addition, the symbol cell is
shaded blue.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-17

6.1.7.7 Addresses without a Symbol

Activate the option box "Display addresses without a symbol" in the symbol table to
display addresses with symbols as well as all addresses used in the program that
are included in the active filter.

6.1.7.8 Sorting the Symbol Table

To set the sort criteria for the display in the active table:

1. Click the column header to begin sorting. A vertical blue arrow will appear on
the right border.

2. Select the required direction of sorting, which is indicated by the direction of the
arrow.

The symbol table is sorted according to the entries in this column. If you repeat the
action, the sort order is reversed.

6.1.7.9 Selecting Symbol Rows

To select the symbol row in which the cursor is positioned, you can:

•

• Click on the row header to the left of the required symbol row.

• Press SHIFT + SPACEBAR.

To select all the rows in the active symbol table, you can:

• Select the menu command Edit > Select > All.

• Press CTRL + A.

To undo the selection, select the menu command Edit > Undo Selection.

6.1.7.10 Copying Symbol Rows to the Clipboard

To copy one or more selected symbol rows to the clipboard buffer, you can:

• Select the menu command Edit > Copy.

• Click the corresponding button in the toolbar.

• Press CTRL + C.

The existing contents of the clipboard buffer are then overwritten.

6.1.7.11 Saving a Symbol Table

The symbol table is not explicitly saved. When you exit a field in the symbol table,
the contents are implicitly saved to intermediate memory and are immediately
available for programming, for example. The symbol table is saved with the project
(menu command File > Save or File > Save as).

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-18 A5E00293884-01

6.1.8 How to Change the Window Settings

6.1.8.1 Toggling the Toolbar On/Off

To switch the display of the toolbar on or off, select the menu command View >
Toolbar.

When the toolbar is displayed, a check mark is visible beside the menu command.

6.1.8.2 Toggling the Status Bar On/Off

To switch the display of the status bar on or off, select the menu command View >
Status Bar.

When the status bar is displayed, a check mark is visible beside the menu
command.

6.1.8.3 Positioning the Toolbar

To change the position of the displayed toolbar:

1. Move the mouse pointer to a free area in the respective bar.

2. Hold the left mouse button pressed and drag the bar to the required position.

3. Release the left mouse button again.

6.1.8.4 Setting the Size of a Window for Display

To increase the size of the display in the Block Editor view, the Project Details
view, and the Program Details view, in stages:

• Select the menu command View > Zoom In.

• Press CTRL + Num+.

To decrease the size of the display in the active window in stages:

• Select the menu command View > Zoom Out.

• Press CTRL + Num-.

To set the size of the display to a set value:

1. Select the menu command View > Zoom Factor.

2. Select the required zoom factor in the "Zoom Factor" dialog box.

3. Confirm with "OK."

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-19

6.2 Working with Blocks

6.2.1 Block Editor

The block editor enables you to create and test blocks for the CPUs of the
SIMATIC S7-300 in the LAD, FBD, and STL programming languages.

Using these programming languages, you can create and edit the blocks
individually by means of incremental input.

Besides the pure creation of the program (that is, creating and editing logic blocks,
data blocks, and user-defined data types), additional functions for programming,
testing, and commissioning the program are available to you:

• Programming with symbols

• Reading out status information and operating data of the CPU by means of the
Module Information menu command (Options menu)

• Displaying and changing the operating mode of the CPU (Options menu)

• Memory reset of CPUs

• Displaying and setting the date and time of the CPU with the CPU Settings
menu command (Options menu)

• Monitoring an individual logic block (testing STL/LAD/FBD programs in the
program status)

• Multiple instance capability, that is, an instance DB can contain the data of
several FBs:

- What you should know about instance data blocks

- Declaring multiple instances

• Variable declaration table:

- In this table, you can edit several declarations together (copy, cut, paste)

- Variable declaration table and the code section of logic blocks are displayed
together in a split working window.

A prerequisite for creating and editing blocks is the existence of a project.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-20 A5E00293884-01

6.2.2 Selecting the Programming Language

6.2.2.1 Programming Languages of the Block Editor

Setting the Programming Language for the Editor

You decide which programming language you want to use to create a block in the
"New block" dialog box. You can change the block programming language in the
“Properties” tab even when the block is open.

Starting the Block Editor

Start the appropriate block editor by double-clicking on the corresponding block, or
by using the pop-up menu command Open, which appears when you right-click the
selected object.

To create a program, the programming languages listed in the table are available
to you.

Programming
Language

User Group Application Incremental
Input

Block can be
Documented
Back from
the CPU

Statement List
STL

Users who prefer
programming in a
language similar to
machine code

Programs
optimized in terms
of run time and
memory
requirements

• •

Ladder Logic LAD Users who are
accustomed to
working with circuit
diagrams

Programming logic
controls

• •

Function Block
Diagram FBD

Users who are
familiar with the
logic boxes of
Boolean algebra

Programming logic
controls

• •

If blocks contain no errors, you can switch between representing your blocks in
either Ladder Logic, Function Block Diagram, or Statement List. Program parts that
cannot be displayed in the language you switch to are shown in Statement List.

You can create blocks from source files in Statement List and also decompile them
back into source files.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-21

6.2.2.2 Ladder Logic Programming Language (LAD)

The graphic programming language Ladder Logic (LAD) is based on the
representation of circuit diagrams. The elements of a circuit diagram such as
normally open contacts and normally closed contacts are grouped together in
networks. One or more networks form the code section of a logic block.

Example of Networks in Ladder Logic

Netzwork 1: Enable conditions
#Start #Stop #Coil

Netzwork 4: Stop lamp
#Reset #Stop_Lamp

#Coil

Netzwork 3: Start lamp
#Start_Lamp

#Error

Netzwork 2: Motor control
#Coil #Reset

#Error

#Coil

S_ODT
S Q

R

S

#Reset_Time #Current_Time_bin

#Reset_Time_BCD

T6

TV BI

BCD

#Reset

 The Ladder Logic programming language type is a component of STEP 7 Lite.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-22 A5E00293884-01

6.2.2.3 Function Block Diagram Programming Language (FBD)

The programming language Function Block Diagram (FBD) uses the graphic logic
symbols familiar from Boolean algebra to represent logic. Complex functions such
as math functions can also be represented directly in conjunction with the logic
boxes.

The FBD programming language type is included with the STEP 7 Lite Standard
software package.

Example of a Network in FBD

>=1

&I0.0

I0.1

T6

M0.0

>=1

&

T5

M0.0

Network 1: Green phase for pedestrians

The Function Block Diagram programming language type is a component of
STEP 7 Lite.

6.2.2.4 Statement List Programming Language (STL)

The programming language representation type Statement List (STL) is a textual
language similar to machine code. Each statement corresponds to a step as the
CPU works its way through a program. A number of statements can be linked
together to form networks.

Example of Networks in Statement List

Network 1: Control drain valve
A(
O
O #Coil
)
AN #Close
= #Coil

Network 2: Display "Valve open"
A #Coil
= #Disp_open

Network 3: Display "Valve closed"
AN #Coil
= #Disp_closed

The Statement List programming language type a component of STEP 7 Lite.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-23

6.2.3 Creating Blocks

6.2.3.1 User-Defined Data Types (UDT)

User-defined data types are special data structures you create yourself that you
can use in the whole S7 program once they have been defined.

• User-defined data types can be used like elementary data types or complex
data types in the variable declaration of logic blocks (FC, FB, OB) or as a data
type for variables in a data block (DB). You then have the advantage that you
only need to define a special data structure once to be able to use it as many
times as you wish and assign it any number of variables.

• User-defined data types can be used as a template for creating data blocks with
the same data structure, meaning you create the structure once and then create
the required data blocks by simply assigning the user-defined data type
(Example: Recipes: The structure of the data block is always the same, only the
amounts used are different.)

Structure of a User-Defined Data Type

When you open a user-defined data type, a new working window is displayed
showing the declaration view of this user-defined data type in table form.

• The first and the last row already contain the declarations STRUCT and
END_STRUCT for the start and the end of the user-defined data type. You
cannot edit these rows.

• You edit the user-defined data type by typing your entries in from the second
row of the declaration table in the respective columns. The program enters the
standard variable "udt_bool". You can edit this variable.

• You can structure user-defined data types from:

- Elementary data types

- Complex data types

- Existing user-defined data types

The user-defined data types in the S7 user program are not downloaded to the S7
CPU. They are created and edited directly in the block editor.

 Note

STEP 7 Lite offers you the opportunity under certain circumstances of storing the
data for various function blocks in a single data block (multiple instance data block,
see Entering a Multiple Instance in the Variable Declaration Table).

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-24 A5E00293884-01

6.2.3.2 Block Properties

You can more easily identify the blocks you created if you use block properties.

You can edit the block properties in the "Properties" view when you have selected
a block. Here, in addition to the properties that you can edit, data for information is
displayed; you cannot edit this information.

 Notice

The changes you make in the "Symbol" field or in the "Symbol Comment" field are
saved immediately. Even if you leave the Properties view without saving changes,
the changes are still accepted in these fields and are applied accordingly in all
views.

 Note

The mnemonics you want to use to program your blocks can be set under Options
> Settings.

Table of Block Properties

Property Meaning Can Be
Edited or
Selected

Example

Project-Specific Properties
Name Block name (type and number) No FB10
Programming language Current programming language or

editing language
Yes STL

Symbol Symbolic name of the block Yes PID closed-loop
controller

Symbol comments Comments on symbolic name of the
block

Yes Closed-loop control

Time Stamp
Code created Time that the block was created No 24.08.2000

09:13:16
Code last changed Time that the block was saved with

altered code
No 24.08.2000

09:13:16
Interface last changed Time that the block was saved with

altered interface
No 24.08.2000

09:13:16
Comments Comments on the block:

1. fiteld title

2. field comments

Yes Function block for
closed-loop control

Block Header Properties
Name (Header) Block name (maximum 8 characters

and defined by author)
Yes PID

Version Version number of the block
(both numbers between 0..15, that is,
0.0 to 15.15)

Yes 3.10

Family Name of the block family
(maximum 8 characters, without
blank spaces).

Yes Closed-loop
controller

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-25

Property Meaning Can Be
Edited or
Selected

Example

Author Name of the author, company name,
department or other names
(maximum 8 characters, without
blank spaces)

Yes Siemens

Lengths
Local data Size of the local data in bytes No 10
Load memory requirement Size of the load memory requirement

in bytes
No 142

MC7 Size of the MC7 code in bytes No 38
Work memory requirement Size of the work memory requirement

in bytes
No 74

Attributes
DB is write-protected in PLC Write-protection for data blocks; the

data can only be read by the PLC
and cannot be changed by the user
program.

Yes

Block protection A block that was compiled with this
option cannot be displayed or
changed by any programming device
(STEP 7 Lite, STEP 7).

No

Standard block A Siemens standard block that has
block protection and input fields for
name, family, version, and author.
These fields are grayed and cannot
be edited.

No

Unlinked A data block with the property
UNLINKED is not incorporated in the
program.

Yes

Ability of multiple instance Only FBs and system FBs can be
created as multiple instance blocks.
Multiple instance FB/SFB can use the
instance DBs of other FBs/SFBs.

No

Non-Retain Blocks with this attribute are reset to
the storage values after every
POWER OFF and POWER ON as
well as after every CPU STOP-RUN
transition.

Yes

Block protection has the following consequences:

• If you want to view a compiled block at a later stage in the block editor, the code
section of the block cannot be displayed.

• The variable declaration table for the block displays only the variables of the
declaration types var_in, var_out, and var_in_out. The variables of the
declaration types var_stat and var_temp remain hidden.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-26 A5E00293884-01

Assignment: Block Property to Block Type

The following table shows which block properties can be declared for which block
types:

Property OB FB FC DB UDT
Block protection • • • • −

Author • • • • −

Family • • • • −

Name • • • • −

Version • • • • −

Unlinked − − − • −

DB is write-protected in PLC − − − • −
Non-Retain − − − • −

6.2.3.3 Setting Block Protection

Use block protection if you want to protect your knowledge and expertise from
imitators or want to prevent unwanted manipulation of blocks.

Setting block protection has the following effects:

• The protected block cannot be changed either in the project or on the CPU.

• It is only possible to view the declaration section and name of a protected block;
the code section and data section remain hidden. In the variable declaration
table of the block, only the variables of the declaration types var_in, var_out,
and var_in_out are displayed. The variables of the declaration types var_stat
and var_temp remain hidden.

When you set block protection, an unprotected copy of the block is saved in an
export file. If necessary, the unprotected copy can be imported again.

Follow the steps outlined below to set block protection:

1. Select the blocks you want to protect in the project window (make sure that the
blocks are not open).

2. Select the menu command Options > Set Block Protection.

3. In the next dialog, select the name and path of the export file.

4. Start the block protection function by clicking the "Export" button. Once this is
completed, the blocks can be identified by a small padlock in the project
window.

 Note

If you decide to protect more blocks at a later point in time, you should always
select a new export file.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-27

6.2.3.4 Permitted Block Properties for Each Block Type

The following table shows which block properties can be declared for which block
types:

Property OB FB FC DB UDT

Block Protection • • • • −

Author • • • • −

Family • • • • −

Name • • • • −

Version • • • • −

Unlinked − − − • −

DB is write protected in PLC − − − • −

Setting Write Protection for Data Blocks

For data blocks, you can set up write protection by activating the "DB is write
protected in PLC" option box. The data blocks cannot be overwritten during
program processing.

6.2.3.5 Displaying Block Lengths

Block lengths are displayed in "bytes."

Display in the "Program Structure" View

In this view, the following lengths are displayed:

• Sum of all block lengths without system data in the load memory of the CPU

• Sum of all block lengths without system data in the work memory of the CPU

Display in the "Properties" View of a Block

The following are displayed in this view:

• Required number of local data: size of the local data in bytes

• MC7: size of the MC7 code in bytes, or size of the DB user data

• Size of the load memory in the programmable controller

• Size of the work memory in the CPU (work memory requirement).

For display purposes, it does not matter whether the block is online or offline.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-28 A5E00293884-01

6.2.3.6 Comparing Blocks

To compare blocks:

1. Select the block or the individual blocks you want to compare.

2. Select the menu command Options > Compare >Block.

3. The results of the comparison (ONLINE/offline) are displayed in the "Compare
Blocks-Results" dialog box.

4. Select a block from the comparison list.

5. Activate the "Details" button to display the block information.

How to Create Blocks

Proceed as follows:

1. Select the menu command File > New > Block.

2. Specify the required settings for the block you want to create in the "New Block"
dialog box.

3. Confirm with "OK".

The block is created and opened in the "Block Editor". The upper window pane is
used for editing the variable declaration table; you can edit the code section in the
lower pane.

 Note

Whether or not multiple instances can be declared in a function block (FB) is
determined when you create the function block.

Creating Data Blocks (DB)

Data blocks can be created like all other blocks.

1. Select the menu command File > New > Block or click the corresponding
symbol on the toolbar.

2. Specify in the dialog box the data block you want to create. You cannot assign
DB 0 as a data block number because this number is reserved for the system.

3. Select what type of data block you want to create in the "New Block" dialog box:

- Data block (shared data block)

- Data block with assigned UDT (global data block)

- Data block with assigned FB (instance data block)

For the last point, you must also select the FB to which the instance data block
must belong.

 Note

With STEP 7 Lite you can, under certain circumstances, store the data for various
FBs in one single data block (multiple instance data block, see Entering a Multiple
Instance in the Variable Declaration Table).

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-29

6.2.4 Working with Libraries

6.2.4.1 Overview of Block Libraries

Libraries are used to store reusable program components for SIMATIC S7.
Standard libraries, which contain the system functions and standard functions of
the S7-300 family, for example, are a component of STEP 7 Lite.

Standard libraries are automatically available on the right-hand side of the window
in the "Blocks" tab when you call them using the menu command View >
Libraries. You can toggle between the "Commands" tab and the "Blocks" tab.

STEP 7 Lite has the following block libraries:

• IEC Function Blocks: blocks for IEC functions, such as for editing time and
date, for comparison instructions, for string editing, and for choosing maximum
and minimum values.

• Organization Blocks: standard organization blocks (OB)

• PID Control Blocks: function blocks (FB) for PID closed-loop control

• S5-S7 Converting Blocks: blocks for converting STEP 5 programs

• Sytem Function Blocks: system functions (SFC) and system function blocks
(SFB)

• TI-S7 Converting Blocks: standard functions that can be used generally

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-30 A5E00293884-01

6.3 Creating Logic Blocks

6.3.1 Basics of Creating Logic Blocks

6.3.1.1 Basic Procedure for Creating Logic Blocks

Logic blocks (OBs, FBs, FCs) comprise a variable declaration table, a code
section, and also have properties. When programming, you must edit the following
three parts:

• Variable declaration table: In the variable declaration table you specify the
parameters and local block-specific variables.

• Code section: In the code section you program the block code to be processed
by the programmable controller. This consists of one or more networks. To
create networks you can use, for example, the programming languages Ladder
Logic (LAD), Function Block Diagram (FBD), or Statement List (STL).

• Block properties: The block properties contain additional information such as a
time stamp or path that is entered by the system. In addition, you can enter your
own details such as name, family, version, and author.

In principle it does not matter in which order you edit the parts of a logic block. You
can, of course, also correct them and add to them.

Create a logic block (FB, FC or OB) in
the SIMATIC Manager

Edit the block properties.

Save the block
(menu command File > Save)

Edit the variable declaration table
for the block.

Incremental STL Editor

Edit the code section.

Procedure for Programming Logic Blocks in STL

 Note

If you want to make use of symbols in the symbol table, you should first check that
they are complete and make any necessary corrections.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-31

6.3.1.2 Default Settings for the LAD/STL/FBD Block Editor

Before you start programming, you should make yourself familiar with the settings
in the editor in order to make it easier and more comfortable for you when
programming.

Using the menu command Options > Settings you open a dialog box. In this
dialog box, you can make the following default settings for programming blocks:

• The font (type and size) in text and tables.

• Whether you want symbols and comments to be displayed with a new block.

• The color to be used for highlighting networks or statement lines.

You can change the settings for language, comments, and symbols during editing
using the commands in the View menu.

6.3.1.3 Instructions from the Command Libraries

The "Command Libraries" provide a list of LAD and FBD elements as well as
already declared multiple instances. They can be accessed using the menu
command View > Customize > Libraries. You can insert the required element
selected in the "Commands" tab into the statement section by dragging it from the
library, by double-clicking it or by using the context-sensitive menu command
"Paste".

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-32 A5E00293884-01

Example of the Command Library in LAD

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-33

6.3.1.4 Defining the Block Editor View

Zooming Out/In

You can incrementally decrease or increase the size of the display, including the
fonts, for each window (data block or logic block) in steps.

To zoom out/in, proceed as follows:

1. Activate the window whose contents you want to zoom out/in from by one step.

2. Select the menu command View > Zoom Out or View > Zoom In. If you have
not yet reached the minimum/maximum zoom size, the active display will be
decreased/increased by one step.

Zooming the View

You can increase or decrease the size of the display, including the fonts, by
entering a zoom factor, or you can also restore the standard size for each window
(data block or logic block).

To set the zoom factor, proceed as follows:

1. Activate the window for whose contents you want to change the size of the
display.

2. Select the menu command View > Zoom Factor.

3. In the dialog box, enter the required settings and confirm with "OK."

Setting the Window Split

Logic blocks are shown in split windows. With logic blocks, the upper part contains
the variable declaration table, the lower part the statement section. You can
change the size of each part in relation to the other by moving the split.

Proceed as follows:

• Click with the mouse pointer on the dividing line and drag the mouse pointer,
while keeping the left mouse button pressed, in the direction in which you want
to move the dividing line.

Setting Column Widths

You can change the width of each of the columns in the variable declaration table.

Proceed as follows:

• Position the mouse pointer between two columns on a vertical border in the
column title so that it appears as a vertical double-headed arrow. While holding
the left mouse button pressed, you can set the column width visibly by moving
the mouse horizontally.

 Note

If you double-click the header of the selected column the column width is
optimized.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-34 A5E00293884-01

Switching Programming Languages

Three representations of the programming language are available for you to
program blocks with; these are Ladder Logic (LAD), Function Block Diagram
(FBD), and Statement List (STL).

1. Select the menu command View > STL/LAD/FBD... or the "Properties" tab
while the block is open.

2. Select the required programming language in the "Programming Language box:

 Note

• Switching from Ladder Logic to Function Block Diagram and back is possible
at any time.

• Switching from STL to Ladder/FBD is only possible for STL statements which
imitate the whole set of parameters of the corresponding Ladder element and
maintain the correct sequence. The parameters not used in STL should be set
to ”NOP 0”.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-35

6.3.2 Editing the Variable Declaration Table

6.3.2.1 Using the Variable Declaration in Logic Blocks

When you open a logic block, a window appears containing the variable
declaration table for the block in the upper half and the statement section in the
lower half in which you edit the actual block code.

Example: Variable Declaration Table and Statement Section in STL

In the variable declaration table you specify the local block-specific variables
including the formal parameters for the block. This has the following effects:

• During declaration, sufficient memory space is reserved for temporary variables
in the local data stack, and in the case of function blocks, for static variables in
the instance DB to be associated later.

• When setting input, output, and in/out parameters you also specify the
"interface" for the call of a block in the program.

• When you declare the variables in a function block, these variables (with the
exception of the temporary variables) also determine the data structure for
every instance DB that is associated with the function block.

• By setting system attributes you assign special properties for message and
connection configuration, operator interface functions, and process control
configuration to parameters.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-36 A5E00293884-01

6.3.2.2 Relationship between the Variable Declaration Table and the
Statement Section

The variable declaration table and statement section of logic blocks are closely
linked because the names in the variable declaration table are used in the
statement section. Any changes in the variable declaration therefore have an effect
on the whole statement section.

Action in the Variable Declaration Reaction in the Statement Section

Correct new entry If invalid code present, previously undeclared
variable now becomes valid

Correct name change without type change Symbol is immediately shown everywhere with its
new name

Correct name is changed to an invalid name Code remains unchanged

Invalid name is changed to a correct name If invalid code is present, it becomes valid

Type change If invalid code is present, it becomes valid and if
valid code is present, this may become invalid

Deleting a variable (symbolic name) used in the
code

Valid code becomes invalid

Changes to comments, the incorrect entry of a new variable, a change to an initial
value, or deleting an unused variable has no effect on the statement section.

6.3.2.3 Structure of the Variable Declaration Table

The variable declaration table contains entries for the address, declaration type,
symbolic name, data type, initial value, and comment for the variables. Each table
row stands for one variable declaration. Variables of the data type ARRAY or
STRUCT require a number of rows.

You will find the valid data types for the local data of the various block types in
Appendix Assigning Data Types to Local Data of Logic Blocks.

Column Meaning Remarks Editing

Address Address in the
format BYTE.BIT

With data types for which more than one byte is
required, the address shows the assignment by a
jump to the next byte address. Key:
* : size of an array element in bytes,
+ : initial address related to the start of the
STRUCT,
= : complete memory requirement of a STRUCT.

System entry:
the address is
assigned by the
system and
displayed when
you stop
entering a
declaration.

Name Symbolic name of
the variable

The variable symbol must start with a letter.
Reserved keywords are not permitted.

Necessary

Declaration Declaration type,
"purpose" of the
variable

Depending on the block type, the following are
possible:
Input parameters "in"
Output parameters "out"
In/out parameters "in_out"
Static variables "stat"
Temporary variables "temp"

Assigned by
system
depending on
block type

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-37

Column Meaning Remarks Editing

Type Data type of the
variable
(BOOL, INT,
WORD, ARRAY
etc.)

You can select the data types using the pop-up
right mouse button menu.

Necessary

Initial value Initial value if the
software should not
use the default
value.

Must be compatible with the data type.
When you save a data block for the first time, the
initial value is used as the actual value if you have
not explicitly defined actual values for the
variables.

Optional

Comment Comment for
documentation
purposes

 Optional

Default

When you open a newly created logic block, a default variable declaration table is
displayed. This lists only the valid declaration types for the selected block type (in,
out, in_out, stat, temp) in the set order.

When a new organization block is created, the variable declaration table is
assigned the local data that are intended for the particular organization block.
These 20 bytes contain start information that is provided by the operating system
and that is uniform for the entire system. This information contains settings for the
behavior of the organization blocks as well as information such as priority class,
number of the OB, and IDs for causal events. This information is entered during the
run time of the OB and can be read out for diagnostic purposes, for example.

Columns That Cannot be Edited in the Variable Declaration Table

Column Entry

Address The address is assigned by the system and displayed when you stop entering a
declaration.

Declaration Type The declaration type is determined by the position of the declaration within the
table. This ensures that variables can only be entered in the correct order for
declaration types. If you want to change the declaration type of a declaration, cut
the declaration out and paste it in again below the new declaration type.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-38 A5E00293884-01

6.3.2.4 General Notes on Variable Declaration Tables

You can use the usual functions in the Edit menu to edit the table. To make editing
easier, use the context-sensitive menu under the right mouse button. When you
enter the data type you can also make use of the support of the right mouse
button.

Selecting in Variable Declaration Tables

You select individual rows by clicking the corresponding, write-protected address
cell. You can select more rows of the same declaration type by holding the SHIFT
key pressed. The selected rows are highlighted in black.

You select ARRAYs by clicking the address cell of the respective row.

If you want to select a structure, click with the mouse on the address cell of the
first or last row (in which the keyword STRUCT or END_STRUCT is located). You
select individual declarations within a structure by clicking the mouse on the
relevant address cell for the row.

When you enter structures within another structure, the hierarchy is displayed by
the variable names being indented accordingly.

Undoing Actions

In the variable declaration table you can use the menu command Edit > Undo to
undo the most recent cut or delete operation.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-39

6.3.2.5 How to Work with the Variable Declaration Table

Inserting Blank Rows in Variable Declaration Tables

To insert a blank row before the current row:

1. Position the cursor in the row of the table before which you want to insert a
blank row.

2. Select the menu command Insert > Row Before Selection.

To insert a blank row after the current row:

• Position the cursor in the "Comment" cell of this row and press RETURN or

• Select the menu command Insert > Row After Selection.

Entering Elementary Data Types in the Variable Declaration Table

To enter a new declaration, proceed as follows:

1. Enter the variable name after the required declaration type.

2. Then move the cursor to the neighboring cell using the TAB key.

3. Then enter:

- Data type,

- Initial value (optional),

- Comment (optional).

When the row is completed an address is assigned to the variable.

Every time you edit a table cell, a syntax check is run and any errors are displayed
in red. You do not have to remedy these errors immediately; you can continue
editing and correct the errors at a later stage.

Entering Data Elements of the Data Type STRUCT

1. Declare the data type by:

- Positioning the mouse pointer in the cell in the "Data Type" column and
selecting the menu command Insert > Data Type > Complex Type >
STRUCT.

- Select the cell in the "Data Type" column and press the right mouse button.
Select the respective data type in the context-sensitive menu.

- Enter the keyword STRUCT in the cell in the "Data Type" column.

2. Enter a symbolic name in the "Name" column and exit the row in the table using
the TAB key or RETURN. One blank row and the last line of the declaration
(END_STRUCT) are inserted initially.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-40 A5E00293884-01

3. Enter the elements in the structure in the blank row by defining their symbolic
name, data type, initial value (optional), and any comment. You can add more
rows using the functions in the "Insert" menu or by pressing RETURN or you
can duplicate variables or delete them again using the "Edit" menu.

Entering Data Elements of the Data Type ARRAY in the Variable Declaration
Table

1. Position the cursor in the cell in the "Data Type" column in the variable
declaration table.

2. Select the menu command Insert > Data Type > Complex Type > ARRAY.
ARRAY is then entered in the selected cell. You can also type the word ARRAY
using the keyboard.

3. Immediately after ARRAY enter an open square bracket, the lower index limit,
two periods, the upper index limit, and a close square bracket, for example,
ARRAY[1.. 14] for a one-dimensional array or ARRAY[1..20, 1.24] for a two-
dimensional array.

4. In the field in the "Initial Value" column you can enter the initial values for the
individual elements of the ARRAY (see examples below).

5. In the field in the "Comment" column you can enter comments on the ARRAY.

6. Complete the entry in the row in the table using the TAB key or RETURN.

7. In the second row that is created automatically, enter the data type of the
ARRAY elements.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-41

Examples for Entering Initial Values in ARRAYs

• Individual:
You assign each individual element with its own initial value. The values are
listed separated by commas.

• Repetition factor:
You assign the same initial value to a number of elements. The value is
specified in brackets, preceded by the repetition factor for the number of
elements.

Type Initial Value Explanation

ARRAY[1..14] 1234 The initial value 1234 is assigned to the first ARRAY element only.

ARRAY[1..14] 1234, 56, 78, 90 The initial values 1234, 56, 78, 90 are assigned to the first four
ARRAY elements in this order.

ARRAY[1..14] 14 (9876) The initial value 9876 is assigned to all 14 ARRAY elements.

Copying Variables in Variable Declaration Tables

1. Select the variables you want to copy by:

- Clicking the "Address" cell (to select a variable).

- Holding the SHIFT key pressed and clicking with the left mouse button on
the "Address" cell in another row. All rows between the first selection and the
second selected variable are then selected (to select a number of variables).

2. Select the menu command Edit > Copy or the corresponding button in the
toolbar.

3. Position the cursor at the position after which you want to paste the copied
variable and select the menu command Edit > Paste or the corresponding
button in the toolbar.

The copied variables are pasted. So the symbolic names of the variables remain
unique, the names of the copied variables are automatically given an additional
serial number.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-42 A5E00293884-01

Deleting Variables in Variable Declaration Tables

1. Select the variables you want to delete by:

- Clicking the "Address" cell (to select a variable).

- Holding the SHIFT key pressed and clicking with the left mouse button on
the "Address" cell in another row. All rows between the first selection and the
second selected variable are then selected (to select a number of variables).

2. Select the menu command Edit > Cut or the menu command Edit > Delete or
the corresponding button in the toolbar.

 Note

When deleting ARRAYs and STRUCTs:

• If you select the first row of an ARRAY to delete it, the second row which
belongs with it is also selected.

• If you select the first row of a STRUCT to delete it, all rows up to and including
END STRUCT are also selected.

Changing the Column Width

You can change the width of the table columns. Proceed as follows:

1. Position the mouse pointer between two columns on a vertical border in the
column title so that it appears as a vertical double-headed arrow.

2. Move the mouse pointer in a horizontal direction while holding the left mouse
button pressed.

If you do not require the optional entries of a comment or initial value, you can
change the size of these columns in this manner in order to concentrate fully on the
other columns.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-43

6.3.3 Multiple Instances in the Variable Declaration Table

6.3.3.1 Using Multiple Instances

Perhaps, because of the performance data (such as memory space) of the S7
CPUs you are using, you want to devote or you can devote only a limited number
of data blocks for instance data . If, in your user program, additional, already
existing function blocks are called within an FB (FB call hierarchy), you can call
these additional function blocks without their own (that is, additional) instance DBs.

You can take the following steps in this situation:

• Incorporate the FBs to be called into the variable table of the calling FB.

• In this function block, call additional function blocks without their own (that is,
additional) instance DBs.

• This allows you to concentrat the instance data in one instance block, which
means you can make better use of the available number of DBs.

The following example illustrates the steps described above: FB 2 and FB 3 are
using the instance DB of the function block FB1, from which they were called.

FB 1 Declaration
Section:

Static Variable of the
Type "FB to Be Called"
(FB 2, FB 3) FB 2 (using

Instance DB from
FB 1)

FB 3 (using
Instance DB from
FB 1)

Instance_1: FB 2
Instance_2: FB 3

FB Call:
CALL#instance_1
CALL#instance_2

Instance DB from FB 1

The only requirement: You must "tell" the calling function block which instances
you are calling, and from what (FB) type the instances are from. These indications
should be made in the declaration section of the calling FB. The FB to be used
must have at least one variable or one parameter from the data area (not
VAR_TEMP).

Do not use multiple instance data blocks as long as you can expect online changes
while the CPU is running. You can be sure of smooth reloading only if you use
instance data blocks.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-44 A5E00293884-01

6.3.3.2 Rules for Declaring Multiple Instances

The following rules apply to the declaration of multiple instances:

• In order to declare multiple instances, the function block must be created as a
function block with multiple instance capability.

• An instance data block must be assigned to the function block in which a
multiple instance is declared.

• A multiple instance can only be declared as a static variable (declaration type
"stat").

 Note

You can also create multiple instances for system function blocks.

6.3.3.3 Entering a Multiple Instance in the Variable Declaration Table

1. Open the function block from which the subordinate function blocks are to be
called.

2. Define a static variable in the variable declaration table of the calling function
block for each call of a function block for whose instance you do not want to use
an instance data block.

- Position the cursor in a blank row with the declaration "stat" in the second
column.

- Enter a name for the FB call in the "Name" column after the declaration type
"stat."

- Enter the function block you want to call in the "Type" column as an absolute
address or with its symbolic name.

- You can enter any explanations required in the comment column.

 Calls in the Statement section

When you have declared multiple instances, you can use FB calls without
specifying an instance DB.

Example: If the static variable "Name: Motor_1, Data type: FB20" is defined, the
instance can be called as follows:

Call Motor_1 // Call of FB20 without instance DB

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-45

6.3.4 General Notes on Entering Statements and Comments

6.3.4.1 Structure of the Statement Section

In the statement section you program the sequence for your logic block by entering
the appropriate statements in networks, depending on the programming language
chosen. After a statement is entered, the block editor runs an immediate syntax
check and displays any errors in red and italics.

The statement section for a logic block generally comprises a number of networks
that are made up of a list of statements.

In a statement section you can edit the block title, block comments, network title,
network comments, and statement lines within the networks.

Structure of the Statement Section Using the STL Programming Language as an
Example

Block title

Block
comment

Network title

Network
comment

Statements

FB70 - <Offline>

FB70 : Engine Control Program

Statement List Engine Control Program (Generator1)
PID Controller

Network 1 : Anlaufphase
Network Startup Control Program

 A I 1.1 //Comment
 A Q 4.1
 AN I 2.6
 = Q 0.4

Network 2 : ???

???

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-46 A5E00293884-01

6.3.4.2 Procedure for Entering Statements

You can edit the parts of the statement section in any order. We recommend you
proceed as follows when you program a block for the first time:

Edit networks

Enter statements

Enter network comment (optional)

Enter network title (optional)

Enter statement comments (optional)

Enter block comment (optional)

Enter block title (optional)

You can make changes in either overwrite mode or insert mode. You switch
between modes using the INSERT key.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-47

6.3.4.3 Entering Shared Symbols in a Program

Using the menu command Insert > Symbol you can insert symbols in the
statement section of your program. If the cursor is positioned at the beginning, the
end, or within a string, the symbol is already selected that starts with this string - if
such a symbol exists. If you change the string, the selection is updated in the list.

Separators for the beginning and end of a string are, for example, blank, period,
colon. No separators are interpreted within shared symbols.

To enter symbols, proceed as follows:

1. Enter the first letter of the required symbol in the program.

2. Press CTRL and J simultaneously to display a list of symbols. The first symbol
starting with the letter you entered is already selected.

3. Enter the symbol by pressing RETURN or select another symbol.

The symbol enclosed in quotation marks is then entered instead of the first letter.

In general the following applies: if the cursor is located at the beginning, the end, or
within a string, this string is replaced by the symbol enclosed in quotation marks
when inserting a symbol.

6.3.4.4 Title and Comments for Blocks and Networks

Comments make your user program easier to read and therefore make
commissioning and troubleshooting easier and more effective. They are an
important part of the program documentation and should certainly be made use of.

Comments in Ladder Logic, Function Block Diagram, and Statement List
Programs

The following comments are available:

• Block title: title for a block (max. 64 characters)

• Block comment: documents the whole logic block, for example, the purpose of
the block

• Network title: title for a network (max. 64 characters)

• Network comment: documents the functions of a single network

• Comment column in the variable declaration table: comments the declared local
data

• Symbol comment: comments that were entered for an address when its
symbolic name was defined in the symbol table.
You can display these comments using the menu command View > Display
with > Symbol Information.

In the statement section of a logic block you can enter the block title and network
title, and block comments or network comments.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-48 A5E00293884-01

Block Title or Network Title

To enter a block or network title, position the cursor on the three question marks to
the right of the block name or network name (for example, Network 1 : ???). A text
box is opened in which you can enter the title. This can be up to 64 characters
long.

Block comments pertain to the whole logic block. There they can comment the
function of the block. Network comments pertain to the individual networks and
document details about the network.

Network 2: ???

Network 2:

Mouse click

The network title is displayed here

1.

2.

Block Comments and Network Comments

You can toggle the view of the gray comment fields on and off using the menu
command View > Display with > Comments. A double-click on the comment field
opens the text box in which you can now enter your remarks. You are allowed 64
Kbytes per block for block comments and network comments.

???

Comment for network or block

1.

2.
Mouse click

6.3.4.5 Entering Block Comments and Network Comments

1. Activate the comments with the menu command View > Display with >
Comments (a check mark is visible in front of the menu command).

2. Position the cursor in the gray field below the block name or below the network
name by clicking with the mouse. The gray comment field appears white and
has a border.

3. Enter your comment in the open text box. You are allowed 64 Kbytes per block
for block comments and network comments.

4. Exit the text box by clicking with the mouse outside the text box, by pressing the
TAB key, or using the key combination SHIFT+TAB.

5. If you select the menu command View > Display with > Comments again, you
can switch off the comments again (the check mark disappears).

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-49

6.3.4.6 Search Function for Errors in the Statement Section

Errors in the statement section are easy to recognize by their red color. To make it
easier to navigate to errors that lie outside the visible area on the screen, the block
editor offers two search functions Edit > Go To > Previous Error/Next Error.

The search for errors goes beyond one network. This means that the whole
statement section is searched and not just one network or the area currently visible
on the screen.

You will see information on the errors in the output list.

You can also correct errors and make changes in overwrite mode. You toggle
between insert mode and overwrite mode using the INSERT key.

6.3.4.7 Rewiring

Similar to the manner in which conductors in a terminal strip can be rewired, you
can also rewire addresses and blocks in STEP 7 Lite.

In blocks you can rewire the following absolute addresses:

• Inputs, outputs (such as from E 1.3 to E 10.4)

• Bit memories, timers, counters (such as from M 50.2 to M 60.1)

• I/O device inputs/outputs (such as from PAB 0 to PAB 10)

The exact location in which the rewiring is carried out is determined by the range of
logic blocks in the project window. During a rewiring procedure, all applications for
the addressees in the logic blocks selected will be rewired.

The following block names and block calls can be rewired:

• FCs, FBs

During rewiring, these blocks will be renamed and their calls or application in logic
blocks will be rewired.

To rewire, proceed as follows:

1. Select the "Program" icon, or select one or more blocks in the project window.

2. Select the menu command Extras > Rewire. This function can only be
executed in offline mode and with "Absolute" address priority set (menu
command Options > Settings, “General“ section of the dialog). In addition, all
logic block windows must be closed.

3. In the "Rewire" dialog box now displayed, enter the required exchanges (old
address / new address) in the table.

4. Do not select the "Address area“ check box if you only want to rewire the
specified address.

Select the "Address area“ check box if you want to rewire all existing addresses
in this operand area. For example, when you rewire a DWORD address while
the "Address area" check box is selected, access to this specific address itself
and all word, byte and bit accesses to this address area are rewired.

5. Confirm with "OK".

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-50 A5E00293884-01

To start rewiring, click "OK." After rewiring is complete, a log file containing
information about the changes made is displayed. This file contains the address
lists "Previous address" and "New address". In addition, it lists the blocks and the
amount of rewiring carried out for each logic block.

You can print the log file (menu command File > Print) or save it (menu command
File > Save As). Be sure to save the new protocol file under a new name to
prevent it from being overwritten when rewiring the next time.

When rewiring, pay attention to the following notes:

• If you rewire a block, the new block must not already exist. If the block does
already exist, the corresponding entry will be highlighted with a pastel red
background, and the rewiring process will not start.

• When you rewire a function block (FB), its instance DB is automatically
assigned to the rewired FB. The instance DB does not change (that is, the DB
ID is maintained).

6.3.5 Editing LAD Elements in the Code Section

6.3.5.1 Settings for Ladder Logic Programming

Setting the Ladder Logic Layout

You can set the layout for creating programs in the Ladder Logic representation
type. The format you select (A4 portrait/landscape/maximum size) affects the
number of Ladder elements that can be displayed in one rung.

1. Select the menu command Options > Settings.

2. Select the required format from the "Layout" list box ("LAD/FBD" section) in the
following dialog box. Enter the required format size.

Settings for Printing

If you want to print out the Ladder statement section, you should set the
appropriate page format before you start to program the statement section.

Basic Settings under Options > Settings

 Using the menu command Options > Settings, you can make basic settings, e.g.
concerning layout and address field width.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-51

6.3.5.2 Rules for Entering Ladder Logic Elements

You will find a description of the Ladder Logic programming language
representation in the "Ladder Logic for S7-300/400 – Programming Blocks" manual
or in the Ladder Logic online help.

A Ladder network can consist of a number of elements in several branches. All
elements and branches must be connected; the left power rail does not count as a
connection (IEC 1131–3).

When programming in Ladder you must observe a number of guidelines. Error
messages will inform you of any errors you make.

Closing a Ladder Network

Every Ladder network must be closed using a coil or a box. The following Ladder
elements must not be used to close a network:

• Comparison boxes

• Coils for midline outputs _/(#)_/

• Coils for positive _/(P)_/ or negative _/(N)_/ edge evaluation

Positioning Boxes

The starting point of the branch for a box connection must always be the left power
rail. Logic operations or other boxes can be present in the branch before the box.

Positioning Coils

Coils are positioned automatically at the right edge of the network where they form
the end of a branch.

Exceptions: Coils for midline outputs _/(#)_/ and positive _/(P)_/ or negative _/(N)_/
edge evaluation cannot be placed either to the extreme left or the extreme right in
a branch. Neither are they permitted in parallel branches.

Some coils require a Boolean logic operation and some coils must not have a
Boolean logic operation.

• Coils which require Boolean logic:

- Output _/(), set output _/(S), reset output _/(R)

- Midline output _/(#)_/, positive edge _/(P)_/, negative edge _/(N)_/

- All counter and timer coils

- Jump if Not _/(JMPN)

- Master Control Relay On _/(MCR<)

- Save RLO into BR Memory _/(SAVE)

- Return _/(RET)

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-52 A5E00293884-01

• Coils which do not permit Boolean logic:

- Master Control Relay Activate _/(MCRA)

- Master Control Relay Deactivate _/(MCRD)

- Open Data Block _/(OPN)

- Master Control Relay Off _/(MCR>)

All other coils can either have Boolean logic operations or not.

The following coils must not be used as parallel outputs:

• Jump if Not _/(JMPN)

• Jump _/(JMP)

• Call from Coil _/(CALL)

• Return _/(RET)

Enable Input/Enable Output

The enable input "EN" and enable output "ENO" of boxes can be connected but
this is not obligatory.

Removing and Overwriting

If a branch consists of only one element, the whole branch is removed when the
element is deleted.

When a box is deleted, all branches which are connected to the Boolean inputs of
the box are also removed with the exception of the main branch.

The overwrite mode can be used to simply overwrite elements of the same type.

Parallel Branches

• Draw OR branches from left to right.

• Parallel branches are opened downwards and closed upwards.

• A parallel branch is always opened after the selected Ladder element.

• A parallel branch is always closed after the selected Ladder element.

• To delete a parallel branch, delete all the elements in the branch. When the last
element in the branch is deleted, the branch is removed automatically.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-53

6.3.5.3 Illegal Logic Operations in Ladder

Power Flow from Right to Left

No branches may be created which may cause power to flow in the reverse
direction. The following figure shows an example: With signal state "0" at I 1.4 a
power flow from right to left would result at I 6.7. This is not permitted.

I 1.0 I 1.2 I 1.4 Q 6.0I 4.2

I 2.6 I 6.7

I 4.4 I 2.7

Illegal power flow!

Short Circuit

No branches may be created which cause a short circuit. The following figure
shows an example:

I 1.0 I 1.2 I 1.4 Q 6.0

Illegal short cicuit!

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-54 A5E00293884-01

6.3.5.4 How to Enter Ladder Elements

Entering Ladder Elements

1. Select the point in the network after which you want a Ladder element to be
inserted.

2. Insert the required element in the network using one of the following techniques:

- Click the button on the toolbar for a normally open contact, anormally closed
contact, or an output coil.

- Enter a normally open contact, anormally closed contact, or an output coil by
using the function keys F2, F3, or F7.

- Double-click the selected component in the Command Library or insert it into
the block editor with a drag and drop operation.

The selected Ladder element is inserted and question mark characters (???) are
used to represent addresses and parameters.

 Note

You can also edit the statement section by selecting existing Ladder elements and
then selecting one of the menu commands Edit > Cut, Edit > Copy, or Edit >
Paste.

Entering and Editing Addresses or Parameters in Ladder Elements

When a Ladder element is inserted, the characters ??? and ... are used as token
characters for addresses and parameters.

The red characters ??? stand for addresses and parameters which must be
connected.

The black characters ... stand for addresses and parameters which can be
connected.

1. Position the cursor on the token characters by clicking them with the mouse or
using the TAB key.

2. Type in the address or the parameter in place of the token characters (direct or
indirect addressing). If the symbol selection display is activated (menu
command View > Display > Symbol Selection), a list of the existing symbols
is displayed. The symbol starting with the characters entered is selected and
can be entered by pressing RETURN.

3. Press RETURN. The software runs a syntax check.

- If the syntax is correct without errors, the address is formatted and displayed
in black and the block editor automatically opens the next text box which
requires an address or parameter.

- If there is a syntax error, the input field is not exited and an error message is
displayed in the status bar. Press RETURN again, and the input field is
exited but the incorrect entry is displayed in red and italic text.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-55

Overwriting Addresses or Parameters in Ladder Elements

1. Switch to the overwrite mode with the INSERT key. The current mode is
displayed in the status bar in the bottom right corner of the screen.

2. Position the cursor on the text box for the address or parameter by clicking on it
with the mouse or using the TAB key.

3. Overwrite the address or the parameter.

4. Press RETURN. The software runs a syntax check.

- If the syntax is correct without errors, the address is formatted and displayed
in black and the block editor automatically opens the next text box which
requires an address or parameter.

- If there is a syntax error, the input field is not exited and an error message is
displayed in the status bar. Press RETURN again, and the input field is
exited but the incorrect entry is displayed in red and italic text.

Overwriting Ladder Elements

The overwrite mode allows you to overwrite Ladder elements of the same type.
This has the advantage that you do not have to enter the addresses and
parameters again. The Ladder element you want to overwrite can only be replaced
by a Ladder element of the same type. For example, you can exchange a normally
open contact for a normally closed contact, an R/S flipflop for an S/R flipflop, or a
timer for a counter.

1. Switch to the overwrite mode with the INSERT key. The current mode is
displayed in the status bar in the bottom right corner of the screen.

2. Select the Ladder element you want to overwrite.

3. Insert the required element in the network using one of the following techniques:

- Click the button for a normally open contact, normally closed contact, or
output coil from the toolbar.

- Enter a normally open contact, a normally closed contact, or an output coil
by using the function keys F2, F3, or F4.

- Double-click the selected element in the command library or insert it in the
block editor using a drag-and-drop operation.

The existing Ladder element is overwritten by the new one you selected.

• If you press the INSERT key again, you switch back to insert mode. The current
mode is displayed in the status bar in the bottom right corner of the screen.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-56 A5E00293884-01

Selecting in Ladder Networks

You access a network by clicking the mouse on a Ladder element in the network.
Within a network you can select three main areas by clicking them once with the
mouse:

• Ladder elements, such as a contact or a box

• Junction points

• Empty elements (lines or open branches)

You can only select one area at a time. The following figure shows examples of a
number of selections made simultaneously.

#t_dur_y_car

#condition

#condition #r_ped

#t_dur_g_ped

You can choose the color of the selection yourself in the "Settings" dialog box. You
open this dialog box by using the menu command Options > Settings....

Inserting Additional Ladder Networks

To insert a new network:

• Select the menu command Insert > Network.

• Click the corresponding button in the toolbar.

• Double-click "New Network" in the command library or insert it in the block
editor using a drag-and-drop operation.

• Select the Network menu command using the pop-up menu.
Position the mouse pointer and right-click to call the pop-up menu.

The new network is inserted below the selected network. It contains only one
branch.

If you enter more elements than can be displayed on your screen, the network on
the screen is moved to the left. Using the menu commands View > Zoom
Out/Zoom In/Zoom Factor you can adjust the size of the display to get a better
overview.

You access a network by clicking the mouse on a Ladder element in the network.
Within a network you can select three main areas by clicking them once with the
mouse.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-57

Creating Parallel Branches in Ladder Networks

To create OR instructions in Ladder networks, you need to create parallel
branches.

To create a parallel branch, proceed as follows:

1. Select the element in front of which you want to open a parallel branch.

2. Use one of the following methods to open a parallel branch:

- Select the pop-up menu command Open Branch. Position the mouse
pointer and right-click to call the pop-up menu.

- Press the function key F8.

- Click the corresponding button in the toolbar.

3. Insert the required Ladder elements in the open parallel branch.

4. In the "main branch," select the element after which you want to close the
parallel branch.

5. Use one of the following methods to close a parallel branch:

- Select the pop-up menu command Close Branch. Position the mouse
pointer and right-click to call the pop-up menu.

- Press the function key F9.

- Click the corresponding button in the toolbar.

Creating New Branches in Ladder Networks

You can insert several parallel branches in one Ladder network.

1. With the mouse pointer, select the starting point of the branch below which you
want to insert a new branch.

2. Use one of the following methods to open a new branch:

- Select the pop-up menu command Open Branch. Position the mouse
pointer and right-click to call the pop-up menu.

- Press the function key F8.

- Click the corresponding button in the toolbar.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-58 A5E00293884-01

Creating a Closed Branch in Ladder Networks

To create a closed branch, proceed as follows:

1. Select the element in front of which you want to open a parallel branch.

2. Open the parallel branch with F8.

3. Insert the Ladder element.

4. Close the branch with F9.

The following example shows how you create a branch using only function keys or
toolbar buttons.

M2.0 I1.0

??.?

I1.0

??.?

M2.0

1.

2.

3.

4.

or <F8>

or <F9>

or <F2>

M2.0 I1.0

M2.0 I1.0

When you close parallel branches, any necessary empty elements are added. If
necessary, the branches are arranged so that they do not cross over. If you close
the branch directly from the parallel branch, the branch is closed following the next
possible Ladder element.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-59

Opening Closed Parallel Branches in Ladder

You can open a closed parallel branch as follows:

1. Mark the parallel branch at the specified point in front of the junction at which
the parallel branch meets the main branch again.

2. Press the DEL key. You can now insert new LAD elements at the opened
position.

Splitting a Junction in Ladder Networks

If at one point in a Ladder network one parallel branch closes and another one
opens, this point is known as a junction. You can split a junction as follows:

1. Mark the junction at the specified network position.

2. Press the DEL key. You can now insert new LAD elements at the split position..

3. Use one of the following methods to insert a Ladder element:

- Click the button for a normally open contact, normally closed contact, or
output coil from the toolbar.

- Enter a normally open contact or normally closed contact by using the
function key F2, F3.

- Double-click the selected element in the command library or insert it in the
block editor using a drag&drop operation.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-60 A5E00293884-01

Creating Branches in Ladder Networks

The pop-up menu command Open Branch opens a parallel branch without a coil
starting from before the selected program element. You can insert further Ladder
elements in the new branch.

1. Select the program element in front of which you want to open a new branch.

2. Use one of the following methods to open the new branch:

- Select the menu command Open Branch using the pop-up menu. Position
the mouse pointer and right-click to call the pop-up menu.

- Click the corresponding button in the toolbar.

- Pressing the function key F8.

3. Now select the Ladder element that you want to insert in the branch.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-61

6.3.6 Editing FBD Elements in the Code Section

6.3.6.1 Settings for Function Block Diagram Programming

Setting the Function Block Diagram Layout

You can set the layout for creating programs in the Function Block Diagram
representation type. The format you select (A4 portrait/landscape/maximum size)
affects the number of FBD elements that can be displayed in one rung.

1. Select the menu command Options > Settings.

2. Select the required format from the Layout list box in the following dialog box.
Enter the required format size.

Settings for Printing

If you want to print out the FBD statement section, you should set the appropriate
page format before you start to program the statement section.

Basic Settings under Options > Settings

Using the menu command Options > Settings you can make basic settings, e.g.
concerning layout and address field width.

6.3.6.2 Rules for Entering FBD Elements

You will find a description of the FBD programming language representation in the
"Function Block Diagram for S7-300/400 – Programming Blocks" manual or in the
FBD online help.

An FBD network can consist of a number of elements. All elements must be
connected (IEC 1131–3).

When programming in FBD you must observe a number of guidelines. An error
message will inform you of any errors you make.

Entering and Editing Addresses and Parameters

When an FBD element is inserted, the characters ??? and ... are used as token
characters for addresses and parameters.

• The red characters ??? stand for addresses and parameters which must be
connected.

• The black characters ... stand for addresses and parameters which can be
connected.

If you position the mouse pointer on the token characters, the expected data type
is displayed.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-62 A5E00293884-01

Positioning Boxes

Standard boxes (flip flops, counters, timers, math operations, etc.) can be added to
boxes with binary logic operations (&, >=1, XOR). The exceptions to this rule are
comparison boxes.

No separate logic operations with separate outputs can be programmed in a
network. You can, however, assign a number of assignments to a string of logic
operations with the help of a branch. The following figure shows a network with two
assignments.

#starter

#condition

#condition#t_next_red_car

#t_dur_r_car

&

>=1

=

#cond_02

#car

>=1

=

branch

The following boxes can only be placed at the right edge of the logic string where
they close the string:

• Set counter value

• Assign parameters and count up, assign parameters and count down

• Assign pulse timer parameters and start, assign extended pulse timer
parameters and start

• Assign on-delay/off-delay timer parameters and start

Some boxes require a Boolean logic operation and some boxes must not have a
Boolean logic operation.

Boxes which require Boolean logic:

• Output, set output, reset output _/[R]

• Midline output _/[#]_/, positive edge _/[P]_/, negative edge _/[N]_/

• All counter and timer boxes

• Jump if Not _/[JMPN]

• Master Control Relay On _/[MCR<]

• Save RLO into BR Memory _/[SAVE]

• Return _/[RET]

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-63

Boxes which do not permit Boolean logic:

• Master Control Relay Activate [MCRA]

• Master Control Relay Deactivate [MCRD]

• Open Data Block [OPN]

• Master Control Relay Off [MCR>]

All other boxes can either have Boolean logic operations or not.

Enable Input/Enable Output

The enable input "EN" and enable output "ENO" of boxes can be connected but
this is not obligatory.

Removing and Overwriting

When a box is deleted, all branches which are connected to the Boolean inputs of
the box are also removed with the exception of the main branch.

The overwrite mode can be used to simply overwrite elements of the same type.

6.3.6.3 How to Enter FBD Elements

Entering FBD Elements

Proceed as follows:

1. Select the point in the network after which you want an FBD element to be
inserted.

2. Insert an FBD element in the network using one of the following techniques:

- Click the corresponding button in the toolbar (for OR box or AND box)..

- Enter an OR box or an AND box by using the function keys F2 or F3.

- Double-click on the selected element in the command library or insert it in
the block editor using a drag-and-drop operation.

The selected FBD element is inserted and question mark characters (???) are
used to represent addresses and parameters.

 Note

You can also edit the statement section by selecting existing FBD elements and
then selecting one of the menu commands Edit > Cut, Edit > Copy, or Edit >
Paste.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-64 A5E00293884-01

Entering Addresses or Parameters in FBD Elements

1. Position the cursor on the token characters by clicking them with the mouse or
using the TAB key.

2. Type in the address or the parameter in place of the token characters (direct or
indirect addressing). If the symbol selection display is activated (menu
command View > Display > Symbol Selection), a list of the existing symbols
is displayed. The symbol starting with the characters entered is selected and
can be entered by pressing RETURN.

3. Press RETURN. The software runs a syntax check.

- If the syntax is correct without errors, the address is formatted and displayed
in black and the Block Editor automatically opens the next text box which
requires an address or parameter.

- If there is a syntax error, the input field is not exited and an error message is
displayed in the status bar. Press RETURN again, and the input field is
exited but the incorrect entry is displayed in red and italic text.

 Note

The character combination ">>" at an output means that this output must be
connected before saving or downloading.

Overwriting FBD Elements

The overwrite mode allows you to overwrite FBD elements of the same type. This
has the advantage that you do not have to enter the addresses and parameters
again. The FBD element you want to overwrite can only be replaced by a FBD
element of the same type. For example, you can exchange an AND box for an OR
box, an R/S flipflop for an S/R flipflop, or a timer for a counter.

To overwrite an FBD element, proceed as follows:

1. Switch to the overwrite mode with the INSERT key. The current mode is
displayed in the status bar in the bottom right corner of the screen.

2. Select the FBD element you want to overwrite.

3. Insert the required element in the network using one of the following techniques:

- Click the corresponding button in the toolbar.

- Enter an OR box or an AND box by using the function keys F2 or F3.

- Double-click the selected element in the command library or insert it in the
block editor using a drag-and-drop operation.

If you press the INSERT key again, you switch back to insert mode. The current
mode is displayed in the status bar in the bottom right corner of the screen.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-65

Selecting in FBD Networks

Within a network you can select the following areas by clicking them once with the
mouse:

• FBD elements, for example, an AND box or a standard box such as a counter

• Connection lines

• Addresses

• Input/output contacts

You can choose the color of the selection yourself in the "Settings" dialog box. You
open this dialog box by using the menu command Options > Settings.

To select a network in which you can enter FBD elements, proceed as follows:

1. Click the network title (for example, "Network 1").

2. You can then cut, paste, or copy the network you have selected in this way.

Inserting Additional FBD Networks

To create a new network:

• Select the menu command Insert > Network.

• Click the corresponding button in the toolbar.

• Double-click on "New Network" in the Command Library or insert it in the block
editor using a drag-and-drop operation.

• Select the menu command Network using the pop-up menu.
Position the mouse pointer and right-click to call the pop-up menu.

The new network is inserted below the selected network.

If you enter more elements than can be displayed on your screen, the network on
the screen is moved to the left. Using the menu commands View > Zoom
Out/Zoom In/Zoom Factor you can adjust the size of the display to get a better
overview.

To select a network, click the network name (for example, Network 1). You can, for
example, cut, insert, or copy networks selected in this way.

Creating Branches in FBD Networks

You can program a number of branches within an FBD network. A branch opens a
parallel branch starting from before the selected binary input. You can insert further
FBD elements in the new branch.

1. Select the binary input in front of which you want to open a new branch.

2. Use one of the following methods to open the new branch:

- Select the menu command Branch using the pop-up menu.
Position the mouse pointer and right-click to call the pop-up menu.

- Press the function key F11.

- Click the corresponding button in the toolbar.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-66 A5E00293884-01

Creating Connections in FBD Networks

You can connect two logic paths within an FBD network, however, only one of the
logic paths may contain an assignment.

To create a connection, proceed as follows:

1. Select the binary input and binary output you want to connect.

2. Use one of the following methods to connect the binary objects:

- Select the menu command Connection using the pop-up menu. Position the
mouse pointer and right-click to call the pop-up menu..

- Press the function key F12.

- Click the corresponding button in the toolbar.

Splitting and Joining Connections in FBD Networks

1. Select a binary input.

2. Split the connection by pressing the DEL key.

3. If required, insert new FBD elements at the splitting point.

4. Select the binary output.

5. Hold the left mouse button pressed and drag a connection to the required binary
input.

If necessary the elements will be rearranged graphically.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-67

6.3.7 Editing STL Statements in the Code Section

6.3.7.1 Settings for Statement List Programming

Setting the Mnemonics

You can choose between two sets of mnemonics:

• German

• English

You set the mnemonics in the Options > Settings dialog box before opening a
block. While editing a block you cannot change the mnemonics.

You can edit the block properties in the "Properties" tab.

In the block editor you can have a number of blocks open and edit them alternately
as required.

6.3.7.2 Rules for Entering STL Statements

You will find a description of the Statement List programming language
representation in the Statement List for S7-300/400 – Programming Blocks manual
or in the STL online help (Language Descriptions).

When you enter statements in STL in incremental input mode, you must observe
the following basic guidelines:

• The order in which you program your blocks is important. Called blocks must be
programmed before calling blocks.

• A statement is made up of a label (optional), instruction, address, and comment
(optional).
Example: M001: A I 1.0 //Comment

• Every statement has its own line.

• You can enter up to 999 networks in a block.

• Each network can have up to approximately 2000 lines. If you zoom in or out,
you can enter more or fewer lines accordingly.

• When entering instructions or absolute addresses, there is no distinction made
between lower and upper case.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-68 A5E00293884-01

6.3.7.3 How to Enter STL Statements

Entering STL Statements

When you create a new logic block, you can edit the first network immediately. You
access a network by clicking the mouse on a line of the network. You enter the
statements within the individual networks line by line using the keyboard. All the
usual editing functions are available for you to use.

1. Open the text box for the network by clicking on the free area below the green
comment box (or below the network title, if the comments are switched off).

2. Enter the instruction, press the spacebar, and enter the address (direct or
indirect address).

3. Press the spacebar and enter a comment (optional) starting with a double
slash //.

4. After completing the statement (line) with or without a //comment, press
RETURN.

When the line is completed, a syntax check is run and the statement is formatted
and displayed. Any lower case letters in the instruction or absolute address are
converted to upper case.

Any syntax errors found are shown in red. You must correct any errors before you
save the logic block.

Selecting Text Areas in STL Statements

You can select the text in an STL network character by character:

1. Position the cursor on the first character.

2. Select the text by dragging the cursor across the text you want to select while
holding the left mouse button pressed.

You can select a number of statement lines simultaneously by holding the left
mouse button pressed and dragging the mouse vertically. Alternatively you can
select text areas using the right, left, up, and down arrows keys while holding the
SHIFT key pressed.

 Note

You can choose the color of the selections yourself. To do this, open the dialog
box using the menu command Options > Settings and select the color for the
selected element.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-69

Inserting Additional STL Networks

To create a new network:

• Select the menu command Insert > Network.

• Click the corresponding button in the toolbar.

• Double-click "New Network" in the command library or insert it in the block
editor using a drag-and-drop operation.

• Select the menu command Network using the pop-up menu.
Position the mouse pointer and right-click to call the pop-up menu.

The new network is inserted below the selected network.

If you enter more elements than can be displayed on your screen, the network on
the screen is moved to the left. Using the menu commands View > Zoom
Out/Zoom In/Zoom Factor you can adjust the size of the display to get a better
overview.

To select a network, click the network title (for example, "Network 1"). You can then
cut, paste, or copy the network you have selected in this way.

Entering Comments in STL Statements

In the Statement List programming language representation, you can enter a
comment for each statement.

1. After each address or symbolic name, press the spacebar.

2. Start your statement comment with two slashes (//).

3. Complete your comment by pressing RETURN.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-70 A5E00293884-01

6.3.8 Updating Block Calls

You can use the menu command Edit > Block Call > Update in the block editor to
automatically update block calls or user-defined data types which have become
invalid after you have carried out the following interface changes:

• Inserted new formal parameters

• Deleted formal parameters

• Changed the name of formal parameters

• Changed the type of formal parameters

• Changed the order of formal parameters.

When assigning formal and actual parameters, you must follow the following rules
in the order specified:

1. Same parameter names:
The actual parameters are assigned automatically, if the name of the formal
parameter has remained the same.
Special case: In Ladder Logic and Function Block Diagram, the preceding link
for binary input parameters can only be assigned automatically if the data type
(BOOL) is the same. If the data type has been changed, the preceding link is
retained as an open branch.

2. Same parameter data types:
After the parameters with the same name have been assigned, as yet
unassigned actual parameters are assigned to formal parameters with the same
data type as the "old" formal parameter.

3. Same parameter position:
After you have carried out rules 1 and 2, any actual parameters which have still
not been assigned are now assigned to the formal parameters according to their
parameter position in the "old" interface.

4. If actual parameters cannot be assigned using the three rules described above,
they are deleted or, in the case of binary preceding links in Ladder Logic or
Function Block Diagram, they are retained as open branches.

After executing this function, check the changes you have made in the variable
declaration table and in the statement section of the program.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-71

6.4 Creating Data Blocks

6.4.1 Basic Information on Creating Data Blocks

The data block (DB) is a block in which you can, for example, store data for your
machine or plant to access. In contrast to a logic block that is programmed with
one of the programming languages Ladder Logic (LAD), Statement List (STL), or
Function Block Diagram (FBD), a data block contains only the variable declaration
table. This means the code section is irrelevant here and so is programming
networks.

Creating a Data Block

1. Select the menu command File > New > Block.

2. In the dialog box that appears, select "Data Block" as the block type, and enter
the number.

When you open a data block, you can either view the block in the declaration view
or in the data view. You can toggle between the two views with the menu
commands View > Declaration View and View > Data View.

Declaration View

You use the declaration view if you want to:

• View or determine the data structure of shared data blocks,

• View the data structure of data blocks with an associated user-defined data type
(UDT), or

• View the data structure of data blocks with an associated function block (FB).

The structure of data blocks that are associated with a function block or user-
defined data type cannot be modified. To modify them you must first modify the
associated FB or UDT and then create a new data block.

Data View

You use the data view if you want to modify data. You can only display, enter, or
change the actual value of each element in the data view. In the data view of data
blocks, the elements of variables with complex data types are listed individually
with their full names.

Differences between Instance Data Blocks and Shared Data Blocks

A shared data block is not assigned to a logic block. It serves as a data storage
point for the machine or plant controlled by the given CPU, and it can be called and
edited directly at any point in the program.

An instance data block is a block that is assigned directly to a logic block, such as
a function block. The instance data block contains the data that were stored in a
function block in the variable declaration table.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-72 A5E00293884-01

6.4.2 Declaration View of Data Blocks

For data blocks that are not shared, you cannot change the declaration view.

Column Explanation

Address Display of the address that STEP 7 Lite assigns for the variable automatically when you
finish the entry of a declaration.

Declaration This column is shown for instance data blocks only. This column tells you how the
variables have been declared in the variable declaration of the FB:

• Input parameter ("in")

• Output parameter ("out")

• In/out parameter ("in_out")

• Static data ("stat")

Name Enter the name here that you have to assign to each variable.

Type Enter the data type of the variable here (BOOL, INT, WORD, ARRAY, etc.). The
variables can have elementary data types, complex data types, or user-defined data
types.

Initial value Enter the initial value here if the software is not to assume the default value for the data
type that was entered. All entered values must be compatible with the data types.

The initial value is assumed for the variable as actual value the first time the data block
is saved if you do not specify a current value for the variable explicitly.

Comments In this field, you can enter comments on the documentation of the variables. The
comments can be 80 characters long.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-73

6.4.3 Data View of Data Blocks

The data view shows you the current values of all variables of the data block. You
can change these values in the data view only. The tabular representation of this
view is the same for all shared data blocks. For instance data blocks, the additional
Declaration column is displayed.

For variables with complex data types or user-defined data types, all elements are
displayed in the data view individually in a separate row with complete name. If the
elements are in the In_Out area of an instance data block, the pointer is set to the
complex or user-defined data type in the Current Value column.

The data view displays the following columns:

Column Explanation

Address Display of the address that STEP 7 Lite assigns for the variable automatically

Declaration This column is displayed for instance DBs only. This column tells you how the
variables have been declared in the variable declaration of the FB:

• Input parameter("in")

• Output parameter ("out")

• In/out parameter ("in_out")

• Static data ("stat")

Name This is the name that is defined for the variable. You cannot edit this field in the data
view.

Type This is the data type that is defined for the variable.

For a shared data block only the elementary data types are listed here because, in the
data view for variables with complex or user-defined data types, the elements are
listed individually.

For an instance data block, parameter data types are also displayed; for in/out
parameters ("in_out") with complex or user-defined data type, a pointer is set to the
data type in the Current Value column.

Initial value This is the initial value that you defined for the variable if the software is not to assume
the default value for the data type that was entered.

The initial value is assumed for the variable as actual value the first time the data block
is saved if you do not specify a current value for the variable explicitly.

Actual value Offline: This is the value that the variable had when the data block was opened or after
your last saved change. (Even if you opened the DB online, this display is not
updated.).

Online: The current value when the data block is opened is displayed; however, it is
not updated automatically. Press the F5 key to update the display.

You can edit this field if it does not belong to an in/out parameter ("in_out") with a
complex or user-defined data type. All entered value must be compatible with the data
types.

Comments These are the comments that were made on the documentation of the variables . You
cannot edit this field in the data view.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-74 A5E00293884-01

6.4.4 Editing and Saving Data Blocks

6.4.4.1 Entering the Data Structure of Shared Data Blocks

If you open a data block which is not assigned to a user-defined data type or
function block, you can define its structure in the declaration view of the data block.
With data blocks which are not shared, the declaration view cannot be changed.

1. Open a shared data block, meaning a block which is not associated with a UDT
or FB. You can tell a shared data block by the "DB" programming language
used to create it (see the "Properties" view).

2. Select the menu command View > Declaration View to switch to the
declaration view of the data block, if this view is not set already.

3. Define the structure by filling out the table displayed in accordance with the
information below.

With data blocks which are not shared, the declaration view cannot be modified.

Column Explanation

Address Displays the address which STEP 7 Lite automatically assigns for the variable when you
finish entering a declaration.

Name Enter the symbolic name of the variable here.

Type Enter the data type you want to assign to the variable (BOOL, INT, WORD, ARRAY, etc.),
or select the data type from the pop-up context menu (right-click). The variables can have
elementary data types, complex data types, or user-defined data types.

Initial Value Here you can enter the initial value if you do not want the software to use the default
value for the data type entered. All values must be compatible with the data type.

When you apply or save a block for the first time, the initial value is used as the actual
value if you have not explicitly defined actual values for the variables.

Comment Entering an optional comment in this field helps to document the variable. The comment
can have up to 80 characters.

6.4.4.2 Entering and Displaying the Data Structure of Data Blocks
Referencing an FB (Instance DBs)

Input

When you associate a data block with a function block (instance DB), the variable
declaration of the function block defines the structure of the data block. Any
changes can only be made in the associated function block.

1. Open the associated function block (FB).

2. Edit the variable declaration table of the function block.

3. Create the instance data block again.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-75

Display

In the declaration view of the instance data block you can display how the variables
in the function block were declared.

1. Open the data block.

2. Display the declaration view of the data block if this view is not set already.

3. See below for more information on the table displayed.

With data blocks which are not shared, the declaration view cannot be changed.

Column Explanation

Address Displays the address which STEP 7 Lite automatically assigns for the variable.

Declaration This column shows you how the variables in the variable declaration of the function
block are declared:

• Input parameter ("in")

• Output parameter ("out")

• In/out parameter ("in_out")

• Static data ("stat")

The declared temporary local data of the function block are not in the instance data
block.

Name The symbolic name assigned in the variable declaration of the function block.

Type Displays the data type assigned in the variable declaration of the function block. The
variables can have elementary data types, complex data types, or user-defined data
types.
If additional function blocks are called within the function block for whose call static
variables have been declared, a function block or a system function block (SFB) can
also be specified here as the data type.

Initial Value The initial value that you entered for the variable in the variable declaration of the
function block if you do not want the software to use the default value.

When you save a data block for the first time, the initial value is used as the actual value
if you have not explicitly defined actual values for the variables.

Comment The comment entered in the variable declaration for the function block to document the
data element. You cannot edit this field.

 Note

For data blocks that are assigned to a function block, you can only edit the actual
values for the variables. To enter actual values for the variables, you must be in
the data view of data blocks.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-76 A5E00293884-01

6.4.4.3 Entering the Data Structure of User-Defined Data Types (UDT)

1. Open the user-defined data type (UDT).

2. Display the declaration view if this view is not set already.

3. Define the structure of the UDT by determining the sequence of variables, their
data type, and an initial value if required using the information in the table
below.

4. You complete the entry of a variable by exiting the row with the TAB key or
RETURN.

Column Explanation

Address Displays the address which STEP 7 Lite automatically assigns for the variable when you
finish entering a declaration.

Name Enter the symbolic name you have to assign to each variable here.

Type Enter the data type you want to assign to the variable (BOOL, INT, WORD, ARRAY,
etc.). The variables can have elementary data types, complex data types, or their own
user-defined data types.

Initial Value Here you can enter the initial value if you do not want the software to use the default
value for the data type entered. All values must be compatible with the data type.

When you apply or save an instance of the user-defined data type (or a variable, or a
data block) for the first time, the initial value is used as the actual value if you have not
explicitly defined actual values for the variables.

Comment Entering a comment in this field helps to document the variables. The comment can
have up to 80 characters.

6.4.4.4 Entering and Displaying the Structure of Data Blocks
Referencing a UDT

Input

When you assign a data block to a user-defined data type, the data structure of the
user-defined data type defines the structure of the data block. Any changes can
only be made in the associated user-defined data type.

1. Open the user-defined data type (UDT).

2. Edit the structure of the user-defined data type.

3. Create the data block again.

Display

You can only display how the variables were declared in the user-defined data type
in the declaration view of the data block.

1. Open the data block.

2. Display the declaration view of the data block if this view is not set already.

3. See below for more information on the table displayed.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-77

The declaration view cannot be modified. Any changes can only be made in the
associated user-defined data type.

Column Explanation

Address Displays the address which STEP 7 Lite automatically assigns for the variable.

Name The symbolic name assigned in the variable declaration of the user data type.

Type Displays the data types assigned in the variable declaration of the user-defined data
type. The variables can have elementary data types, complex data types, or user-
defined data types.

Initial Value The initial value that you entered for the variable in the user-defined data type if you do
not want the software to use the default value.

When you save a data block for the first time, the initial value is used as the actual
value if you have not explicitly defined actual values for the variables.

Comment The comment entered in the variable declaration for the user-defined data type to
document the data element.

 Note

For data blocks that are assigned to a user-defined data type, you can only edit the
actual values for the variables. To enter actual values for the variables, you must
be in the data view of data blocks.

6.4.4.5 Editing Data Values in the Data View

Editing actual values is only possible in the data view of data blocks.

1. If necessary, toggle to the table display in the data view using the menu
command View > Data View.

2. Enter the required actual values for the data elements in the fields of the column
"Actual Value." The actual values must be compatible with the data type of the
data elements.

Any incorrect entries (for example, if an actual value entered is not compatible with
the data type) made during editing are recognized immediately and shown in red.
These errors must be corrected before saving.

 Notice

Any changes to the data values are only retained once the data block has been
saved.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-78 A5E00293884-01

6.4.4.6 Resetting Data Values to their Initial Values

Resetting data values is only possible in the data view of data blocks.

1. If necessary, toggle to the table display in the data view using the menu
command View > Data View.

2. Select the menu command Edit > Initialize Data Block to do this.

All variables are assigned their intended initial value again, meaning the actual
values of all variables are overwritten by their respective initial value.

 Notice

Any changes to the data values are only retained once the data block has been
saved.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-79

6.5 Displaying References

6.5.1 Overview of the Available References

You can use the cross references "Cross Reference List", "Addresses Used" and
"Program Structure" to obtain an overview of the use and application of addresses,
memory areas and blocks, etc. To access these cross references, go to the project
window and double-click the cross reference icon.

• When creating a program and making changes to it, you can use cross
references to obtain an overview of the addresses used and block calls.

• When testing or troubleshooting a program, you can use cross references to
determine which address in which block was edited using which command or
which block was called by another one.

• When creating project documentation, use cross references to provide end
users with a comprehensive view of all used address, memory areas and
blocks.

The following table shows which information you can obtain in the individual tabs:

View Purpose

Cross-reference list Overview of the addresses in the memory areas I, Q, M, P, T, C, and DB,
FB, FC, SFB, SFC calls used in the user program.

Use the filter function (a standard filter or your own custom filter) to narrow
down the selection of addresses and memory areas displayed.

Addresses Used Overview of which bits, bytes, words or double-words of the addresses in
the memory areas I, Q, and M are already occupied in the user program.
This forms an important basis for programming and expanding the user
program. The "Addresses Used" tab also provides additional information
about the timers and counters being used.

Program Structure Shows the call hierarchy for blocks within a user program and provides an
overview of the blocks used and their dependencies.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-80 A5E00293884-01

6.5.2 Address Overview

If you want to display the input and output addresses for all configured modules or
submodules, select the menu command View > Address Overview.

STEP 7 Lite then displays the address overview as a table. In addition to showing
the address and address type (I,O), the table rows also show the location (rack,
slot) and identify the module assigned to this address.

The address overview always stays the foreground, even if you switch to another
application in STEP 7 Lite.

Displaying and Hiding Columns in the Address Overview

To display or hide certain columns in the address overview, use the available
context menu.

Example: Right-click in the address overview and select the menu command Show
Column > Order Number.

Filtering the Address Overview

By selecting or clearing the "Inputs" and "Outputs" check boxes in the address
overview, you can filter the displayed information as appropriate. For example, if
you clear the "Outputs" check box, then only input addresses are displayed.

6.5.3 Cross-Reference List

The cross-reference list provides an overview of the use of addresses within the
user program.

When you display the cross-reference list you obtain a list of the addresses of
memory areas input (I), output (Q), bit memory (M), timer (T), counter (C), function
block (FB), function (FC), system function block (SFB), system function (SFC), I/O
(P) and data block (DB), as used in the user program along with their addresses
(absolute address or symbol) and usage. It is displayed in an active window.

Every row in the view corresponds to a cross-reference list entry. The search
function makes it easier for you to find specific addresses and symbols.

You open the cross-reference list by double-clicking on the “Cross References”
button in the project window. Here you can choose from the tabs “Cross-Reference
List”, “Addresses Used”, and “Program Structure”.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-81

Structure

A cross-reference list entry consists of the following columns:

Column Content/Meaning

Address Absolute address

Symbol Symbolic address name

Block Block in which the address is used

Block Sym. Symbolic identifier of the block

Network Specification of the number of the network in which the address is
used

Row Specification of the position within the network in which the address
is used

Access Specification whether a read (R) and/or write (W) access is involved

Language Specification of the language in which the access is programmed

Instruction Specification of the instruction with which the address is used

You can set the column width in the cross-reference list shown on the screen as
required using the mouse.

Sorting

The cross-reference list default option is to sort by memory areas. If you click a
column header with the mouse, you can sort the entries of this column by the
default sort criteria.

Filtering

You can filter the cross-reference list. You can use default filters or create your
own.

Select the filters in the "Filter" dropdown menu.

Click on the “Filter” button to create filters or modify existing ones. In the pop-up
dialog you can specify the filter properties and then apply the filter. Filters you do
not select are then displayed in the filter selection dropdown list with a star
character (*); that is, they will not be stored when you save the project.

Example of Cross-Reference List Layout

Address Symbol Block Block
Sym.

Network Row Access Language Instructio
n

I 1.0 Motor on OB2 Cycle 1 R STL CALL

M 1.2 Memory
bit

FC2 Motor 2 3 RW LAD -()-

C 2 Counter 2 FB2 Multi-
instance

5 1 FBD

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-82 A5E00293884-01

6.5.4 Addresses Used

Three lists show you which addresses are already assigned within the user
program. This display is an important basis for troubleshooting or making changes
in the user program.

Application List "Bits and Bytes Used"

The Bits and Bytes Used list gives you an overview of which bit in which byte of the
memory areas input (I), output (Q), and bit memory (M) is used.

Each line contains one byte of the memory area in which the eight bits are coded
according to their access. It also indicates whether the access is of a byte, word, or
double word (line has a blue background).

Codes in the "Bits and Bytes Used" List

X The address is accessed directly

Blue bar the address is accessed indirectly (byte, word, or double word
access), the cells have a blue background color.

Columns in the "Bits and Bytes Used" List

Column Content/Meaning

7

6

5

4

3

2

1

0

Bit number of the corresponding byte

B The byte is occupied by a one-byte access

W The byte is occupied by a one-word access

D The byte is occupied by a double-word access

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-83

Example

The following example shows the typical layout of an application list for inputs,
outputs, and bit memory (I/Q/M).

The first line gives the assignment of the input byte IB0. Inputs of address IB0 are
accessed directly (bit access). There is an "X" in columns "1", "2", "3", "4", "5", and
"6" to indicate the bit access. There is also a word access to memory bytes 2 and 3
or 4 and 5. Therefore, column "W" is marked with a "bar" and the cells also have
blue background color. The black tip on top of the bar indicates the start of the
word access.

Lists "Timers Used" and "Counters Used"

The lists "Timers Used " and "Counters Used" provide you with an overview of the
timers (T) and Counters (C) that are used.

Identifiers in the "Timers/Counters Used" list:

Blue field The timer/counter is used.

White field The timer/counter is not used.

Example for "Timers Used"

This example shows that the timers T1, T2, T18, T20, T179 and T224 are used.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-84 A5E00293884-01

6.5.5 Program Structure

The program structure describes the relationships or dependencies of the blocks
used within a user program.

A relationship or dependency exists in the following situations

• due to a call (for example, block A calls block B using the CALL statement)

Example of the appearance of a call:

OB1 calls FB 1 specifying DB1 as the instance DB

• due to the use of an interface declaration (for example, block A uses UDT B or
FB C in its interface declaration)

Example of the appearance of an interface declaration:

FB 1 uses UDT 1 in its interface declaration (as a data
type)

Local Data Requirements

The program structure also provides you with an overview of the local data
requirements. If, for example, an OB1 exists, the maximal local data requirements
of the CPU when the OB is executed are specified beside OB1 in pointed brackets.
The local data requirements of a call path are calculated by adding the local data
requirements of each individual block starting at OB1. The maximum local data
requirements of the synchronous error OBs (OB121 and OB 122) are also
calculated and shown in pointed brackets after the text of OB1.

Inconsistencies

Inconsistencies are also visualized as they arise, for example due to interface
modifications to a block. Using the program structure, you can open the blocks
(“Go TO…” function) and eliminate the inconsistencies one after the other or you
can use the menu command Options > Ensure Program Consistency to
eliminate the inconsistencies automatically.

Example of the appearance
of inconsistencies:

Displaying the Program Structure

The program structure is opened by double-clicking on the “Cross References”
button in the project window. Here, select the “Program Structure” tab at the
bottom edge of the window below the “Cross-Reference List”, “Addresses Used”,
and “Program Structure” tabs.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-85

Display Options and Settings for the Program Structure

The settings in the "Start Block" and "Display" fields affect the representation of the
program structure. The settings are explained below. To simplify the description,
the term “block” as used below also covers a data type (UDT).

Field Possible Settings Meaning

Start Block "System" and existing
blocks in the project

The selected block is highlighted in the program structure at
the point where it occurs the first time in the displayed program
structure. "System" is the highest hierarchy level representing
the CPU operating system. All OBs are called by the system.

Display • Call structure

• Call structure with
multiple calls

• Use structure

• Use structure (only
conflicts)

The call structure shows the called blocks and the
relationship between the blocks beginning at OB1. At the
extreme left, you will see the OBs that can only be called by
the CPU operating system. Below these and indented, you will
see the blocks called or used by the particular OB. This
hierarchy continues depending on the nesting depth of the
calls. Only the first call all the first use is displayed.

The call structure with multiple calls shows all calls or uses
of blocks.

The use structure shows the dependency of every block in
the project on other blocks. At the extreme left, you will see the
blocks and below the indented the blocks that call or use this
block.

The use structure (only conflicts) only shows relationships
that have conflicts relating to the interface time stamp all the
symbol table:

• The interface time stamp of the called (or used) block has
changed since the last time the calling block was saved
(this can also occur when uploading blocks to the PG).

• "Address priority: Symbol" is set in the project and
symbols have been modified since the blocks were saved.

If there are no conflicts, only the "System" symbol is displayed.

 Note

You can also modify the displays (call structure etc.) using the menu command is
in the View menu (View > Call Structure).

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-86 A5E00293884-01

Appearance of Block Dependencies in the Program Structure

Symbol Meaning Example

 Block called normally with CALL

 Block called unconditionally with
UC

 Block called conditionally with
CC

 Data block opened and contents
accessed
(e.g. L DB 1.DBW 10)

 Block uses interface declaration
e.g. FB, SFB, UDT

Appearance of Unused Blocks

Blocks that exist in the program but are not used are displayed as being crossed
out:

Symbol Meaning

 Unused data block

 Unused FB, FC, SFB, SFC, UDT

The example below explains both the block call as well as the use of the interface
declaration of a block in a call structure.

FB 1 is not called

FB 1 uses FB 2 as a multiple instance in its own
interface declaration

FB 2 uses UDT 3 in its own interface declaration.
The fact that FB 2 calls FB 3 is not shown here but
with the call symbol, see (3)

FB 1 calls multiple instance FB 2 (call) and FB 2
uses UDT 3 in its interface declaration and FB 2
calls FC 3 (call)

Appearance of Calls for Non-Existing Blocks

If a block was deleted while still in use by another block, its text is displayed in red
color and followed by the characters "???".

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-87

Appearance of Recursion in Block Dependencies

Recursion is caused by the following block dependencies:

• Block 1 calls block 2 and block 2 calls block 1.

• Block 1 calls block 2 and block 2 uses the interface declaration of block 1, e.g.:
FB1 calls the instance DB for FB1

• Block 1 uses the interface declaration of block 2 and block 2 uses the interface
declaration of block 1. This constellation is not permitted and can occur by
copying blocks into an existing project. The blocks affected can no longer be
compiled.

• Recursion in block dependencies are indicated by a superimposed arrow:

Symbol Bedeutung

 Recursion and block call with CALL

 Recursion and block call with UC

 Recursion and block call with CC

 Recursion due to interface declaration in used block

Appearance of Time Stamp Conflicts in Block Dependencies

Differing time stamps of interfaces can lead to conflicts if the interface of the called
block has changed (for example has less variables) but the calling block is still
using the "old" interface declaration for the call.

The interface time stamp is used as an indicator for possible inconsistencies in the
interfaces. If the interface time stamp of the called block is more recent than that of
the calling block, this is indicated in the program structure by a superimposed clock
symbol.

If conflicts occur, the calling block is preceded by a status symbol indicating that
the block must be recompiled.

Example of the appearance
of time stamp conflicts

Appearance of Symbol Conflicts in Block Dependencies

If ‘Address priority: Symbol’ is set in the general project settings, inconsistencies
(symbol conflicts) can occur if you save a block and then modify a symbol used in
the block in the symbol table.

The symbols for block dependency change as shown below:

Symbol Meaning

 Symbol conflict and block call with CALL

 Symbol conflict and block call with UC

 Symbol conflict and block call with CC

 Symbol conflict due to interface declaration in used block

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-88 A5E00293884-01

Appearance of Block Numbers when Specified Indirectly or when Using the
Parameter Type BLOCK

The block number of an indirectly specified block number in the call (for example
UC FC[MW 10]) is displayed as a series of question marks:

If an input parameter of the parameter type BLOCK is used in the interface
declaration of a block (for example BLOCK_FB), the calling block specifies the
block number. If STEP 7 Lite can obtain the number recursively it will be displayed.
The text beside the block symbol is then shown in red in the program structure. If it
is not possible to obtain the block number, for example because the block with the
parameter type BLOCK is not called at all, question marks are displayed as
explained above.

Example:

OB1 supplies BLOCK_FB
parameter in the FB1 call with
the value "FB 10"

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-89

6.5.6 Working with Reference Data

6.5.6.1 Finding Address Locations in the Program Quickly

You can use reference data to position the cursor at different locations of an
address in the program when programming.

Basic Procedure

1. Select the address in an open block.

2. Select the menu command Edit > Go To > Location.
A dialog box is now displayed containing a list with the locations of the address
in the program.

3. Select the option "Overlapping access to memory areas" if you also want to
display the locations of the addresses whose physical addresses or address
area overlap with that of the called address. The "Address" column is added to
the table.

4. Select a location in the list and click the "Go To" button.

List of Locations

The list of locations in the dialog box contains the following details:

• The block in which the address is used

• The symbolic name of the block, if one exists

• Details, for example, information on the location and, if appropriate, instruction
language-dependent information, which depends on the original programming
language of the block or source file (SCL)

• Type of access to the address: read-only (R), write-only (W), read and write
(RW), unknown (?)

• Block language

You can filter the display of locations and in this way view, for example, write
access only for an address. The online help for this dialog box provides you with
more detailed information on what to enter in the fields and the other information
displayed.

 Notice

Reference data only exist offline. This function therefore always works with the
cross references of the offline blocks, even if you call the function in an online
block.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-90 A5E00293884-01

6.5.6.2 Example of Working with Address Locations

You want to determine at which locations output Q1.0 (direct/indirect) is set. The
following STL code in OB1 is used as an example:
Network 1:

A Q 1.0 // irrelevant

= Q 1.1 // in this example

Network 2:
A M1.0

A M2.0

= Q 1.0 // assignment

Network 3:

//comment line only

SET

= M1.0 // assignment

Network 4:

A I 1.0

A I 2.0

= M2.0 // assignment

This results in the following assignment tree for Q1.0:
 M1.0 - 1
 /

Q1.0

 \ I1.0 <

 \ /

 M2.0

 \

 I2.0 <

Then proceed as follows:

1. Position the cursor on Q1.0 (NW 1, Inst 1) in OB1 in the block editor.

2. Select the menu command Edit > Go To > Location or use the right mouse
button to select "Location."
The dialog box now displays all the assignments for Q1.0:
OB1 Cycle Execution NW 2 Inst 3 /= W STL
OB1 Cycle Execution NW 1 Inst 1 /A R STL

3. Jump to "NW 2 Inst 3" in the Editor using the "Go To" button in the dialog box:
Network 2:
A M1.0
A M2.0
= Q 1.0

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-91

The assignments to both M1.0 and M2.0 must now be checked. First position the
cursor on M1.0 in the block editor.

4. Select the menu command Edit > Go To > Location or use the right mouse
button to select "Location." The dialog box now displays all the assignments for
M1.0:
OB1 Cycle Execution NW 3 Inst 2 /= W STL
OB1 Cycle Execution NW 2 Inst 1 /A R STL

5. Jump to "NW 3 Inst 2" in the block editor using the "Go To" button in the dialog
box.

6. In the block editor in Network 3, you will see the assignment to M1.0 is not
important (because it is always TRUE) and that the assignment to M2.0 needs
to be examined instead.

7. Place the open dialog box "Go to Location" on top, or call the function "Go to
Location" in the block editor from your current position.

8. Jump from the address locations dialog box to "NW 2 Inst 3" in the Editor using
the "Go To" button (as in point 3):
Network 2:
A M1.0
A M2.0
= Q 1.0

9. In point 4, the assignment to M1.0 was checked. Now you have to check all the
(direct/indirect) assignments to M2.0. Position the cursor on M2.0 in the Editor
and call the function "Go to Location:" All the assignments to M2.0 are
displayed:
OB1 Cycle Execution NW 4 Inst 3 /= W STL
OB1 Cycle Execution NW 2 Inst 2 /A R STL

10. Jump to "NW 4 Inst 3" in the block editor using the "Go To" button:
Network 4:
A I 1.0
A I 2.0
= M2.0

11. Now you have to check the assignments to I1.0 and I2.0. This process is not
described in this example, because you proceed in the same way as before
(point 4 onwards).

By switching between the block editor and the address locations dialog box, you
can find and check the relevant locations in your program.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-92 A5E00293884-01

6.5.6.3 How to Work with Reference Data

Jumping from the Cross-Reference List to a Location in the Program

To jump from the cross-reference list to the relevant part of the program:

1. Mark the row with the desired address.

2. Click on "Go to location".

This function can also be executed via menu command Edit > Go to > Location.

Alternative procedure:

1. Select an address in the cross-reference list.

2. Click the right mouse button to open a context sensitive menu.

3. Select the menu command ”Go To Location".

Jumping from the Program Structure to a Location in the Program

To jump from the program structure to the relevant part of the program:

1. Select a block in the "Program Structure."

2. Click the right mouse button. A context sensitive menu appears.

3. Select the menu command "Go To Block" to open the block itself or select the
menu command "Go To Call" to open the calling block and position the cursor
on the call to the selected block.

The menu command ”Go To Call" can only be selected if there is a calling block
(higher in the nesting level) for the selected block.

The commands in the context sensitive menu are also available in the menu bar:

Edit > Go To > Block and

Edit > Go To > Call

Displaying Overlapping Access

To display cross-references for addresses whose address areas overlap, proceed
as follows:

1. Select an address in the cross-reference list of the reference data.

2. Press the right mouse button and select the pop-up menu command Cross
References for Address in the pop-up menu.

The cross references of addresses whose address areas overlap with the selected
address are then displayed in another window.

In the block editor, proceed as follows:

1. Select the address in the logic section.

2. Select the menu command Edit > Go To > Location.

3. Select the option "Overlapping access to memory areas" in the "Go To
Location" dialog box.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-93

6.6 Ensuring Program Consistency and Time Stamps as a
Block Property

6.6.1 Ensuring Program Consistency

Introduction

If, after creating a program, the interfaces or the code for individual blocks has to
be adapted or expanded, such changes can lead to programming consistencies
between the calling and called blocks or reference blocks.

The "Ensure Program Consistency" function can handle a lot of the necessary
corrections for you and save you a lot of work. This function automatically cleans
up a large portion of time stamp conflicts and program inconsistencies. For those
blocks whose inconsistencies cannot be automatically cleaned up, the function will
"forward" you to the block editor and indicate the place that has to be changed.
Here you can make the required changes in a step-by-step manner until all
program inconsistencies are removed and the blocks are compiled.

Ensuring Program Consistency

During the check of program consistency, the first thing examined is the time
stamps for the block interfaces. Blocks found to have conditions that could lead to
program inconsistencies are then highlighted. To ensure program consistency,
proceed as follows:

1. Select the menu command Options > Ensure Program Consistency.
To the extent possible, STEP 7 Lite will automatically clean up and remove time
stamp conflicts and program inconsistencies and then compile the blocks. If any
conflicts or inconsistencies could not be removed automatically, an error
message is displayed.
The blocks that still have problems are highlighted (names displayed in red,
bold type) in the project window.

2. In the project window, double-click a block highlighted in red.
The block is opened and a list of the remaining errors is displayed in the block
editor.

3. Double-click one of the entries in this list.
The fault location is shown.

4. Correct the errors and apply the changes. Repeat this procedure for the
remaining faulty blocks. When all errors in a block are corrected, its name will
then be displayed in the project window in black bold type.

5. Save the project.

Automatic Generation of Instance DBs when Establishing Program Consistency

If you upload an FB from the CPU to the PG without the corresponding instance
DB and the block that calls the FB, an instance DB is created automatically for the
FB when you run the “Ensure Program Consistency“ function.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-94 A5E00293884-01

6.6.2 Time Stamps and Time Stamp Conflicts

Blocks contain a logic time stamp and an interface time stamp. These time stamps
are displayed in the "Properties" tab of the block editor. You can monitor the
consistency of STEP 7 Lite programs using time stamps.

STEP 7 Lite displays a time stamp conflict if it detects a violation of the rules when
comparing time stamps. The following violations may occur:

• A called block is more up-to-date than the calling block (CALL).

• A referenced block is more up-to-date than the block which is using it.
Examples:

- A UDT is more up-to-date than the block which is using it; that is, a DB or
another UDT, or an FC, an FB, or an OB which is using the UDT in the
variable declaration table.

- An FB is more up-to-date than its corresponding instance DB.

- An FB2 is defined as a multiple instance in FB1 and FB2 is more up-to-date
than FB1.

 Note

Even if the relationship between the interface time stamps is correct,
inconsistencies may occur:

• The definition of the interface for the referenced block does not match the
definition in the location at which it is used.

These inconsistencies are known as interface conflicts. They can occur, for
example, when blocks are copied from different programs.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-95

6.6.3 Time Stamps in Logic Blocks

Code Time stamp

The time and date the block was created is entered here. The time stamp is
updated:

• When the program code is changed

• When the interface description is changed

• When the comment is changed

• When the block properties are changed

Interface Time stamp

The time stamp is updated:

• When the interface description is changed (changes to data types or initial
values, new parameters)

• The time stamp is not updated:

- When symbols are changed

- When comments in the variable declaration table are changed

- When changes are made in the TEMP area

Rules for Block Calls

• The interface time stamp of the called block must be older than the code time
stamp of the calling block.

• Only change the interface of a block if no block is open which calls this block.
Otherwise, if you save the calling blocks later than the changed block, you will
not recognize this inconsistency from the time stamp.

Procedure if a Time stamp Conflict Occurs

A time stamp conflict is displayed when the calling block is opened. After making
changes to an FC or FB interface, all calls to this block are shown in calling blocks.

If the interface of a block is changed, all blocks that call this block must be adapted
as well.

After making changes to an FB interface, the existing multiple instance definitions
and instance data blocks must be updated.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-96 A5E00293884-01

6.6.4 Time Stamps in Shared Data Blocks

Code Time stamp

The time stamp is updated:

• When an ASCII source file is created for the first time

• When an ASCII source file is compiled

• When changes are made in the declaration view or in the data view of the block

Interface Time stamp

The time stamp is updated:

• When the interface description is changed in the declaration view (changes to
data types or initial values, new parameters)

6.6.5 Time Stamps in Instance Data Blocks

An instance data block saves the formal parameters and static data for function
blocks.

Code Time stamp

The time and date the instance data blocks were created is entered here. The time
stamp is updated when you enter actual values in the data view of the instance
data block. The user cannot make changes to the structure of an instance data
block because the structure is derived from the associated function block (FB) or
system function block (SFB).

Interface Time stamp

When an instance data block is created, the interface time stamp of the associated
FB or SFB is entered.

Rules for Opening Without Conflicts

The interface time stamps of the FB/SFB and the associated instance data block
must match.

Procedure if a Time stamp Conflict Occurs

If you change the interface of an FB, the interface time stamp of the FB is updated.
When you open an associated instance data block, a time stamp conflict is
reported because the time stamps of the instance data block and the FB no longer
match. In the declaration section of the data block the interface is displayed with
the symbols generated by the compiler (pseudo-symbols). The instance data block
can now only be viewed.

To remedy time stamp conflicts of this type, you must create the instance data
block for a changed FB again.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-97

6.6.6 Time Stamps in UDTs and Data Blocks Derived from UDTs

User-defined data types (UDTs) can, for example, be used to create a number of
data blocks with the same structure.

Code Time stamp

The code time stamp is updated on every change.

Interface Time stamp

The interface time stamp is updated when the interface description is changed
(changes to data types or initial values, new parameters).

The interface time stamp of a UDT is also updated when the ASCII source file is
compiled.

Rules for Opening without Conflicts

• The interface time stamp of the user-defined data type must be older than the
interface time stamp in logic blocks in which this data type is used.

• The interface time stamp of the user-defined data type must be identical to the
time stamp of a data block derived from a UDT.

• The interface time stamp of the user-defined data type must be younger than
the time stamp of a secondary UDT.

Procedure if a Time stamp Conflict Occurs

If you change a UDT definition that is used in a data block, function, function block,
or another UDT definition, STEP 7 Lite reports a time stamp conflict when the block
is opened.

The UDT component is shown as a fanned-out structure. All variable names are
overwritten by values preset by the system.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-98 A5E00293884-01

6.6.7 Avoiding Errors when Calling Blocks

STEP 7 Lite Overwrites Data in the DB Register

STEP 7 Lite modifies the registers of the S7-300/S7-400 CPU when various
instructions are executed. The contents of the DB and DI registers are, for
example, swapped when you call an FB. This allows the instance DB of the called
FB to be opened without losing the address of the previous instance DB.

If you work with absolute addressing, errors can occur accessing data saved in the
registers. In some cases, the addresses in the register AR1 (address register 1)
and in the DB register are overwritten. This means that you could read or write to
the wrong addresses.

!
Danger

Danger of damage to property and persons when:

1. Using CALL FC, CALL FB, CALL multiple instance

2. Accessing a DB using the complete absolute address (for example
DB20.DBW10)

3. Accessing variables of a complex data type

It is possible that the contents of DB registers (DB and DI), address registers (AR1,
AR2), and accumulators (ACCU1, ACCU2) may be changed.

In addition, you cannot use the RLO bit of the status word as an additional (implicit)
parameter when you call an FB or FC.

When using the programming techniques mentioned above, you must make sure
that you save and restore the contents yourself; otherwise errors may occur.

Saving Correct Data

The contents of the DB register can cause critical situations if you access the
absolute addresses of data using the abbreviated format. If, for example, you
assume that DB20 is open (and that its number is saved in the DB register), you
can specify DBX0.2 to access the data in bit 2 of byte 0 of the DB whose address
is entered in the DB register (in other words DB20). If, however, the DB register
contains a different DB number you access the wrong data.

You can avoid errors when accessing data of the DB register by using the following
methods to address data:

• Use the symbolic address

• Use the complete absolute address (for example DB20.DBX0.2)

If you use these addressing methods, STEP 7 Lite automatically opens the correct
DB. If you use the AR1 register for indirect addressing, you must always load the
correct address in AR1.

 Programming Blocks

Programming with STEP 7 Lite V3.0
A5E00293884-01 6-99

Situations in which Registers are Modified

The manipulation of the address registers for indirect addressing is relevant only in
STL. The other languages do not support indirect access to the address registers.

The adaptation of the DB register by the compiler must be taken into account in all
programming languages to ensure correct parameter transfer when blocks are
called.

The contents of the address register AR1 and the DB register of the calling block
are overwritten in the following situations:

Situation Description

With actual parameters from
a DB

• Once you have assigned an actual parameter to a block from a DB
(for example DB20.DBX0.2) STEP 7 Lite opens the DB (DB20) and
adapts the content of the DB register. The program then works with
the adapted DB after the block call.

When calling blocks in
conjunction with higher data
types

• After a block has been called from within an FC that transfers a
component of a formal parameter of a higher data type (string, array,
structure or UDT) to the called block, the content of AR1 and the DB
register of the calling block are modified.

• The same applies to a call from within an FB if the parameter is in the
var_in_out area of the caller.

When accessing
components of a higher data
type

• When an FB accesses a component of a formal parameter of a
higher data type in the var_in_out area (string, array, structure or
UDT), STEP 7 Lite uses the address register AR1 and the DB
register. This means that the contents of both registers are modified.

• When an FC accesses a component of a formal parameter of a
higher data type (string, array, structure or UDT), STEP 7 Lite uses
the address register AR1 and the DB register. This means that the
contents of both registers are modified.

 Notice

• When an FB is called from within a version 1 block, the actual parameter for
the first Boolean IN or IN_OUT parameter is not transferred correctly if the
command before the call does not limit the RLO. In this case, it is logically
combined with the existing RLO.

• When an FB is called (single or multiple instance), the address register AR2 is
written to.

• If the address register AR2 is modified in an FB, there is no guarantee that the
FB will be executed correctly.

• If the complete absolute DB address is not transferred to an ANY parameter,
the ANY pointer does not get the DB number of the open DB. Instead, it
always gets the number 0.

Programming Blocks

 Programming with STEP 7 Lite V3.0
6-100 A5E00293884-01

6.6.8 Notes on Changing the Contents of Registers

If you use the programming options below together with the registers and
accumulators listed, you must make sure you restore the contents of the registers
or accumulators yourself, otherwise errors may occur.

Using the following higher-language constructions may cause the contents of the
DB register and address register AR1 to be modified:

• Fully-qualified DB access (for example, DB20.DBW10) as an actual parameter
for a function (FC)

• Function block (FB) and multiple-instance calls

• Structure components of a formal parameter as an address within an FC or FB

• Structure components of a formal parameter as an actual parameter for an FC
or FB

With FB, FC, and multiple-instance calls, you should not use the RLO or
accumulator 1 or 2 as additional (implicit) parameters.

The DI register and address register AR2 are used on the system side for the FB
and multiple-instance calls and should not therefore be modified within FBs.

Address register AR1 is used by some of the loadable standard blocks.

The command "L P#parameter_name" loads the address offset of the specified
parameter within an FB, relative to address register AR2. In order to determine
the absolute offset in the instance data block in multiple-instance type FBs, you
must also add the area-internal pointer (address only) of the AR2 register to this
value.

You can find further information on the CPU registers in the help on the
programming language (LAD/FBD/STL).

Programming with STEP 7 Lite V3.0
A5E00293884-01 7-1

7 Establishing an Online Connection and
Making CPU Settings

7.1 Establishing Online Connections

An online connection between programming device/PC and CPU is needed to
download user programs/blocks, upload blocks from the CPU to the programming
device/PC, and for other activities:

• Debugging user programs

• Displaying and changing the operating mode of the CPU

• Displaying and setting the time and date of the CPU

• Displaying module information

• Comparing blocks online and offline

• Diagnosing hardware

To establish an online connection, the programming device/PC and CPU must be
connected by means of the multipoint interface (MPI).

When two programs (e.g. tow PGs/PCs or a PG/PC with STEP 7 Lite and STEP 7)
concurrently access a CPU, you should periodically update the online information
via "F5" key.

STEP 7 Lite "Online" Immediately

Immediately after starting, STEP 7 Lite attempts to establish an online connection
to the CPU.

If no CPU can be reached, STEP 7 Lite remains offline. Even if you restart
STEP 7 Lite, no online connection is set up. In this case, you have to eliminate the
cause for the unsuccessful setup of the online connection and click on the
"Online/Offline" button.

Without an online connection, no synchronization symbols are displayed in the
project window. The CPU operator control panel and the CPU view in the project
window cannot be selected.

Establishing an Online Connection and Making CPU Settings

 Programming with STEP 7 Lite V3.0
7-2 A5E00293884-01

Changing between Online and Offline

In the toolbar (and in the menu) you can find the "Online/Offline" button that you
can use to initiate the setup or the clearing of a connection to the CPU. This button
appears as pressed if a connection exists; it appears as not pressed if there is no
connection. If the setup of an online connection is successful, the windows that
were turned off can be selected again and the synchronization symbols are
displayed. The title bar of the CPU operator control panel displays the MPI address
of the CPU in square brackets.

7.1.1 Password Protection for Access to Programmable Controllers

Using password protection you can:

• Protect the user program in the CPU and its data from unauthorized changes
(write protected)

• Protect the programming know-how in your user program (read protected)

• Prevent online functions that would interfere with the process

You can only protect a module with a password if it supports this function.

Setting Password Protection

If you want to protect a module with a password, you must specify the security
level and the password in your CPU configuration and then download the changed
configuration to the CPU.

To configure the CPU accordingly, first double-click on “Hardware“ in the project
window and then on the CPU in slot 2. You can set the security level and the
password in the “Protection” section.

Querying the Password during Runtime

If you need to enter a password to execute an online function, the "Enter
Password" dialog box is displayed. If you enter the correct password, you are
granted access to the CPU for which a particular security level was set in the
configuration. You can then establish online connections to the protected module
and execute online functions at that security level.

You can enter the password using the expanded CPU operator panel (then click on
the “Login” button). Once again using the expanded CPU operator panel, you can
also log off the online connection legitimized by the password. Then, a subsequent
login is only possible after the password is entered again.

 Establishing an Online Connection and Making CPU Settings

Programming with STEP 7 Lite V3.0
A5E00293884-01 7-3

7.2 Displaying and Changing the Operating Mode

With this function you can, for example, switch the CPU to RUN again after
correcting an error.

Displaying the Operating Mode on the CPU Operator Control Panel

Prerequisite: In order to display the operating mode, there must be an online
connection to the CPU.

• If the CPU operator control panel is not yet open, click the double-headed arrow
"Operate CPU Online" over the project window.
A downward-pointing double-headed arrow indicates that the window is
minimized and can be opened by means of this symbol.

The open CPU operator control panel displays the current operating mode and the
current setting of the operating mode switch on the module. Depending on the
design of the CPU mode switch, it will be displayed as a key switch, toggle switch
or rotary switch. You have an image of the front side of the CPU before you.

Changing the Operating Mode on the CPU Operator Control Panel

You can change the mode of the CPU using the buttons RUN and STOP. Only
those buttons that can be selected in the current operating mode can be activated.

7.3 Displaying and Setting the Time and Date

Proceed as follows:

1. Open the CPU operator control panel (operate CPU online).

2. Click on the double-headed arrow that points right. This expands the view of the
CPU operator control panel. The time of your programming device/PC and the
time of the CPU are displayed in the Set Time section.

- If the CPU is to take the time from the programming device/PC: Select the
Transfer from Programming Device/PC check box and click on the Set
button.

- If you want to set the time independent of your programming device/PC:
Clear the Transfer from Programming Device/PC check box, edit the time of
the CPU, and click on the Set button.

 Note

If the module does not have a real-time clock, the dialog box shows "00:00:00" for
the time and "00.00.00" for the date.

Establishing an Online Connection and Making CPU Settings

 Programming with STEP 7 Lite V3.0
7-4 A5E00293884-01

Programming with STEP 7 Lite V3.0
A5E00293884-01 8-1

8 Import, Export, Save As

8.1 Import, Export, Save As

The following figure shows the possible sources and targets for the import/export
function and the saving functions in STEP 7 Lite.

For further information on the import/export function and the saving functions
indicated with arrows, click on the links below:

Import, Export, Save As

 Programming with STEP 7 Lite V3.0
8-2 A5E00293884-01

8.2 Saving Projects on Disks

You have the option of saving an entire STEP 7 Lite project on a hard disk or a
removable disk.

To save all the changes that made to a project in the same project, select the
menu command File > Save.

To save all the changes that made to a project under a new name or on another
data storage device, select the menu command File > Save As.

 Note

Please note that the menu command Edit > Apply does not save the contents of a
project. The menu command Edit > Apply restores consistency to open views in
STEP 7 Lite.

8.3 Storing Project Data on a Micro Memory Card (MMC)

In STEP 7 Lite, you can store the data for your project on a SIMATIC Micro
Memory Card (MMC) in a CPU 31xC. This feature gives you the advantage of
being able to access project data even with programming devices that do not have
the project saved on them.

What types of data can be stored on an MMC?

In STEP 7 Lite you can store the following types of project data on an MMC:

• The entire project as an *.k7p file

• Selected blocks and the symbol table as an"S7Lite export file" (*.k7e)

• All blocks in the user program as an *.awl file

• The symbol list as an *.sdf file

Prerequisites

You can only save data on an MMC when an MMC is inserted in the CPU 31xC
and an online connection has been established to this CPU.

Be sure that the MMC has enough capacity to accommodate all of the data to be
stored.

How to Save an Entire Project

1. Select the menu command File > Save As.

2. In the dialog box that is displayed, select the "Memory Card" tab.

3. In the "File name" field, enter name without an extended name.

4. In the "File type" drop-down list, select "Projects" (*.k7p)".

5. Click the "Save" button.

 Import, Export, Save As

Programming with STEP 7 Lite V3.0
A5E00293884-01 8-3

How to Save Selected Blocks and the Symbol Table as an"S7Lite export file"

1. Select the menu command File > Export > As File.

2. In the dialog box that is displayed, select the "Memory Card" tab.

3. Click the "Export" button.

Import, Export, Save As

 Programming with STEP 7 Lite V3.0
8-4 A5E00293884-01

How to Save Data as an *.awl file and an *.sdf file

Saving project data as an *.awl file and an *.sdf file gives you the advantage of
being able to import this data into later versions of STEP 7 in the future.

1. In the project window, select the "Program" symbol or the "Symbol table"
symbol.
(If you want to store both sets of data on the MMC, then select the second
symbol while holding down the CTRL key).

2. Select the menu command File > Export > For STEP 7

3. In the dialog box that is displayed, select the "Memory Card" tab.

4. In the "File name" field, enter name without an extended name. The file name to
be created will be shown along with its path information in the "Created files"
field.

5. Click the "Export" button.

 Import, Export, Save As

Programming with STEP 7 Lite V3.0
A5E00293884-01 8-5

8.4 Using a Micro Memory Card

A SIMATIC Micro Memory Card (MMC) on a CPU 31xC can be used with
STEP 7 Lite just like any other standard external data storage device. Assuming
that the capacity of selected MMC is large enough to accommodate all the data to
be stored, all data visible in the operating system file explorer can be transferred to
an MMC. This a convenient way to make additional, supplemental drawings,
service instructions and functional descriptions available to other personnel.

How to Transfer Files to the MMC

1. Open the "Memory Card" view in the "Online CPU" tab of the project window.

2. Select the menu command File > Transfer Files > To Memory Card

3. Navigate to the files you want to save on the MMC (drop-down list "Find in").

4. Select the files you want to sabe on the MMC from the list.

5. Click on the "Open" button.

How to Transfer Files from the MMC to the File System

1. Open the "Memory Card" view in the "Online CPU" tab of the project window.

2. Select the menu command File > Transfer Files > To PG

3. Select the files you want to transfer to the PG in the "Memory Card" tab.

4. Click on the "Transfer" button.

5. In the next dialog, select the folder into which you want to transfer the files.

6. Click on the "OK" button.

Import, Export, Save As

 Programming with STEP 7 Lite V3.0
8-6 A5E00293884-01

8.5 Exchanging Project Data Between STEP 7 Lite and
STEP 7

What Can Be Exported to STEP 7? What Can Be Imported from STEP 7?

The following project data can be exchanged between STEP 7 Lite and STEP 7:

• The complete program as an *.awl file.

• The entire symbol table as an *.sdf file.

During exports, STEP 7 Lite exports all program blocks or the entire symbol table.
During imports from STEP 7, all blocks in the *.awl file and all symbols in the *.sdf
file are imported.

Prerequisites

When exporting or importing a program or a symbol table, all objects in
STEP 7 Lite should be closed.

Procedure for Exporting to STEP 7

When exporting with STEP 7 Lite, export the complete user program as an *.awl
file or the entire symbol table as an *.sdf file. After the export is finished, use the
menu command Insert > External Sources to import the *.awl file into the STEP 7
project or the menu command Table > Import to import the *.sdf file into the
STEP 7 project.

To export to STEP 7, proceed as follows:

1. In the project window, select the "Program" symbol or the "Symbol table"
symbol, as appropriate (If you want to export both the program and the symbol
table at the same time, press the CTRL key when selecting the second
element).

2. Select the menu command File > Export > For STEP 7

3. In the dialog box that appears, select the destination folder.
The form in which the selected elements are exported depends on the identifier
option that you select ("Absolute identifier" or "Symbolic identifier").

4. Select the name of the export files without including the name extension. The
file name to be created will be shown along with its path information in the
"Created files" field.

 Import, Export, Save As

Programming with STEP 7 Lite V3.0
A5E00293884-01 8-7

5. Click on the "Export" button.

6. For a description of how to import into a STEP 7 project, please refer to the
"Help on STEP 7" (See the topics "Inserting external sources" and "Importing a
symbol table").

Procedure for Importing from STEP 7

When exporting with STEP 7 Lite, use the command Export source to export the
complete user program or individual blocks as an *.awl file. The same basic
procedure applies to a symbol table. In this case, use the command Table >
Export in STEP 7 to export it as an *.sdf file.

After the export is finished, import the *.awl file and the *.sdf file into STEP 7 Lite.

To import from STEP 7, proceed as follows:

1. In STEP 7, export the sources and the symbol table. For a description of how to
export a STEP 7 sources and a STEP 7 symbol table, please refer to the "Help
on STEP 7" (See the topics "Exporting sources" and "Exporting a symbol
table").

2. Select the menu command File > Import in STEP 7 Lite to display the import
dialog box.

3. In the dialog box, select the source folder and the appropriate *.awl file* and
*.sdf file.

4. To specify whether existing blocks should be overwritten or not, select or clear
the check box governing the option "Overwrite objects," as appropriate to your
situation.

5. Click the "Import" button" to start the import. If any errors occur during the
import process, they will be listed afterwards in a dialog.

 Note

You can also import project data from STEP 5. To do this, use the converter
“Convert S5 File” supplied with the package and the accompanying online help.

After conversion, continue at step 2 above. The files to be imported are files
created by the converter <Name>AC.AWL and <Name>S7.SEQ.

Import, Export, Save As

 Programming with STEP 7 Lite V3.0
8-8 A5E00293884-01

8.6 Exporting Project Data for External Editors

8.6.1 Data Format for Importing/Exporting a Symbol Table

The file format System Data Format (SDF) can be imported into or exported out of
the symbol table:

• You can open, edit, and save SDF files in Microsoft Access.

• To import and export data to and from the Microsoft Access application, use the
SDF file format.

• In Access, select the file format ”Text (with delimiters)".

• Use the double inverted comma (") as the text delimiter.

• Use the comma (,) as the cell delimiter.

System Data Format (SDF)

File Type *.SDF

Structure: Strings in quotation marks, parts separated by commas

Example: "green_phase_ped.","T 2","TIMER","Duration of green phase for pedestrians"

"red_ped.","Q 0.0","BOOL","Red for pedestrians"

To open an SDF file in Microsoft Access you should select the file format 'Text
(with delimiter)'. Use the double quotation mark (") as the text delimiter and the
comma (,) as the field delimiter.

8.6.2 Managing Multilingual Text

STEP 7 Lite offers the possibility of exporting text that has been created in a
project in one language, having it translated, re-importing it, and displaying it in the
translated language.

The following text types can be managed in more than one language:

• Comments and titles

- Title and comments to stations and modules

- Category title

- Block titles and block comments

- Network titles and network comments

- Line comments from STL programs and variable tables

- Comments from symbol tables, variable declaration tables, user-defined
data types, and data blocks

• Display texts (not in STEP 7 Lite)

- Message texts

- System text libraries

 Import, Export, Save As

Programming with STEP 7 Lite V3.0
A5E00293884-01 8-9

Exporting

Exporting is done for all text types that belong to the selected object. An export file
is created for each text type. This file contains a column for the source language
and a column for the target language. Text in the source language must not be
changed.

Importing

During import, the contents of the target-language columns (right-hand column) are
brought into the selected project. Only the text for which a match with an existing
text in the source-language column is found is accepted.

Switching Languages

When switching languages, you can choose from all the languages that were
specified during import into the selected project.

Deleting a Language

When a language is deleted all the texts in this language are deleted from the
internal database.

One language should always be available as a reference language in your project.
This can, for example, be your local language. This language should not be
deleted. During exporting and importing always specify this reference language as
the source language. The target language can be set as desired.

Basic Procedure

Translate the text.

Import the translated files (menu command
Options > Managing Multilingual Text >

Import).

Select the langauge in which the text is to be
displayed (menu command Options > Managing

Multilingual Text > Switch Languages).

Create the export files for the translation (menu
command Options > Managing Multilingual

Text > Export).

Import, Export, Save As

 Programming with STEP 7 Lite V3.0
8-10 A5E00293884-01

8.6.2.1 Types of Multilingual Text

For export, a separate file will be created for each type of text. This file will have
the text type as its name and the export format as its extension (texttype.format: for
example, SymbolComment.CSV). Files that do not satisfy the naming convention
cannot be used as source or target.

The translatable text within a project is divided into the following text types:

Text Type Description

HardwareTitle Titles of stations and modules

HardwareComment Comments on stations and modules

CategoryTitle Category titles

VariableComment Line comments in variable declaration tables

BlockTitle Block titles

BlockComment Block comments

NetworkTitle Network titles

NetworkComment Network comments

LineComment Line comments in STL

InterfaceComment Var_Section comments (declaration tables in code
blocks) and

UDT comments (user-defined data types) and

Data block comments

SymbolComment Symbol comments

8.6.2.2 Structure of the Export File

The export file is structured as follows:

Example:

$_Languages
9(1) English (USA) 7(1) German (Germany)
$_Type(SymbolComment)
First character sequence to be
translated

Translation

Second character sequence to
be translated

Translation

Source Language Target Language

 Import, Export, Save As

Programming with STEP 7 Lite V3.0
A5E00293884-01 8-11

Fundamentally, the following applies:

1. The following may not be changed, overwritten, or deleted:

- Fields beginning with "$_" (these are keywords)

- The numbers for the language (in the example above: 9(1) for the source
language English (USA) and 7(1) for the target language German).

2. Each file holds the text for just a single test type. In the example, the text type is
SymbolComment ($_Type(SymbolComment). The rules for the translator who
will edit this file are contained in the introductory text of the export file itself.

3. Additional information regarding the text or comments must always appear
before the type definition ($_Type…) or after the last column.

 Note

If the column for the target language is overwritten with "$_Undefined," no target
language was given when the file was exported. For increased clarity, you can
replace this text with the target language, for example, "English." When importing
the translated files, you must check the suggested target language and, if
necessary, select the correct language.

Export File Format

Export files are created in CSV format. When editing in Excel, you must keep in
mind that a CSV file can be opened properly in Excel only if the Open dialog is
used. Opening a CSV file by double-clicking in Explorer often results in an
unusable file. You will find it easier to work in Excel if you:

1. Open the export file in Excel

2. Save the files as XLS files

3. Translate the text in the XLS files

4. Save the XLS files in Excel in CSV format.

 Notice

Export files may not be renamed.

Import, Export, Save As

 Programming with STEP 7 Lite V3.0
8-12 A5E00293884-01

8.6.2.3 How to Manage Multilingual Text

Exporting Multilingual Text

Prerequisites

All export files must be closed.

Procedure

1. Select the menu command Options > Managing Multilingual Text > Export.

2. In the Export dialog, specify the source and target languages, and the text
types.

Tip 1: As a rule, select all text types. For re-translation (for example, of
changed comments), select only the relevant text types.

Tip 2: If you want to have the project translated into several languages: Leave
the field for the target language blank. In the export file, "$_Undefined" will be
entered in the field for the target language. Copy the file for each translator and
then change the text "$_Undefined" in each file to the respective target
language. When importing the translated files, you must explicitly select the
target language.

3. If export files (export target) already exist, you can choose in the following
dialog whether they should be extended or overwritten.
When the file is extended, the text that is already translated is retained and the
new text (to be translated) is added.

4. Close the dialog by clicking on OK and send the generated text files to the
translator.

 Translating Multilingual Text

If the export files are to be edited in MS Excel, you must open them using the MS
Excel menu command File > Open. If you simply double-click on the export file
(CSV format), the file will not be opened properly.

• Translate the texts in the second column under the keyword "$_Typ(…)."

 Notice

Excel interprets certain characters as formulas and thus changes the source
language when saving. The translated text will not be imported.

 Import, Export, Save As

Programming with STEP 7 Lite V3.0
A5E00293884-01 8-13

Importing Multilingual Text

1. Select the menu command Options > Managing Multilingual Text > Import.

2. In the Import dialog, specify the import source and the format. If you did not
enter a target language when exporting, a dialog will prompt you to select a
target language.

3. Close the dialog by clicking on OK.

4. If any errors occur, refer to the displayed report for further information.

Selecting the Language

1. Select the menu command Options > Managing Multilingual Text > Change
Language.

2. In the displayed dialog, select the desired language for the text types.

3. Close the dialog by clicking on OK.

Deleting a Language

1. Select the menu command Options > Managing Multilingual Text > Delete
Language.

2. In the dialog box displayed select the language and specify whether the title and
comments are also to be deleted.

3. Close the dialog box with "OK".

Import, Export, Save As

 Programming with STEP 7 Lite V3.0
8-14 A5E00293884-01

8.6.2.4 Tips for Translation

Optimizing the Source for Translation

You can prepare the source material for translation by combining different terms
and expressions.

Example

Before preparation (export file):

$_Languages
9(1) English (USA) 9(1) English (USA)
$_Type(SymbolComment)
Auto-enab.
Automatic enable
Auto-enable

Source Language Target Language

Combining to a single expression:

$_Languages
9(1) English (USA) 9(1) English (USA)
$_Type(SymbolComment)
Auto-enab. Auto-enable
Automatic enable Auto-enable
Auto-enable Auto-enable

Source Language Target Language

After preparation (that is, after import and subsequent export):

$_Languages
9(1) English (USA) 9(1) English (USA)
$_Type(SymbolComment)
Auto-enable Auto-enable

Source Language Target Language

 Import, Export, Save As

Programming with STEP 7 Lite V3.0
A5E00293884-01 8-15

Optimizing the Translation Process

If you have projects where the structure and text are similar to a previous project,
you can optimize the translation process.

In particular, the following procedure is recommended for projects that were
created by copying and then modifying.

Prerequisite

There must be an existing translated export target (CSV file).

Procedure

1. Copy the export files into the project folder for the new project to be translated.

2. Open the new project and export the text (menu command Options >
Managing Multilingual Text > Export). Since the export target already exists,
you will be asked whether the export target should be extended or overwritten.

3. Click on the Add button.

4. Have the export files translated (only new text needs to be translated).

5. Then import the translated files.

Import, Export, Save As

 Programming with STEP 7 Lite V3.0
8-16 A5E00293884-01

Programming with STEP 7 Lite V3.0
A5E00293884-01 9-1

9 Downloading to the CPU and Uploading to
the PG

9.1 Downloading from the PG/PC to the CPU

9.1.1 Prerequisites for Downloading

Prerequisites for Downloading to the CPU

• Your PG and the CPU are connected by means of the MPI interface.

• Access to the CPU is possible.

• The program you are downloading has been compiled without errors.

• The CPU operating mode must permit the download (STOP or RUN-P).
Note that in RUN-P mode the program will be downloaded a block at a time. If
you overwrite an old CPU program doing this, conflicts may arise, for example,
if block parameters have changed. The CPU then goes into STOP mode while
processing the cycle. We therefore recommend that you switch the CPU to
STOP mode before downloading.

• Before you download your user program, you should reset the CPU to ensure
that no ”old" blocks are on the CPU.

STOP Mode

Switch from RUN to STOP mode before you:

• Download the complete user program or parts of it to the CPU

• Perform a memory reset on the CPU

• Compress user memory

Restart (Warm Start) (Transition to RUN Mode)

When you perform a restart (warm start) in "STOP" mode, the program is restarted
and first executes the startup program (OB100) in “STARTUP” mode. If the startup
is successful, the CPU changes to RUN mode. A restart (warm start) is required
after a:

• CPU memory reset

• Download of the user program in STOP mode

Downloading to the CPU and Uploading to the PG

 Programming with STEP 7 Lite V3.0
9-2 A5E00293884-01

9.1.2 What Is Downloaded When?

In the "File" menu, you will find the menu command "Download."

The following table shows you which objects you can download under which
conditions.

What so you want to download? Prerequisite Comment

Hardware configuration The hardware configuration is
opened or

The object 'Hardware' is selected

You can select the object
'Hardware' in

• The project window

• the 'Details' view (after
double-click on the 'Project'
icon in the project window)

Blocks The block is opened in the block
editor or

one or multiple blocks are selected

You can select the 'Blocks' in

• The project window

• the 'Details' view (after
double-clicking on the 'Project'
icon or the 'Program' icon in
the project window)

Any single or multiple objects
(regardless of the displayed view)

The object is selected in the
project window

All blocks and the hardware
configuration are downloaded if
the project is selected.

All program blocks are
downloaded if the program is
selected

If there are already blocks in the CPU that have identical block numbers, you can
decide in the subsequent dialog whether or not to overwrite these blocks.

When the selected object (for example, a block or a hardware configuration) is
opened in STEP 7 Lite, this currently visible version is downloaded (not the stored
blocks or hardware configuration)! For reasons of consistency, make sure that you
first save the version you want to download!

 Downloading to the CPU and Uploading to the PG

Programming with STEP 7 Lite V3.0
A5E00293884-01 9-3

9.1.3 Differences Between Saving and Downloading Blocks

Tip for Block Changes - Save First Then Download

To enter newly created blocks or changes in the code section of logic blocks, in
declaration tables or to save new or changed data values in data blocks, you must
save the respective block (menu command File > Save). This step saves the entire
project. Any changes you make in the editor and transfer to the CPU using the
menu command File > Download to CPU, - for example, for testing small
changes -, must also be saved on the hard disk of the programming device in
every case before you exit the editor. Otherwise, you will have different versions of
your user program in the CPU and on the programming device.

It is generally recommended that you save all changes first and then download
them.

9.1.4 Load Memory and Work Memory in the CPU

After completing the configuration, parameter assignment, and program creation,
you can download complete user programs or individual blocks to the connected
CPU. To test individual blocks, you must download at least one organization block
(OB) and the function blocks (FB) and functions (FC) called in the OB and the data
blocks (DB) used. You must also download the hardware configuration to the
programmable controller.

Relationship - Load Memory and Work Memory

The complete user program is downloaded to the load memory; the parts relevant
to program execution are also loaded into the work memory.

Programming
Device

Downloading
the program
to the CPU

CPU

Load memory

EPROM

RAM

Work memory

RAM

Parts
relevant to
program
execution

Downloading to the CPU and Uploading to the PG

 Programming with STEP 7 Lite V3.0
9-4 A5E00293884-01

CPU Load Memory

• The load memory is used to store the user program without the symbol table
and the comments (these remain in the memory of the programming device).

• Blocks that are not marked as required for startup will be stored only in the load
memory.

• The load memory can either be RAM, ROM, or EPROM memory, depending on
the CPU.

• The load memory can also have an integrated EEPROM part as well as an
integrated RAM part (for example, CPU 312 IFM and CPU 314 IFM).

• In S7-400, it is imperative that you use a memory card (RAM or EEPROM) to
extend the load memory.

CPU Work Memory

The work memory (integrated RAM) is used to store the parts of the user program
required for program processing.

Possible Downloading/Uploading Procedures

• You use the download function to download the user program or loadable
objects (for example, blocks) to the programmable controller. If a block already
exists in the RAM of the CPU, you will be prompted to confirm whether or not
the block should be overwritten.

• You can select the loadable objects in the project window and then select the
menu command File > Download to CPU.

• Alternatively you can upload the current contents of blocks from the RAM load
memory of the CPU to your programming device via the load function.

9.1.5 Download Methods Dependent on the Load Memory

The division of the load memory of a CPU into a RAM area and an EEPROM area
determines the methods available for downloading your user program or the blocks
in your user program. The following methods are possible for downloading data to
the CPU:

Load Memory Method of Loading

RAM Downloading and deleting individual blocks

 Downloading and deleting a complete user
program

 Reloading individual blocks

Integrated or plug-in EPROM Downloading complete user programs

Plug-in EPROM Downloading complete user programs

 Downloading to the CPU and Uploading to the PG

Programming with STEP 7 Lite V3.0
A5E00293884-01 9-5

Downloading to the RAM by means of an Online Connection

In the CPU the data are lost if there is a power failure and the RAM is not backed
up. The data in the RAM will be lost in this case.

Saving to EPROM Memory Card

Blocks or the user program are saved on an EPROM memory card which must
then be inserted in a slot on the CPU.

The data stored on an EPROM memory card are retained following power down
and when the CPU is reset. The contents of the EPROM are copied to the RAM
area of the CPU memory again when power returns following a memory reset of
the CPU and power down if the RAM is not backed up.

Saving in the Integrated EPROM

For the CPU 312, you can also save the contents of the RAM to the integrated
EPROM. The data in the integrated EPROM are retained during power down. The
contents of the integrated EPROM are copied to the RAM area of the CPU memory
again when power returns following power down and a memory reset of the CPU if
the RAM is not backed up.

9.1.6 Downloading Blocks and a Configuration to the CPU and Saving
to Memory Card

9.1.6.1 Reloading Blocks in the CPU

You can overwrite blocks which already exist in the load memory (RAM) or work
memory of the CPU with a new version (reload them). The existing version is then
overwritten.

The procedure for reloading S7 blocks is the same as for downloading. A prompt
simply appears, querying whether you want to overwrite the existing block.

A block stored in the EPROM cannot be deleted but is declared invalid once it is
reloaded. The replacement block is loaded in the RAM. This creates gaps in the
load memory or the work memory. If these gaps eventually mean that no new
blocks can be downloaded, you should compress the memory.

 Notice

If the power goes out and then returns and the RAM does not have a battery
backup, or following a memory reset of the CPU, the "old" blocks become valid
again.

Downloading to the CPU and Uploading to the PG

 Programming with STEP 7 Lite V3.0
9-6 A5E00293884-01

9.1.6.2 Saving Downloaded Blocks on Integrated EPROM or on S7
Memory Card in the CPU

For CPUs that have an integrated EPROM (such as CPU 312), you can save
blocks from the load memory (RAM) to the integrated EPROM so as not to lose the
data following power off or memory reset.

For a CPU with an S7 memory card inserted (5V FEPROM), you can also transfer
the blocks from the load memory (RAM) to the S7 memory card.

Proceed as follows:

1. Download the blocks to the CPU.

2. Expand the CPU operator control panel in the STEP 7 Lite user interface

(1): Click to expand/reduce the CPU operator control panel

1. In the expanded CPU operator control panel, click on RAM > ROM button
(under "Additional Functions" in the CPU operator control panel).

 Downloading to the CPU and Uploading to the PG

Programming with STEP 7 Lite V3.0
A5E00293884-01 9-7

9.1.6.3 Downloading a Configuration to a Programmable Logic
Controller

Tip

Before downloading, with the Hardware Configuration open, you should use the
menu command Options > Check Consistency to see if your station configuration
is free from errors. STEP 7 Lite checks to see if downloadable system data can be
generated from the current configuration. If there are any errors, the consistency
check displays them for you in a message bar.

Requirements for Downloading

• You have used an MPI cable to connect the programming device (PG) to the
MPI interface of the CPU.

• For a networked system (programming device is connected to a subnet):
all modules of a subnet must have different node addresses.

• The configuration that you created matches the actual station configuration.
A configuration can only be downloaded to the station if the configuration is
consistent and free from error. Only then can system data blocks (SDBs) be
generated that in turn are downloaded to the modules.

Procedure

1. Select "Hardware" in the project window

2. Select the menu command File > Download to CPU or right-click to open the
context-sensitive menu and select the menu command Download to CPU.

The configuration of the entire programmable logic controller is downloaded to the
CPU. CPU parameters take effect immediately. The parameters for the other
modules are transferred to the modules during startup.

 Notice

Partial configurations, such as the configuration of individual racks, cannot be
downloaded to a station. For reasons of consistency, STEP 7 Lite always
downloads the complete configuration to the CPU.

Changing the Operating Mode of the CPU during Download

If you select the menu command File > Download to CPU, dialog boxes will
prompt you to carry out the following actions by means of your programming
device:

• Put the CPU into the STOP mode (if the mode selector is on RUN-P or the
connection to the CPU was verified by means of password)

• Compress memory (if there is not enough contiguous free memory available)

• Put the CPU into the RUN mode again

Downloading to the CPU and Uploading to the PG

 Programming with STEP 7 Lite V3.0
9-8 A5E00293884-01

9.2 Uploading from the CPU to the PG/PC

This function supports you when carrying out the following actions:

• Saving information from the CPU (for example, for servicing purposes)

• Fast configuring and editing of a station, if the hardware components are
available before you start configuring.

Saving Information from the Programmable Controller

This measure may be necessary if, for example, the offline project data of the
version running on the CPU are not, or only partially, available. In this case, you
can at least retrieve the project data that are available online and upload them to
your programming device.

Fast Configuring

Entering the station configuration is easier if you upload the configuration data from
the programmable controller to your programming device after you have configured
the hardware and restarted (warm-started) the station. This provides you with the
station configuration and the types of the individual modules. Then all you have to
do is replace the individual modules with modules from the catalog and assign
them parameters.

Configuration for the central rack ("Rack 0") and any expansion racks is uploaded
to the PG/PC.

 Notice

When you upload data (if you do not already have an offline configuration),
STEP 7 Lite cannot determine all the order numbers of the components.

You can replace the modules with "incomplete" order numbers with the
corresponding modules from the catalog when you configure the hardware.

 Downloading to the CPU and Uploading to the PG

Programming with STEP 7 Lite V3.0
A5E00293884-01 9-9

9.2.1 What Can Be Uploaded When?

In the File menu, you will find the menu command "Upload" for uploading data from
the CPU to the offline project on the programming device/PC.

When you execute this command, the objects that you selected in the project
window or in the "CPU Online" view are uploaded to the programming device/PC. If
the offline project already contains blocks with identical block numbers, you can
decide in the dialog box that appears whether to overwrite these blocks or not.

What Basically Cannot Be Uploaded

When you download a program from the programming device to the CPU, not
everything that is stored in the project data management is downloaded to the
CPU. Consequently, these data are missing if you upload blocks, for example.

The following applies to data uploaded from the CPU to the programming device:

• Blocks do not contain any symbolic names for formal parameters, temporary
variables, and labels. STEP 7 Lite creates names, for example, IN0, STAT1,
M001 as symbol substitutes. Comments from the variable declaration table are
also missing.

• Instead of the user defined data types (UDT), all structures are displayed and
continued to be used. Changes in a UDT that is in already use are ignored.

• Blocks do not contain any comments. All compilations in the project are
missing.

• FBD or LAD blocks do not contain any network comments and titles, nor do
they contain block comments and block titles.

• STL blocks do not contain any line comments.

• Information required for "Update Interface when Calling Blocks" is missing. If
the called block is missing offline or if it exists with a changed interface the
program code of the network with the block call conflict is shown in an
expanded STL display (Disassembly=MC7). This is independent on the
programming language the block was created in.

• Information required for "Symbolic Operand Priority" is missing. Uploaded
blocks always have "absolute priority", independent on the project
customization.

• There a no cross-link data. Remedy: save the block in the program editor again.

• If the CPU was loaded with the STEP 7 Lite standard package, data on the
topics global data communication (GD), configuring symbol-related messages,
and network configuration as well as distributed I/O cannot be processed
further.

• Comments and formats are missing in the uploaded force jobs.

• Comments in the block dialogs are not uploaded.

If you upload to an "empty" project, the following items are also missing:

• The symbol table with the symbolic names for the addresses as well as
comments

• User-defined data types

Downloading to the CPU and Uploading to the PG

 Programming with STEP 7 Lite V3.0
9-10 A5E00293884-01

Selecting the Objects to Be Uploaded

Only those elements can be uploaded to the programming device that are actually
in the CPU; that is, if elements are selected that are designated as "offline only,"
the menu command "Download to Programming Device" cannot be activated.

What is selected in the project
window (Online CPU)?

What is uploaded to the
programming device?

Comments

The project Everything that can be loaded Hardware configuration, all blocks

The hardware configuration The hardware configuration Functions in all views of the
hardware configuration (HW
Comparison, HW diagnostics)

The program All blocks of the user program -

One or more blocks The selected blocks -

9.2.2 How to Upload Objects from the CPU to the PG/PC

1. Open the project in which you want to upload the desired objects (blocks, for
example).

2. In the project window, "Online CPU" tab, select the object or a number of
objects you want to upload to the PG/PC. Possible objects are the hardware,
the program (with all blocks) or single blocks.

3. Select the menu command File > Download to PG.

The selected objects are transferred to the project database on the programming
device/PC.

9.2.3 Editing Uploaded Blocks in the PG/PC

You can upload the current contents of blocks from the RAM load memory of the
CPU to your PG/PC via the load function (menu command File > Download to
PG).

 Notice

Time Stamp Conflicts when Working Online and Offline

The following procedures lead to time stamp conflicts and should therefore be
avoided.

Time stamp conflicts result when you open a block from the "Online CPU view" if
changes made offline were not downloaded to the CPU.

Time stamp conflicts also result when you open a block from the project window
(that is, offline) if an online block with a time stamp conflict is copied to the user
program offline and the block is then opened offline.

 Downloading to the CPU and Uploading to the PG

Programming with STEP 7 Lite V3.0
A5E00293884-01 9-11

9.2.4 Editing a Downloaded Hardware Configuration in a
Programming Device/PC

Downloading a Hardware Configuration from the CPU to a New Project.

If you download a hardware configuration from the CPU to the programming device
or PC without there first being project data in the programming device or PC, then
STEP 7 Lite will not be able to determine the exact order number of the module
and, because of this, cannot determine the properties associated with it.

These modules are represented in the configuration table with question marks.

In this case, to fully specify such modules, proceed as follows:

1. Select the module in the configuration table.

2. In the hardware catalog, select the "Compatible" tab.
Here you will see a list of all the modules that are compatible and can be
exchanged with the module that you selected.

3. Replace the module in the configuration table with the actually used compatible
one by using drag-and-drop.

Downloading to the CPU and Uploading to the PG

 Programming with STEP 7 Lite V3.0
9-12 A5E00293884-01

9.3 Deleting on the CPU

9.3.1 Erasing the Load/Work Memory and Resetting the CPU

Before downloading your user program to the CPU, you should perform a memory
reset on the CPU to ensure that no "old" blocks are still on the CPU.

Requirement for Memory Reset

The CPU must be in STOP mode to perform a memory reset (mode selector set to
STOP, or to RUN-P and change the mode to STOP using the CPU operator control
panel.

Performing a Memory Reset on a CPU

When a memory reset is performed on a CPU, the following happens:

• The CPU is reset.

• All user data are deleted (blocks and system data blocks (SDB) with the
exception of the MPI parameters).

• The CPU interrupts all existing connections.

• If data are present on an EPROM (memory card or integrated EPROM), the
CPU copies the EPROM contents back to the RAM area of the memory
following the memory reset.

The contents of the diagnostic buffer, the run-time meter and the MPI parameters
are retained.

Performing a Memory Reset with STEP 7 Lite

1. Switch the CPU to the STOP mode as follows:

- Place the mode selector on STOP.

- If the mode selector is on RUN-P (RUN for CPU 31xC), you can set the
STOP mode by means of the CPU operator control panel as an alternative.

- In the CPU operator control panel, click on MRES.
Or, as an alternative, you can use the menu command Options > Memory
Reset.

2. Confirm the Memory Reset in the dialog box that appears.

 Downloading to the CPU and Uploading to the PG

Programming with STEP 7 Lite V3.0
A5E00293884-01 9-13

9.3.2 Deleting Individual Blocks on the CPU

Deleting individual blocks on the CPU may be necessary during the test phase of
the CPU program. Blocks are stored in the user memory of the CPU either in the
EPROM or RAM (depending on the CPU and the load procedure).

• Blocks in the RAM can be deleted directly. The occupied space in the load or
work memory becomes free and can be used again.

• Blocks in the integrated EPROM are always copied to the RAM area following a
memory reset of the CPU. The copies in the RAM can be deleted directly. The
deleted blocks are then marked in the EPROM as invalid until the next memory
reset or power down without RAM backup. Following a memory reset or power
down without RAM backup, the "deleted" blocks are copied from the EPROM to
the RAM and become active. Blocks in the integrated EPROM (for example, in
the CPU 312) are deleted by overwriting them with the new RAM contents.

Deleting in the RAM of the CPU

You can delete one or more blocks in STOP and RUN-P mode. If you delete a
block in RUN-P which is still being called, the CPU either goes into STOP or an
error OB is called.

To delete blocks in the RAM, proceed as follows:

1. Select the blocks you want to delete in the "Online CPU" window.

2. Select the menu command Edit > Delete or press DEL.

To delete the whole CPU user program you can also execute a memory reset on
the CPU.

Deleting in the Integrated EPROM

The integrated EPROM of the CPU 312 is deleted by overwriting the EPROM
again with the current RAM contents in which all user blocks have been deleted.

To delete in the integrated EPROM, proceed as follows:

1. Delete the user program in the RAM of the CPU, as described above.

2. Open the expanded CPU panel.

3. Select the "RAM> ROM" button on the CPU panel.

Downloading to the CPU and Uploading to the PG

 Programming with STEP 7 Lite V3.0
9-14 A5E00293884-01

9.3.3 Deleting the Memory Card in the CPU

The functional scope - whether or not the entire user program or individual blocks
can be deleted in the memory card - depends on which CPU is used.

1. Open the "Online CPU" view of the project window.

2. Double-click the S7 Memory Card button.

3. Select the user program or parts thereof and select the menu command Edit >
Delete or press the DEL key.

 Downloading to the CPU and Uploading to the PG

Programming with STEP 7 Lite V3.0
A5E00293884-01 9-15

9.4 Compressing the User Memory (RAM)

9.4.1 Gaps in the User Memory (RAM)

After deleting and reloading blocks, gaps can occur in the user memory (load and
work memory) and reduce the usable memory area. With the compress function,
the existing blocks are rearranged in the user memory without gaps, and a
continuous free memory is created.

The following figure shows a diagram of how occupied blocks of memory are
shifted together by the compress function.

Memory occupied before compressing

Memory occupied after compressing

Occupied memory

Free memory

Always Try to Compress the Memory in STOP Mode

Only if you compress the memory in STOP mode are all the gaps closed up. In the
RUN-P mode (mode selector setting), the blocks currently being processed cannot
be shifted since they are open. The "Compress" function does not work in the RUN
mode (mode selector setting) (write protection!).

Downloading to the CPU and Uploading to the PG

 Programming with STEP 7 Lite V3.0
9-16 A5E00293884-01

9.4.2 Compressing the Memory Contents of a CPU

Ways of Compressing the Memory

There are two methods of compressing the user memory, as follows:

• If there is insufficient memory available when you are downloading to the
programmable controller, a dialog box appears informing you of the error. You
can compress the memory by clicking the corresponding button in the dialog
box.

• As a preventative measure, you can display the memory utilization.

- Select the hardware in the "Online CPU" view.

- In the hardware view, open the "HW Diagnostics" tab and select a CPU.

- Select the menu command Options > Module Information.

- In the dialog box which then appears, select the "Memory" tab. This tab
contains a button for compressing the memory, provided the CPU supports
this function.

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-1

10 Debugging

10.1 Overview of the Different Debugging Modes

STEP 7 Lite allows you to run a program test on the PLC. Here, the runtime
program must have been loaded in the PLC. You can then monitor signal states
and variable values, and assign default values to variables in order to simulate
certain situations for program execution.

The following functions are available for debugging user programs:

• Using the variable table
Application: testing various runtime situations.

• Using the program status
Application: step-by-step program runtime monitoring

• Using the simulation program
Application: for testing, if no PLC is available

The optional package S7-PLCSIM for debugging with the simulation program.

10.2 Testing with the Variable Tables and Force Tables

10.2.1 Introduction to Testing with Variable Tables and Force Tables

Variable tables and force tables offer the advantage of being able to store various
test environments. Thus, tests can be reproduced during initial operation or for the
purpose of service and maintenance.

When testing using variable tables, the following functions are available:

• Monitoring Variables
This function enables you to display on the programming device/PC the current
values of individual variables in a user program or a CPU.

• Modifying Variables
You can use this function to assign fixed values to individual variables of a user
program or a CPU. is also possible when testing using program status. You can
also use Testing using Program Status to modify variables.

• Enable Peripheral Output and Modify Immediately
These two functions allow you to assign fixed values to individual I/O outputs of
a CPU in STOP mode.

Debugging

 Programming with STEP 7 Lite V3.0
10-2 A5E00293884-01

• Forcing Variables
You can use this function to assign individual variables of a user program or a
CPU with a fixed value which cannot be overwritten by the user program.

You can monitor or modify the following variables:

• Inputs, outputs, bit memory, timers, and counters

• Contents of data blocks

• I/O (periphery)

10.2.2 Basic Procedure When Monitoring and Modifying with the
Variable Table

To use the "Monitor" and "Modify" functions, proceed as follows:

1. Double-click the Monitor/Modify icon in the project window.
In the work area, the view of an variable table appears in which addresses can
be monitored and modified.

2. Enter the addresses to be monitored or modified in the variable table or select a
previously created variable table under "Variable Table."

3. Start your tests with "Monitor" or "Modify".

4. Save the changes in the variable table using the menu command File > Save.

10.2.3 Basic Procedure When Monitoring and Forcing with the Force
Table

To use the "Monitor" and "Force" functions, proceed as follows:

1. Double-click the "Monitor/Modify" icon in the project window.
In the work area, the view of an force table appears in which addresses can be
monitored and forced.

2. Enter the addresses to be monitored or forced in the variable table or select a
previously created variable table under "Variable Table."

3. Start your tests with "Monitor" or "Force Values".

4. Save the changes in the force table using the menu command File > Save.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-3

10.2.4 Editing and Saving Variable Tables and Force Tables

10.2.4.1 Creating and Opening a Variable Table

Variables for monitoring or modifying are stored in variable tables. Once you have
created a variable table, you can save it, duplicate it, print it out, and use it again
and again for monitoring and modifying.

How to Create and Open a Variable Table

1. In the Monitor/Modify view, click on the Manage Table button.

2. In the dialog box for managing variable tables, click on the "New" button and
enter a name for the new variable table.

3. In the dialog box for managing variable tables, click the "Display" button to view
the newly created variable table.

How to Open a Variable Table

You can open an already existing variable table by selecting it from the "Variable
Table" field in the Monitor/Modify view.

10.2.4.2 Creating and Opening a Force Table

Variables for monitoring or forcing are stored in variable tables. Once you have
created a variable table, you can save it, duplicate it, print it out, and use it again
and again for monitoring and forcing.

Procedure for Creating and Opening a Force Table

1. In the "Monitor/Modify" view, click on the "Manage Table" button.

2. In the dialog box for managing force tables, click on the "New" button and enter
a name for the new force table.

3. In the dialog box for managing force tables, click the "Display" button to view
the newly created force table.

Procedure for Opening a Force Table

You can open an already existing force table by selecting it from the "Variable
Table" field in the Monitor/Modify view.

Debugging

 Programming with STEP 7 Lite V3.0
10-4 A5E00293884-01

10.2.4.3 Copying/Duplicating Variable Tables

If you want to use a variable table that has already been created as a model for a
new variable table, you can duplicate the model table as follows:

1. Click the "Manage Tables" button in the "Monitor/Modify" view.

2. In the field showing the available variable tables, select the one you want to
duplicate as a model.

3. Click the "Duplicate" button.

4. Select a different name for the duplicated table.

5. Click "Apply" and exit the dialog box with "Close".
The new variable has the same structure as the original one and can be edited.

Using Variable Tables from an Existing Project

If you want to use an already existing variable table for a new project, proceed as
follows:

1. Select the "Monitor/Modify" view in the target project.

2. In the target project, select the variable table into which the source contents are
to be inserted.

3. Restart STEP 7 Lite and open the source project.

4. In the source project, select the "Monitor/Modify" view.

5. In the source project, select the variable table you want to insert as a source.

6. In the variable table, highlight the area you want to use (copy).

7. Select the menu command Edit > Copy.

8. Toggle to the target project and place the mouse pointer in the variable table of
the new project.

9. Select the menu command Edit > Insert.

10.2.4.4 Copying/Duplicating Force Tables

If you want to use a force table that has already been created as a model for a new
variable table, you can duplicate the model table as follows:

1. Click the "Manage Tables" button in the "Monitor/Modify" view.

2. In the field showing the available force tables, select the one you want to
duplicate as a model.

3. Click the "Duplicate" button.

4. Enter a different name for the duplicated table.

5. In the dialog box for managing force tables, click the "Display" button to view
the duplicated force table.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-5

Using Force Tables from an Existing Project

If you want to use an already existing force table for a new project, proceed as
follows:

1. Select the "Monitor/Modify" view in the target project.

2. In the target project, select the variable table into which the source contents are
to be inserted.

3. Restart STEP 7 Lite and open the source project.

4. In the source project, select the "Monitor/Modify" view.

5. In the source project, select the force table you want to insert as a source.

6. In the force table, highlight the area you want to use (copy).

7. Select the menu command Edit > Copy.

8. Toggle to the target project and place the mouse pointer in the force table of the
new project.

9. Select the menu command Edit > Insert.

10.2.4.5 Saving a Variable Table

You can use saved variable tables to monitor and modify variables when you test a
program again.

1. Save the variable table using the menu command File > Save.

When you save a variable table, all the current settings, such as column widths,
monitor mode, and modify mode, etc., are saved.

10.2.4.6 Saving a Force Table

You can use saved force tables to monitor and force variables when you test a
program again.

1. Save the force table using the menu command File > Save.

When you save a force table, all the current settings, such as column widths and
monitor mode, etc., are saved.

Debugging

 Programming with STEP 7 Lite V3.0
10-6 A5E00293884-01

10.2.5 Entering Variables in Variable Tables and Force Tables

10.2.5.1 Entering Addresses or Symbols in a Variable Table

Select the variables whose values you want to modify or monitor and enter them in
the variable table.

If you want, for example, to monitor the input bit 1.0, the memory word 5, and the
output byte 0, enter the following in the "Address" column:
Example:

 I 1.0
 MW5
 QB0

Example of a Completed Variable Table

The following figure shows a variable table with the following visible columns:
Address, Symbol, Display Format, Monitor Value and Modify Value

Notes on Variable Input by Means of Symbols

• You can indicate the variable you want to modify as address or as a symbol.
You can enter symbols and addresses either in the "Symbol" column or in the
"Address" column. The entry is then written automatically in the correct column.
If the corresponding symbol is defined in the symbol table, you can select the
desired address or the desired symbol from a list during input.

• You can only enter symbols that have already been defined in the symbol table.

• A symbol must be entered exactly as it was defined in the symbol table.

• Symbol names that contain special characters must be enclosed in inverted
commas (for example, "Motor.Off", "Motor+Off", "Motor-Off").

• To define new symbols in the symbol table, select the menu command View >
Symbols.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-7

Syntax Check

When you enter variables in the variable table, a syntax check is carried out at the
end of each line. Any incorrect entries are marked in red.

Maximum Size

A maximum of 1024 lines is permitted in a variable table.

Excluding Individual Addresses from Modifying and Monitoring

To exclude individual addresses from modifying and monitoring, make the
appropriate line ineffective. Position the cursor in the desired row and select the
"Row off" command in the pop-up menu (click with the right mouse button).

10.2.5.2 Entering Addresses or Symbols in a Force Table

Select the variables whose values you want to monitor or force and enter them in
the variable table.

If you want, for example, to monitor the input bit 1.0 and the output byte 0, enter
the following in the "Address" column:
Example:

I 1.0

QB0

Example of a Completed Force Table

The following figure shows a force table with the following visible columns:
Address, Symbol, Display Format, Monitor Value and Modify Value.

Debugging

 Programming with STEP 7 Lite V3.0
10-8 A5E00293884-01

Notes on Inputting Variables by Means of Symbols

• You can indicate the variable you want to force as address or as a symbol. You
can enter symbols and addresses either in the "Symbol" column or in the
"Address" column. The entry is then written automatically in the correct column.
If the corresponding symbol is defined in the symbol table, you can select the
desired address or the desired symbol from a list during input.

• You can only enter symbols that have already been defined in the symbol table.

• A symbol must be entered exactly as it was defined in the symbol table.

• Symbol names that contain special characters must be enclosed in inverted
commas (for example, "Motor.Off", "Motor+Off", "Motor-Off").

• To define new symbols in the symbol table, select the menu command View >
Symbols.

Syntax Check

When you enter variables in the force table, a syntax check is carried out at the
end of each row. Any incorrect entries are marked in red.

Maximum Size

A maximum of 1024 lines is permitted in a force table.

Excluding Individual Addresses from Monitoring and Forcing

To exclude individual addresses from monitoring and forcing, make the appropriate
line ineffective. Position the cursor in the desired row and select the "Row off"
command in the pop-up menu (click with the right mouse button).

10.2.5.3 Inserting a Contiguous Address Range in a Variable Table

1. Open a variable table.

2. Position the cursor in the row after which you want the contiguous address
range to be inserted.

3. Select the menu command Insert > Range of Variables. The "Insert Range of
Variables" dialog box appears.

4. Enter an address such as EW1 in the "From Address" field.

5. Enter the number of addresses to be inserted in the "Number" field.

6. Select the required display format from the list displayed.

7. Click the "OK" button.

The range of variables is inserted in the variable table.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-9

10.2.5.4 Inserting a Contiguous Address Range in a Force Table

1. Open a force table.

2. Position the cursor in the row after which you want the contiguous address
range to be inserted.

3. Select the menu command Insert > Range of Variables. The "Insert Range of
Variables" dialog box appears.

4. Enter an address such as EW1 in the "From Address" field.

5. Enter the number of addresses to be inserted in the "Number" field.

6. Select the required display format from the list displayed.

7. Click the "OK" button.

The range of variables is inserted in the force table.

10.2.5.5 Upper Limits for Entering Timers

Note the following upper limits for entering timers:

Example: W#16#3999 (maximum value in BCD format)

Examples:

Address Monitor
Format

Enter Modify Value
Display

Explanation

T1 SIMATIC_TIME 137 S5TIME#130MS Conversion to milliseconds

MW4 SIMATIC_TIME 137 S5TIME#890MS Representation in BCD format possible

MW4 HEX 137 W#16#0089 Representation in BCD format possible

MW6 HEX 157 W#16#009D Representation in BCD format not
possible, therefore the monitor format
SIMATIC_TIME cannot be selected

 Note

• You can enter timers in millisecond steps but the value entered is adapted to
the time frame. The size of the time frame depends on the size of the time
value entered (137 becomes 130 ms; the 7 ms were rounded down).

• The modify values for addresses of the data type WORD, for example, IW1,
are converted to BCD format. Not every bit pattern is a valid BCD number,
however. If the entry cannot be represented as SIMATIC_TIME for an address
of the data type WORD, the application reverts automatically to the default
format so that the value entered can be displayed.

Debugging

 Programming with STEP 7 Lite V3.0
10-10 A5E00293884-01

BCD Format for Variables in the SIMATIC_TIME Format

Values of variables in the SIMATIC_TIME format are entered in BCD format.
The 16 bits have the following significance:

| 0 0 x x | h h h h | t t t t | u u u u |

Bits 15 and 14 are always zero.
Bits 13 and 12 (marked with xx) set the multiplier for bits 0 to 11:
 00 => multiplier 10 milliseconds
 01 => multiplier 100 milliseconds
 10 => multiplier 1 second
 11 => multiplier 10 seconds
Bits 11 to 8 hundreds (hhhh)
Bits 7 to 4 tens (tttt)
Bits 3 to 0 units (uuuu)

10.2.5.6 Upper Limits for Entering Counters

Note the following upper limits for entering counters:

Upper limit for counters: C#999
W#16#0999 (maximum value in BCD format)

Examples:

Address Monitor
Format

Enter Modify Value
Display

Explanation

C1 COUNTER 137 C#137 Conversion

MW4 COUNTER 137 C#89 Representation in BCD format
possible

MW4 HEX 137 W#16#0089 Representation in BCD format
possible

MW6 HEX 157 W#16#009D Representation in BCD format
not possible, therefore the
monitor format COUNTER
cannot be selected

 Note

• If you enter a decimal number for a counter and do not mark the value with C#,
this value is automatically converted to BCD format (137 becomes C#137).

• The modify values for addresses of the data type WORD, for example, IW1,
are converted to BCD format. Not every bit pattern is a valid BCD number,
however. If the entry cannot be represented as COUNTER for an address of
the data type WORD, the application reverts automatically to the default format
so that the value entered can be displayed.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-11

10.2.5.7 Examples

Examples for Entering Addresses in Variable Tables

Permitted Address: Data Type: Example (English mnemonics):

Input | Output | Bit memory BOOL I 1.0 | Q 1.7 | M 10.1

Input | Output | Bit memory BYTE IB 1 | QB 10 | MB 100

Input | Output | Bit memory WORD IW 1 | QW 10 | MW 100

Input | Output | Bit memory DWORD ID 1 | QD 10 | MD 100

I/O (Input | Output) BYTE PIB 0 | PQB 1

I/O (Input | Output) WORD PIW 0 | PQW 1

I/O (Input | Output) DWORD PID 0 | PQD 1

Timer TIMER T 1

Counters COUNTER C 1

Data Block BOOL DB1.DBX 1.0

Data Block BYTE DB1.DBB 1

Data Block WORD DB1.DBW 1

Data Block DWORD DB1.DBD 1

Examples for Entering Addresses in Force Tables
Permitted Address: Data Type: Example (English mnemonics):

Input | Output | Bit memory BOOL I 1.0 | Q 1.7 | M 10.1

Input | Output | Bit memory BYTE IB 1 | QB 10 | MB 100

Input | Output | Bit memory WORD IW 1 | QW 10 | MW 100

Input | Output | Bit memory DWORD ID 1 | QD 10 | MD 100

I/O (Input | Output) BYTE PIB 0 | PQB 1

I/O (Input | Output) WORD PIW 0 | PQW 1

I/O (Input | Output) DWORD PID 0 | PQD 1

 Note

When forcing S7-300 modules, only inputs and outputs are permitted.

Debugging

 Programming with STEP 7 Lite V3.0
10-12 A5E00293884-01

Example of Entering a Contiguous Address Range

Open a variable table or force table and call up the "Insert Range of Variables"
dialog box with the menu command Insert > Range of Variables.

For the dialog box entries the following lines for bit memory are inserted in the
variable table:

• From address: M 3.0

• Number: 10

• Display format: BIN

Address Display Format

M 3.0 BIN

M 3.1 BIN

M 3.2 BIN

M 3.3 BIN

M 3.4 BIN

M 3.5 BIN

M 3.6 BIN

M 3.7 BIN

M 4.0 BIN

M 4.1 BIN

Note that in this example the designation in the "Address" column changes after
the eighth entry.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-13

Examples of Entering Modify and Force Values

Bit Addresses

Possible bit addresses Permitted modify/force values

I1.0 true

M1.7 false

Q10.7 0

DB1.DBX1.1 1

I1.1 #0

M1.6 2#1

Byte Addresses

Possible byte addresses Permitted modify/force values

IB 1 2#00110011

MB 12 b#16#1F

MB 14 F

QB 10 'a'

DB1.DBB 1 10

PQB 2 12 (forcing not possible)

Word Addresses

Possible word addresses Permitted modify/force values

IW 1 0011001100110011

MW12 w#16#ABCD

MW14 ABCD

QW 10 b#(12,34)

DB1.DBW 1 'ab'

PQW 2 12345 (forcing not possible)

MW3 12345

MW5 s5t#12s340ms

MW7 0.3s or 0,3s

MW9 c#123

MW11 d#1990-12-31

Debugging

 Programming with STEP 7 Lite V3.0
10-14 A5E00293884-01

Double Word Addresses

Possible double word addresses Permitted modify/force values

ID 1 2#00110011001100110011001100110011

MD 0 23e4

MD 4 2

QD 10 Dw#16#abcdef10

QD 12 ABCDEF10

DB1.DBD 1 b#(12,34,56,78)

PQD 2 'abcd' (forcing not possible)

MD 8 l# -12

MD 12 l#12

MD 16 -123456789

MD 20 123456789

MD 24 t#12s345ms

MD 28 Tod#1:2:34.567

MD 32 p#e0.0

Timers

Possible addresses of
the type "Timer"

Permitted modify/force
values

Explanation

T 1 0 Conversion to milliseconds (ms)

T 12 20ms Conversion to ms

T 14 12345ms Conversion to ms

T 16 s5t#12s340ms Conversion to 12s 340ms

T 18 10.3ms Conversion to 10 ms

T 20 10.3s Conversion to 10s 300 ms

Modifying a timer affects only the value, not the state. This means that the timer T1
can be modified to the value 0, without the result of logic operation for A T1 being
changed.

The strings 5t, s5time can be written in either upper or lower case.

Counters

Possible addresses of the type "Counter" Permitted modify/force values

C 1 0

C 14 20

C 16 c#123

Modifying a counter only affects the value, not the state. This means that Counter
C1 can be modified to the value 0 without the result of logic operation for A C1
being changed.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-15

10.2.6 Editing Variables in Variable Tables and Force Tables

10.2.6.1 Selecting the Display Format

When you enter an address, the display format for this address is automatically set
as a default format.

You can change the display format for the address

1. Click on the appropriate cell of the row in the "Display Format" column.

2. In the dropdown list that then appears, select one of the permitted display
formats.

10.2.6.2 Cutting Selected Areas to the Clipboard

1. Select:
One or more complete lines by pressing the left-hand mouse button and
dragging the cursor upwards or downwards;
An address, a symbol, or a modify value by pressing the left-hand mouse button
and dragging the cursor from left to right.

2. Cut the area to the clipboard using the menu command Edit > Cut. The area
remains in the clipboard until it is overwritten.

10.2.6.3 Pasting Areas from the Clipboard into the Variable Table or
Force Table

1. Position the cursor in the row of the variable table or force table at which you
want to paste the area from the clipboard.

2. Paste the area from the clipboard with the menu command Edit > Paste.

10.2.6.4 Copying Selected Areas to the Clipboard

1. Select:
One or more complete lines by pressing the left-hand mouse button and
dragging the cursor upwards or downwards;
An address, a symbol, or a modify value by pressing the left-hand mouse button
and dragging the cursor from left to right.

2. Copy the area to the clipboard using the menu command Edit > Copy.

Debugging

 Programming with STEP 7 Lite V3.0
10-16 A5E00293884-01

10.2.7 Monitoring Variables

10.2.7.1 Introduction to Monitoring of Variables

The following methods are available to you for monitoring variables:

• To start the "Monitor" function, click the "Monitor" button. The values for the
selected variables are displayed in a variable table or a force table.

• If the "Expanded" button is active:

• Activate the Monitor function by clicking the "Monitor" button. The values of the
selected variables are displayed in the variable table or force table in
accordance with monitoring mode set. If you set the monitoring mode ”Every
cycle," you can toggle the Monitor function off again by clicking the "Monitor"
button again.

• You can update the values of the selected variables once and immediately by
clicking the "Monitor" button. The current values of the selected variables are
displayed in the variable table or force table.

10.2.7.2 Defining the Monitoring Mode

By defining the monitoring mode, you can define the trigger point and the duration
of the monitoring of variables. You can select from the following monitoring modes:

• Permanent (in every scan cycle)

• Start of scan cycle once

• End of scan cycle once

• Start of scan cycle every cycle

• End of scan cycle in every cycle

• Transition from RUN to STOP once

• Transition from RUN to STOP in every cycle

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-17

Trigger Point

The trigger points Start of Scan Cycle, End of Scan Cycle, and Transition from
RUN to STOP define the time at which the variables are to be read from the CPU
or are to be updated. The following figure shows the position of the trigger points.

Process-image input table

Process-image output table

OB1

Trigger point "Start of cycle"

Trigger point "Transition
from RUN to STOP"

Trigger point "End of cycle"

To display the modified value in the "Status Value" column, you should set the
trigger point for monitoring to "Permanent"

Monitor Now

You can update the values of selected variables using the Monitor Now or Modify
Now button. This command is taken to mean ”Trigger now" and is executed as
quickly as possible without reference to any point in the user program. These
functions are mainly used for monitoring and modifying in STOP mode.

10.2.7.3 Monitoring Variables

1. Open the "Monitor/Modify" view and in the "Variable Table" or "Force Table"
drop-down list box, select the table containing the variables you want to
monitor.

2. Make sure an online connection to the CPU is established.

3. Start the monitoring function by clicking the "Monitor" button.

4. To terminate monitoring, click the depressed "Monitor" button once again.

Debugging

 Programming with STEP 7 Lite V3.0
10-18 A5E00293884-01

10.2.7.4 Monitoring Variables Once and Immediately

Proceed as follows:

1. Open the "Monitor/Modify" view and in the "Variable Table" or "Force Table"
drop-down list box, select the table containing the variables you want to
monitor.

2. Make sure an online connection to the CPU is established.

3. To have additional options for monitoring variables, click the "Expanded" button.

4. Click the "Monitor Now" button to display the values of the variables once and
immediately.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-19

10.2.8 Modifying Variables

10.2.8.1 Introduction to Modifying Variables

The following methods are available to you for modifying variables:

• To start the "Modify" function, click the "Modify" button. To stop the "Modify"
function, click the "Modify" button once again.

• When the "Expanded" button is depressed:

• Enable the “Modify” function by clicking on the “Modify” button. The user
program applies the modify values for the selected variables from the variable
table, depending on the set modify mode. If you have set a permanent modify
mode, you can switch off the Modify function again by clicking on the “Modify”
button.

• You can update the values of the selected variables once and immediately by
clicking on the “Modify” button.

The functions “Force” and “Enable Peripheral Output (PQ)” provide other
possibilities.

When Modifying, Note:

• Modifying cannot be undone (such as with the menu command Edit > Undo).

!
Danger

Changing the variable values while a process is running can lead to serious
damage to property or personnel if errors occur in the function or in the program.
Make sure that no dangerous situations can occur before you execute the ”Modify"
function.

10.2.8.2 Defining the Modifying Mode

By defining the modifying mode, you can define the trigger point and the duration
of the modifying of variables. You can select from the following modifying modes:

• Permanent (in every scan cycle)

• Start of scan cycle once

• End of scan cycle once

• Start of scan cycle every cycle

• End of scan cycle every cycle

• Transition from RUN to STOP once

• Transition from RUN to STOP every cycle

Debugging

 Programming with STEP 7 Lite V3.0
10-20 A5E00293884-01

Trigger Point

The trigger points Start of Scan Cycle, End of Scan Cycle, and Transition from
RUN to STOP define the time at which the variables are to be read from the CPU
or are to be updated. The following figure shows the position of the trigger points.

Process-image input table

Process-image output table

OB1

Trigger point "Start of cycle"

Trigger point "Transition
from RUN to STOP"

Trigger point "End of cycle"

The position of the trigger points shows:

• Modifying inputs is only useful at the start of cycle (corresponds to the start of
the user program OB 1), because otherwise the process image of the inputs is
updated after modifying and therefore overwritten).

• Modifying outputs is only useful at the end of cycle (corresponds to the end of
the user program OB 1), because otherwise the user program can overwrite the
process image of the outputs).

To display the modified value in the "Status Value" column, you should set the
trigger point for monitoring to ”Permanent".

The following applies to trigger points when modifying variables:

• If you set ”Once" as the modifying mode, a message appears if the selected
variables cannot be modified.

• With the modifying mode ”Every cycle," no message appears.

Modify Now

You can modify the values of selected variables by clicking on the Modify Now
button. This command is taken to mean ”trigger instantaneously" and is executed
as quickly as possible without reference to any point in the user program. This
function is used mainly for modifying in STOP mode.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-21

10.2.8.3 Modifying Variables

1. Open the "Monitor/Modify" view and in the "Variable Table" list box, select the
table containing the variables you want to modify, or activate the window
containing the required variable table.

2. Establish an online connection to the CPU so you can modify the variables of
the active variable table.

3. Define the appropriate modify mode for modifying the variables .

 Notice

You cannot define the modify mode for modifying while the Modify function is
running. If necessary, stop the modifying function. Modifying is deactivated when
the "Modify" button is not depressed.

4. Enter the fixed values for the variables you want to modify in the "Modify Value"
column of the table, and then select the check box next to the modify value.
Start the modify function with the "Modify" button or the menu command
Variable > Modify.

5. Start the modifying function by clicking on the "Modify" button.
If a permanent modify mode has been selected, the button remains depressed.
If a one-time modify mode has been selected, the modifying function is carried
out once, and the button pops out again.

6. If you want to assign new values, define a new mode, or stop modifying the
variables, click the "Modify" button while it is depressed, so that it pops out
again.
To define a new mode, start again with step 3.
To assign new values, start again with step 4.

10.2.8.4 Modifying Variables Immediately

Proceed as follows:

1. Open the variable table (VAT) which contains the variables you want to modify.

2. Enter the fixed values for the variables you want to modify in the "Modify Value"
column of the table, and then select the check box next to the modify value.

3. Click the "Modify Now" button to assign values to the variables once and
immediately.

Debugging

 Programming with STEP 7 Lite V3.0
10-22 A5E00293884-01

10.2.8.5 Modify: Initialize CPU in STOP Mode with Its Own Values

Proceed as follows:

1. Open the CPU panel and switch the CPU to STOP mode.

2. Enter the required modify values for the variables in the variable table, and then
select the check box next to the modify value.

3. Activate the modify values by clicking the "Modify" button.

4. Switch the CPU back to RUN mode using the CPU panel.

10.2.8.6 Modifying the Peripheral Outputs When the CPU is in
STOP Mode

The "Enable peripheral outputs" function deactivates the output disable of the
peripheral outputs (PQ). This enables you to modify the peripheral outputs when
the CPU is in STOP mode.

Proceed as follows:

1. Open the Monitor/Modify view and, in the Variable Table drop-down list box,
select the table that contains the I/O outputs you want to modify.

2. Open the CPU Panel and switch the CPU to STOP mode.

3. Enter the appropriate values for the peripheral outputs you want to modify in the
”Modify Value" column, and then select the check box next to these values.

4. Switch on the Enable Peripheral Output mode by activating the appropriate
check box in the Monitor/Modify view.

5. Modify the peripheral outputs by clicking on the Modify Now button.

6. "Enable Peripheral Output" remains activated until you cancel the check box.

7. To assign new values, start again with step 3.

 Note

• "Enable Peripheral Output" is only possible in STOP mode.

• The ”Enable Peripheral Output" Mode is exited by the following events:

i.The CPU changes its operating mode (a message is displayed).

ii.The "Enable Peripheral Output" check box is canceled.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-23

10.2.9 Forcing Variables

10.2.9.1 Introduction to Forcing Variables

The functions used to force variables can only be selected in the "Monitor/Force"
view.

To display this view, go to the project window and double-click on "Monitor/Force".
Then select the "Monitor/Force" tab.

You can assign fixed values to individual variables of a user program so that they
cannot be changed or overwritten even by the user program executing in the CPU.
The requirement for this is that the CPU supports this function.

Example

Debugging

 Programming with STEP 7 Lite V3.0
10-24 A5E00293884-01

10.2.9.2 Safety Measures When Forcing Variables

Beware of Injury to Personnel and Damage to Property

Note that when using the "Force" function, any incorrect action could:

• Endanger the life or health of personnel or

• Cause damage to machines or the whole plant.

!
Caution
• Before you start the Force function, you should check that nobody else is executing this

function on the same CPU at the same time.
• A Force job can only be deleted or terminated by clicking the "Remove Force" button.

Closing the "Force" view or exiting the "Monitor/Modify" view does not delete the force
job.

• Forcing cannot be undone with the Edit > Undo menu command.
• Read the information on the Differences between Forcing and Modifying Variables.
• If a CPU does not support the Force function, all menu commands in the Variable

menu linked with forcing are deactivated.
If the output disable is deactivated by means of the "Enable I/O Outputs" check box, all
forced output modules output their force value.

10.2.9.3 Displaying Values Forced by the CPU

1. Ensure that an online connection has been established to the CPU.

2. Open the "Monitor/Modify" view. In the "Monitor/Force" tab, go to the "Force
Table" drop-down list and select the "Standard" table.

10.2.9.4 Forcing Values

1. Open the "Monitor/Modify" view and select the "Force/Monitor" tab .

2. In the "Address" column, enter the variables you want to force.

3. In the "Force Value" column, enter the values which you want to assign to the
variables, and then select the check box next to the values.

4. Start forcing by clicking on the "Force Variables" button.
Result:

- If no force job is currently active, the variables are assigned the force values.

- If a force job is active already, you must decide whether you want to replace
the existing force job.
If you did not start any one of these existing force jobs, contact whoever
started it before you replace it.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-25

10.2.9.5 Deleting a Force Job

You can terminate the force job by clicking on the "Remove Force" button. If you
did not start any one of these existing force jobs, contact whoever started it before
you terminate it.
Closing the "Force Values" window or switching to another view does not delete
the force values in the CPU.

10.2.9.6 Differences Between Forcing and Modifying Variables

The following table summarizes the differences between forcing and modifying:

Feature / Function Forcing with
CPU 318- 2DP

Forcing with
S7-300 (without
CPU 318- 2DP)

Modify

Bit memory (M) Yes − Yes

Timers and counters (T, C) − − Yes

Data blocks (DB) − − Yes

Peripheral inputs (PIB, PIW, PID) Yes − −

Peripheral outputs (PQB, PQW, PQD) Yes − Yes

Inputs and outputs (I, Q) Yes Yes Yes

User program can overwrite the
modify/force values

− Yes Yes

Replacing the force value effective without
interruption

Yes Yes −

The variables retain their values when the
application is exited

Yes Yes −

The variables retain their values after the
connection to the CPU is broken

Yes Yes −

Setting triggers Always trigger
immediately

Always trigger
immediately

Once or every
cycle

 Notice

• With "Enable Peripheral Outputs," the force values for forced peripheral outputs
become effective on the corresponding output modules; the modify values for
peripheral outputs, however, do not.

Debugging

 Programming with STEP 7 Lite V3.0
10-26 A5E00293884-01

10.3 Testing Using Program Status

10.3.1 Testing Using Program Status

You can test your program by displaying the program status (RLO, status bit) or
the contents of the corresponding registers for every instruction. You can define
the scope of the information displayed in the "Settings" dialog box. You open this
dialog box using the menu command Options > Settings… in the Block Editor
view.

!
Warning

Testing a program while a process is running can lead to serious damage to
property or persons if errors occur in the function or in the program.

Ensure that no dangerous situations can occur before you execute this function.

Prerequisites

To display the program status, the following requirements must be fulfilled:

• You must have saved the block without errors and then downloaded it to the
CPU.

• The CPU must be in operation and the user program is running.

• The block must be open.

Basic Procedure for Monitoring the Program Status

It is strongly recommended that you do not call the whole program and debug it,
but call the blocks one by one and debug them individually. You should start with
the blocks in the last nesting level of the call hierarchy, for example, by calling
them in OB1 and creating the environment to be tested for the block by means of
the menu command Monitor and Modify Variables.

Open block

Define the display for the program status

Define the call environment (optional)

Select the operation mode for the test

Switch test on/off

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-27

10.3.2 Program Status Display

The display of the program status is updated cyclically. It begins with the selected
network.

Preset Color Codes in LAD and FBD

• Status fulfilled: green continuous lines

• Status not fulfilled: blue dotted lines

• Status unknown: black continuous lines

The preset for line type and color can be changed under the menu command
Options > Settings, "LAD/FBD" tab.

Status of Elements

• The status of a contact is:

- Fulfilled if the address has the value "1,"

- Not fulfilled if the address has the value "0,"

- Unknown if the value of the address is unknown.

• The status of elements with enable output (ENO) corresponds to the status of a
contact with the value of the ENO output as the address.

• The status of elements with a Q output corresponds to the status of a contact
with the value of the address.

• The status for CALLs is fulfilled if the BR bit is set following the call.

• The status of a jump instruction is fulfilled if the jump is executed, meaning if the
jump condition is fulfilled.

• Elements with enable output (ENO) are shown in black if the enable output is
not connected.

Status of Lines

• Lines are black if they are not run through or if their status is unknown.

• The status of lines that start at the power rail is always fulfilled ("1").

• The status of lines at the start of parallel branches is always fulfilled ("1").

• The status of the line following an element is fulfilled if both the status of the line
before the element and the status of the element are fulfilled.

• The status of the line following NOT is fulfilled if the status of the line before
NOT is not fulfilled (and vice versa).

• The status of the line after an intersection of a number of lines is fulfilled if:

- The status of at least one line before the intersection is fulfilled.

- The status of the line before the branch is fulfilled.

Debugging

 Programming with STEP 7 Lite V3.0
10-28 A5E00293884-01

Status of Parameters

• The values of parameters in bold type are current.

• The values of parameters in thin type result from a previous cycle; the program
section was not processed in the current scan cycle.

10.3.3 Program Status of Data Blocks

You can observe a data block online in the data view. The data block must not be
modified before the program status is started. If there is a structural difference
(declaration) between the online data block and the offline data block, the offline
data block can be downloaded to the CPU directly on request.

The data block must be located in the "data view," so that the online values can be
displayed in the "Actual Value" column. Only the part of the data block which is
visible on the screen is updated. While the status is active, you cannot switch to
the declaration view.

While the update is in progress, a green bar is visible in the status bar and the
operating mode is displayed.

The values are issued in the format of the respective data type; the format cannot
be changed.

After program status has been concluded, the "Actual Value" column displays
again the contents which were valid before the program status. It is not possible to
transfer the updated online values to the offline data block.

Updating data types:

All the elementary data types are updated in a shared DB, as well as in all the
declarations (in/out/in-out/stat) of an instance data block.

Some data types cannot be updated. When the program status is active, fields in
the "Actual Value" column which contain data which have not been updated are
displayed with a gray background.

• The complex data types DATE_AND_TIME and STRING are not updated.

• In the complex data types ARRAY, STRUCT, UDT, FB, and SFB, only those
elements which are elementary data types are updated.

• In the In-out declaration of an instance data block only the pointer to the
complex data type is displayed, not the elements of the data type itself. The
pointer is not updated.

• Parameter types are not updated.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-29

10.3.4 How to Test in Program Status

10.3.4.1 Setting the Display for Program Status

You can set the display of the program status in a Statement List, Function Block
Diagram, or Ladder Logic block yourself.

To set the display, proceed as follows:

1. Select the menu command Options > Settings.

2. In the drop-down list in the upper part of the "Settings" dialog box, select the
"Block Editor" entry.

3. Select the required options for testing the program. You can display the
following status fields.

Activate... ...To Display

Status bit Status bit; bit 2 of the status word

RLO Bit 1 of the status word;
shows the result of a logic operation or a mathematical comparison

Akku 1 Content of accumulator 1

Address register 1/2 Content of the respective address register with register-indirect
addressing (area-internal or area-crossing)

Akku2 Content of accumulator 2

DB register 1/2 Content of the data block register, of the first and/or second open
data block

Options Indirect memory reference; pointer reference (address), not address
content reference;
for memory-indirect addressing only, not possible with register-
indirect addressing.

Contents of a timer word or counter word if corresponding
instructions appear in the statement

Status word All status bits of the status word

Debugging

 Programming with STEP 7 Lite V3.0
10-30 A5E00293884-01

10.3.4.2 Setting the Call Environment for a Block

To record the program status you can specify exact conditions by setting the call
environment. The program status is then recorded only if the trigger conditions set
are fulfilled.

To set the display, proceed as follows:

1. Select the menu command Debug > Call Environment.

2. In the dialog box, set the trigger conditions and confirm them with "OK."

Option Meaning

Call path Here you can specify the call path in which the block to be tested must be
called to activate status recording. You can enter the last three call levels
before reaching the test block.

With address De-activate if the call path condition should be deactivated.

Open data blocks Here the call environment is specified by naming one or two data blocks. The
status is recorded if the block to be tested was called with the specified data
blocks.

Specifying the Call Environment for Block Instances

Proceed as follows in order to have the program status of a block displayed in a
certain instance.

1. Select the menu command Debug > Mode and set the "Debug mode" operating
mode.

2. Open the calling block and position the cursor on the desired call instruction
(CALL line in STL or box of the block in the LAD/FBD).

3. Use the right-hand mouse button to select the menu command Called Block >
Monitor with Call Path.

Result: The called block is opened. The call is entered as a criterion in the
trigger conditions of the block and the status is activated for this instance of the
block.

Existing trigger conditions for data blocks remain unchanged.

 Debugging

Programming with STEP 7 Lite V3.0
A5E00293884-01 10-31

10.3.4.3 Setting Debug Mode

Debug functions prolong the cycle time of the user program.

You can toggle between debug mode and process operation to influence cycle
time load caused by test functions.

For example, you can set debug mode during commissioning as you can here
disregard an increase in cycle time.

You can then select a shorter cycle time by switching to process operation, which
in turn has an influence on the program status function (see below).

Setting Debug Mode

Basically you have two options of setting the operating mode. A CPU, however, will
only support one of these options:

• When you configure CPU parameters, in the "Mode" section of CPU parameters
(e.g. with S7-300 CPUs). You must download the configuration to the CPU in
order to enable the set operating mode.

• In online mode when you test the program with open code block, via menu
command Debug > Mode.
Note: If you switch operating modes in your CPU configuration, only the set
operating mode is displayed and cannot be switched over.

Effects of the set operating mode

Mode of
Operation

Explanation

Debug mode All debug functions are possible without restriction.

Significant increases to the CPU scan cycle time can occur because, for example,
the status of statements in programmed loops is recorded in every cycle.

Process
operation

The debug function program status is restricted to guarantee the minimum possible
load on the scan cycle time.

• This means, for example, that no call conditions are permitted.

• The status display of a programmed loop is aborted at the point of return.

• The debug functions HOLD and single-step program execution are not possible.

Debugging

 Programming with STEP 7 Lite V3.0
10-32 A5E00293884-01

10.3.4.4 Modifying Variables in Program Status

Requirement: The online block is open.

The actions described below have the effect that the selected variables are
modified once and immediately.

Modifying Variables of the Data Type BOOL

1. Select the address you want to modify.

2. Select the menu command Debug > Modify Address to 1 or Debug > Modify
Address to 0.

Modifying Non-Boolean Variables

1. Select the address you want to modify.

2. Select the menu command Debug > Modify.

3. In the dialog box, enter the value that the variable is to adopt (modify value).

4. Close the dialog box.

Alternative Procedure

1. Position the cursor on the address you want to modify.

2. Press the right mouse button and select the relevant modify command from the
pop-up menu.

10.3.4.5 Activating and Deactivating the Test using Program Status

1. Start recording the program status using the menu command Debug > Monitor
(a check mark appears beside the menu command) or by using one of the two
context menus Called Block > Monitor or Called Block > Monitor with Call
Path.

2. Evaluate the STL program status of the block which is shown in the form of a
table.

3. The program status display can be hidden by selecting the menu command
Debug > Monitor again (so that the check mark disappears).

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-1

11 Diagnostics

11.1 Diagnostic Functions

System diagnostics detect, evaluate, and report errors that occur within a
programmable controller. For this purpose, every CPU has a diagnostic buffer in
which detailed information on all diagnostic events is entered in the order they
occurred.

Diagnostic Events

The following entries are displayed as diagnostic events, for example:

• Internal and external faults on a module

• System errors in the CPU

• Operating mode changes (for example, from RUN to STOP)

• Errors in the user program

• Inserting/removing modules

• User messages entered with the system function SFC52

The content of the diagnostic buffer is retained following a memory reset. Using the
diagnostic buffer, errors in the system can still be analyzed at a later time to find
the cause of a STOP or to trace back and categorize the occurrence of individual
diagnostic events.

Acquiring Diagnostic Data

You do not need to program the acquisition of diagnostic data by system
diagnostics. This is a standard feature that runs automatically. SIMATIC S7
provides various diagnostic functions. Some of these functions are integrated on
the CPU, others are provided by the modules (SMs).

Displaying Faults

Internal and external module faults are displayed on the front panels of the module.
The LED displays and their evaluation are described in the S7 hardware manuals.
With the S7-300, internal and external faults are displayed together as a group
error.

The CPU recognizes system errors and errors in the user program and enters
diagnostic messages in the system status list and the diagnostic buffer. These
diagnostic messages can be read out on the programming device.

Modules with diagnostic capability detect internal and external module errors and
generate a diagnostic interrupt to which you can react using an interrupt OB.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-2 A5E00293884-01

11.2 Diagnosing Hardware and Troubleshooting

Basic Procedure

• First verify that the planned configuration (that is the configuration in the
"Hardware Configuration" view) matches the downloaded configuration. You
check its equality or inequality in the "Hardware Comparison" view.

• Then, verify that all modules are free of errors.

• View any existing module errors.

Additional Diagnostic Options in the Diagnostics View

You can double-click on a module to display its status.

11.3 Comparing the 'Online/Offline/Physics' Configuration

Introduction

The configuration that is downloaded to the CPU is referred to as the "Online
Configuration." The planned configuration is called the "Offline Configuration."

The configuration that a CPU detects itself, without a configuration being
downloaded at all, is called the "Physics".

Hardware Comparison

In the "Hardware Comparison" view, the planned (Offline) configuration, the
downloaded (Online) configuration, and the physics are compared to each other.
Differences are identified by symbols in the configuration table. The configuration
table gives you an overview of module or module configuration inconsistencies.

If, for example, a digital input module was configured in a row, but physically a
digital output module is inserted, the symbol "not equal" indicates this situation in
the respective row (= slot):

Symbol for "not equal":

If the module is configured, but does not exist online, the following symbol appears:

If the module that is physically inserted corresponds to the planned module, but it
has different module parameters, the following symbol appears:

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-3

Notes

STEP 7 Lite cannot determine the physical identity by 100 % when comparing the
physics with the online or offline configuration. It is possible to determine and
compare the module type, however, not the precise order number.

In this case, the symbol "modules assumed to be identical" is displayed:

Details of Differences Found in the Hardware Comparison

Below the configuration table, in the "Delta List," you will find a detailed listing of
the differences between the modules, arranged according to the slots.

To compare the configuration of modules, go to the "Hardware Comparison" view
and double-click the appropriate module. The configuration dialog, in this case
opened write-protected, displays the differing parameters in color. The differing
parameter values have a yellow underlay.

Using the "Next difference" and "Previous difference" buttons, you can quickly
locate the relevant parameters.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-4 A5E00293884-01

11.4 Layout of the 'Hardware Comparison' View

The "Hardware Comparison" view shows two aspects of the current station
configuration:

• The graphical view with realistic arrangement of the modules in their slots, as
well as icons that provide information as to whether the configurations are the
same or not (online/offline/physical characteristics).

• The tabular view with detailed information on the inserted modules (for
example, addresses and order numbers); each with different columns for the
compared configurations (for example, Offline - Online).

In addition, buttons are visible to allow you to switch between comparison tables.

Area in Compare Hardware View Meaning

Graphic view of the hardware
configuration with selected slot.

An arrow extends from the selected
slot to the equivalent slot in the
tabular view of the hardware
configuration. If an online connection
to the CPU exists, a symbol
indicates whether or not the
configurations are synchronized.

The "Compare:…" buttons are used
to specify what is to be compared.

Selected slot in the tabular view of
the hardware configuration.

The table columns are labeled
differently, depending on comparison
type. Symbols appear between the
configurations being compared that
indicate whether they are the same
or not.

Delta list for displaying differences.

Displayed are the parameters whose
values were proven different when
comparing the configurations. The
different values are displayed in the
respective columns.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-5

11.5 Detecting Faulty Modules

Prerequisite for detecting faulty modules is an online connection between the
programming device/PC and the CPU.

Procedure

1. In the project window, double-click on "Hardware."

2. Select the "Hardware Diagnostics" view.

The "Hardware Diagnostics" view shows the station configuration as it was
determined from the CPU. Diagnostic symbols indicate to you that there is
diagnostic information for a module, and they display the status of the
corresponding module as well as the CPU operating state.

Detailed diagnostic information on all modules is displayed in the "Module Status"
dialog that you can call up by clicking on the "Expanded Diagnostic Information"
button.

Updating the View

You can update the status symbols as follows:

• Press function key F5.

• In the window, select menu command View > Update all

• Click on the "Update View" button.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-6 A5E00293884-01

11.6 Layout of the 'Hardware Diagnostics' View

The "Hardware Diagnostics" view shows two aspects of the current station
configuration:

• The graphical view with realistic arrangement of the modules in their slots

• The tabular view with detailed information on the inserted modules (for
example, addresses and order numbers)

Area in Diagnose Hardware View Meaning

Graphical view of the hardware
configuration with selected
slot/module.

An arrow extends from the
selected module to the
equivalent slot in the tabular view
of the hardware configuration.
The module states of the target
are displayed with symbols.

You can update the symbol
status using the "Update" button.

Selected slot/module in the
tabular view of the hardware
configuration.

The module status is indicated in
the Module Status column.

Different racks can be accessed
by means of the tabs on the top
margin.

Detailed information on the
selected module in the Diagnose
Hardware view.

You can open the module
information to read the diagnostic
buffer, for example, using the
"Expanded diagnostic
information" button.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-7

11.7 Module Information

11.7.1 Calling the Module Information

Calling the Module Information from the CPU Operator Control Panel

Regardless of the selected view, the module status can be seen on the CPU
operator control panel.

Calling the Module Information from the "Hardware Diagnostics" View

1. Double-click the Hardware symbol in the project window.

2. Select the "Hardware Diagostics" tab.

3. Select a module that is displayed as being faulty.

4. Select the menu command Options > Module Information or click the
"Expanded diagnostic information" button.

Result

The Module Information tabbed dialog box for CPUs and diagnostics-capable
modules is displayed. Depending on the diagnostics capability of the module, a
varying number of tabs is displayed in the “Module Information” dialog box. With
modules without diagnostics function you evaluate the status information in the
“Hardware Diagnostics” view.

Example: CPU Module Status

The following information is displayed, for example, in the upper section of the
Module Information dialog of a CPU:

• CPU mode (for example, RUN),

• Module status (for example, if an error is pending)

• Force job (active or not active)

Below that are the Module Information tabs, shown here with the "Diagnostic
Buffer" tab in front. Depending on the type of module for which the module
information has been called, a varying number of tabs is visible.

The "Diagnostic Buffer" contains the entries (= events) in the sequence of their
event. The most recent entry is always at top of the list (entry 1). The field below
shows details of the selected event. You can customize the settings view and the
dialog view via check boxes (filter and event display in hexadecimal format).

Diagnostics

 Programming with STEP 7 Lite V3.0
11-8 A5E00293884-01

Button for saving the display in text format (*.txt), modifications in Settings (for
example, for the filters) and a Help display for the selected event and the event ID
coded in hexadecimal format. Only for displays that reference a block: the block
can be opened directly for further editing via Open block button.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-9

11.7.2 Module Information Functions

The module information functions can each be found in the various tabs within the
"Module Information" dialog box. When displayed in an active situation, only those
tabs relevant to the selected module are displayed.

Function/Tab Information Use

General Identification data on the selected
module; for example, order number,
release number, status, slot in rack

The online information from the
inserted module can be compared with
the data for the configured module

Diagnostic Buffer Overview of events in the diagnostic
buffer and detailed information on the
selected event

To find the cause of a CPU STOP and
evaluate the events on the selected
module leading to it

Using the diagnostic buffer, errors in
the system can still be analyzed at a
later time to find the cause of a STOP
or to trace back and categorize the
occurrence of individual diagnostic
events

Diagnostic Interrupt Diagnostic data for the selected module To evaluate the cause of a module fault

Memory Memory capacity. Current utilization of
the work memory and the load memory
of the selected CPU

Before new or extended blocks are
transferred to a CPU, to check whether
sufficient load memory is available in
the CPU/function module or to
compress the memory content.

Scan Cycle Time Duration of the longest, shortest, and
last scan cycle of the selected CPU

To keep a check on the configured
minimum cycle time, and the maximum
and current cycle times

Time System Current time, operating hours, and

information about synchronizing clocks
(synchronization intervals)

To display and set the time and date of
a module and to check the time
synchronization

Performance Data Address areas and the available blocks
for the selected module (CPU/FM)

Before and during the creation of a
user program to check whether the
CPU fulfils the requirements for
executing a user program; for example,
load memory size or size of the
process image

Performance Data
(continued)

Display of all block types available in
the scope of supply of the selected
module List of OBs, SFBs, and SFCs
you can use for this module

To check which standard blocks your
user program can contain or call to be
able to run on the selected CPU.

Communication Transmission rates, the overview of
communication connections, the
communication load, and the maximum
message frame size on the
communication bus of the selected
module

To determine how many and which
CPU connections are possible and how
many are in use

Diagnostics

 Programming with STEP 7 Lite V3.0
11-10 A5E00293884-01

Function/Tab Information Use

Stacks Stacks tab: Can only be called up in
STOP mode or HOLD mode.
The B stack for the selected module is
displayed. You can then also display
the I stack and the L stack, and jump to
the error location in the interrupting
block.

To determine the cause of a transition
to STOP and to correct a block

Additional Information Displayed

The following information is always displayed:

• Whether a force instruction is active (only for CPUs that support 'forcing')

• Operating mode of the corresponding CPU (for example, RUN, STOP)

• Status of the selected module (for example, error, OK)

Displaying a Number of Modules Simultaneously

You can display the module information for a number of modules simultaneously.
To do this, you must change to the respective module context, select another
module, and then call the module information for it. Another ”Module Information"
dialog box is then displayed. Only one dialog box can be opened for each module.

Updating the Display of Module Information

Each time you switch to a tab in the "Module Information" dialog box, the data are
read from the module again. While a page is displayed, however, the contents are
not updated. If you click the "Update" button, you can read the data from the
module without changing the tab.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-11

11.7.3 Scope of the Module Type-Dependent Information

The scope of information that can be evaluated and displayed is dependent on the
selected module.

Depending on the scope of the information, the modules are divided into the
categories "with system diagnostics capability", "with diagnostics capability", or
"without diagnostics capability". The following figure shows these categories.

Diagnostics buffers and
the SSL of the module

Modules with system diagnostics capability

Modules with diagnostic
capabilityDiagnostics data of the module

Diagnostics information of the
CPU by means of the module

All modules ≠ CPU

• Complex modules such as the FM351 and the FM354 have system diagnostics
capability. These modules have diagnostic buffers and manage internal system
status lists.

• Modules with diagnostics capability are modules that can trigger a diagnostic
interrupt; in other words, most analog modules.

• Modules without diagnostics capability are modules that cannot trigger a
diagnostic interrupt; in other words, most digital modules..

Tabs Displayed

The table shows which property tabs are present in the "Module Information" dialog
box for each module type.

Tab CPU or
M7-FM

Module with
System Diagnostics
Capability

Module with
Diagnostics
Capability

Module without
Diagnostics
Capability

General yes yes yes −

Diagnostic Buffer yes yes − −

Diagnostic Interrupt − yes yes −

Memory yes − − −

Scan Cycle Time yes − − −

Time System yes − − −

Performance Data yes − − −

Stacks yes − − −

Communication yes − − −

In addition to the information in the tabbed property sheets, the operating mode is
displayed for modules with an operating mode. In addition, the status of the module
from the viewpoint of the CPU is displayed (for example, OK, fault, module not
available).

Diagnostics

 Programming with STEP 7 Lite V3.0
11-12 A5E00293884-01

11.8 Diagnosing in STOP Mode

11.8.1 Basic Procedure for Determining the Cause of a STOP

To determine why the CPU has gone into "STOP" mode, proceed as follows:

1. In the "Hardware Diagnostics" view, select the CPU that has gone into STOP.

2. Click the "Expanded Diagnostics Information" button.

3. Select the "Diagnostic Buffer" tab.
You can determine the cause of the STOP from the last entries in the diagnostic
buffer.

Example: Programming Error

The entry "STOP because programming error OB not loaded" means, for example,
that the CPU has detected a program error and then attempted to start the (non-
existent) OB to handle the programming error. The previous entry points to the
actual programming error.

1. Select the message relating to the programming error.

2. Click the "Open Block" button.

3. Select the "Stacks" tab.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-13

11.8.2 Stack Contents in STOP Mode

By evaluating the diagnostic buffer and the stack contents you can determine the
cause of the fault in the processing of the user program.

If, for example, the CPU has gone into STOP as a result of a programming error or
the STOP command, the "Stacks" tab in the module information displays the block
stack. You can display the contents of the other stacks using the ”I Stack"and ”L
Stack" buttons. The stack contents give you information on which instruction in
which block led to the CPU going into STOP.

B Stack Contents

The B stack, or block stack, lists all the blocks that were called before the change
to STOP mode and which were not completely processed.

I Stack Contents

When you click the ”I Stack" button, the data at the interrupt location are displayed.
The I stack, or interrupt stack, contains the data or the states which were valid at
the time of the interrupt, for example:

• Accumulator contents and register contents

• Open data blocks and their size

• Content of the status word

• Priority class (nesting level)

• Interrupted block

• Block in which program processing continues after the interrupt

L Stack Contents

For every block listed in the B stack, you can display the corresponding local data
by selecting the block and clicking the ”L Stack" button.

The L stack, or local data stack, contains the local data values of the blocks the
user program was working with at the time of the interrupt.

In-depth knowledge of the system is required to interpret and evaluate the local
data displayed. The first part of the data displayed corresponds to the temporary
variables for the block.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-14 A5E00293884-01

11.8.3 Opening the Block for a Diagnostic Buffer or Stack Entry

11.8.3.1 Opening the Block for a Diagnostic Buffer Entry

With diagnostic buffer entries which reference an error location (block type, block
number, relative address), you can open the block which caused the event in order
to correct the cause of the error.

1. Select the diagnostic event in the upper list box.

2. Click the "Open Block" button. The block is opened in the appropriate editor (for
example, Statement List) with the cursor pointing to the point in the program
which caused the error.

3. Correct the error in the block.

 Notice

The diagnostic buffer stores all diagnostic events up to its maximum capacity. All
events in the buffer are retained even if another user program is loaded.

Therefore it is possible that older diagnostic buffer entries may refer to blocks
which are no longer present in the CPU. In the worst case, there may be a new
block in the CPU with the same name which did not, however, cause the
diagnostic message.

In rare cases, the following situations can occur:

• The diagnostic event is older than the date of the last block change:

- The ”Open Block" dialog box appears with the message that the block has
been modified. This may also mean that the block is simply a block with
the same name belonging to another program.

- You can select the block offline in the correct program and edit it offline.

• The block that caused the event is no longer on the CPU:

- The ”Open Block" dialog box appears with the message that the
referenced block does not exist in the CPU. The block was deleted after
the time of the diagnostic event entry.

You can select the block offline in the correct program and edit it offline.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-15

11.8.3.2 Opening the Block from the B Stack List

Proceed as follows:

1. Click the "Open Block" button. The block opens in online mode. The cursor is
pointing to the place in the program where processing will resume after the
jump to the called block.

2. Open the block in offline mode (in the project window) and edit it in the program
editor.

11.8.3.3 Opening the Block from the I Stack List

Proceed as follows:

1. Click the "Open Block" button. The block opens in online mode. The cursor is
pointing to the place in the program which caused the error.

2. Open the block in offline mode (in the project window) and edit it in the program
editor.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-16 A5E00293884-01

11.9 Controlling Scan Cycle Times to Avoid Time Errors

The "Scan Cycle Time" property tab of the module status provides you with
information on the scan cycle times of the user program.

When the duration of the longest cycle is very close to the monitoring time, there is
a danger that variations in the cycle time can lead to a time error. You can avoid
this by increasing the maximum scan cycle time of the user program.

Setting the Scan Cycle Time

You can specify the maximum and minimum scan cycle time when configuring the
hardware. To do this, select the CPU in the "Hardware Configuration" view, and
use the right mouse button to select the menu command Module Parameters. You
can set the values in the ”Scan Cycle Time” section.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-17

11.10 Flow of Diagnostic Information

11.10.1 Flow of Diagnostic Informatio

The following figure shows the flow of diagnostic information in SIMATIC S7.

CPU Modules

The diagnostic
function of a
module detects
an error and
generates a
diagnostic
interrupt
(OB 82).

Diagnostic
interruptSystem status list

Diagnostic
buffer

SFCs
STEP 7

The diagnostic function of the CPU
detects a system error.

The diagnostic function of the CPU
detects an error in the user
program

User program

Displaying Diagnostic Information

You can read out the diagnostic entries using SFC51 RDSYSST in the user
program or display the diagnostic messages in plain language with STEP 7 Lite.

They provide information about the following:

• Where and when the error occurred

• The type of diagnostic event to which the entry belongs (user-defined diagnostic
event, synchronous/asynchronous error, operating mode change).

Diagnostics

 Programming with STEP 7 Lite V3.0
11-18 A5E00293884-01

11.10.2 System Status List SSL

The system status list (SSL) describes the current status of the programmable logic
controller. It provides an overview of the configuration, the current parameter
assignment, the current statuses and sequences on the CPU, and the modules
belonging to it.

You can only read the data in the system status list but not modify them. It is a
virtual list that is only created on request.

The information that you can display using the system status list can be divided
into four areas.

System status list

System data

Diagnostic status
data in the CPU

Diagnostic data
on modules

Diagnostic buffer

Reading Out the System Status List

There are two ways of reading out the information in system status lists, as follows:

• Implicitly, via STEP 7 Lite menu commands from the programming device (for
example, memory configuration, static CPU data, diagnostic buffer, status
displays).

• Explicitly, via the system function SFC 51 RDSYSST in the user program, by
entering the number of the required partial system status list (see Help on
Blocks).

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-19

System Data of the System Status List

System data are intrinsic or assigned characteristic data of a CPU. The following
table shows the topics about which information can be displayed (partial system
status lists):

Topic Information

Module identification Order number, type ID, and version of the module
CPU characteristics Time system and language description of the CPU
Memory areas Memory configuration of the module (size of the work

memory).
System areas System memory of the module (for example, number

of memory bits, timers, counters, memory type).
Block types Which blocks (OB, DB, SDB, FC, FB) exist on the

module, the maximum number of blocks of one type,
and the maximum size of a block type

Assignment of interrupts and
errors

Assignment of interrupts/errors to OBs

Interrupt status Current status of interrupt processing/interrupts
generated

Status of the priority classes Which OB is being executed, which priority class is
disabled due to the parameter setting

Operating mode and mode
transition

Which operating modes are possible, the last
operating mode change, the current operating mode

Diagnostic Status Data in the CPU
Diagnostic status data describe the current status of the components monitored by
the system diagnostics. The following table shows the topics about which
information can be displayed (partial system status lists):

Topic Information

Communication status data All the communication functions currently set in the system

Diagnostic modules The modules with diagnostics capability logged on at the CPU

Start information list of the OB Start information about the OBs of the CPU

Start event list Start events and priority classes of the OBs

Module status information Status information about all assigned modules that are plugged in,
faulty, or generate hardware interrupts

Diagnostic Data on Modules
In addition to the CPU, there are also other modules with diagnostic capabilities
(SMs, CPs, FMs) whose data are entered in the system status list. The following
table shows the topics about which information can be displayed (partial system
status list):

Topic Information

Module diagnostic information Module start address, internal/external faults, channel faults,
parameter errors (4 bytes)

Module diagnostic data All the diagnostic data of a particular module

Diagnostics

 Programming with STEP 7 Lite V3.0
11-20 A5E00293884-01

11.10.3 Sending Your Own Diagnostic Messages

You can also extend the standard system diagnostics of SIMATIC S7 by using the
system function SFC 52 WRUSMSG to:

• Enter your own diagnostic information in the diagnostic buffer (for example,
information about the execution of the user program).

• Send user-defined diagnostic messages to logged on stations (monitoring
devices such as a PG, OP or TD).

User Defined Diagnostic Events

The diagnostic events are divided into event classes 1 to F. The user-defined
diagnostic events belong to event classes 8 to B. These can be divided into two
groups, as follows:

• Event classes 8 and 9 include messages with a fixed number and predefined
text that you can call up based on the number.

• Event classes A and B include messages to which you can assign a number
(A000 to A0FF, B000 to B0FF) and text of your own choice.

Sending Diagnostic Messages to Stations

In addition to making a user-defined entry in the diagnostic buffer, you can also
send your own user-defined diagnostic messages to logged on display devices
using SFC52 WRUSMSG. When SFC52 is called with SEND = 1, the diagnostic
message is written to the send buffer and automatically sent to the station or
stations logged on at the CPU.

If it is not possible to send messages (for example, because no display device is
logged on or because the send buffer is full) the user-defined diagnostic event is
still entered in the diagnostic buffer.

Generating a Message with Acknowledgement

If you acknowledge a user-defined diagnostic event and want to record the
acknowledgement, proceed as follows:

• When the event enters the event state, write 1 to a variable of the type BOOL,
when the event leaves the event state write 0 to the variable.

• You can then monitor this variable using SFB33 ALARM.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-21

11.11 Program Measures for Handling Errors

When it detects errors in program processing (synchronous errors) and errors in
the programmable controller (asynchronous errors), the CPU calls the appropriate
organization block (OB) for the error:

Error Error OB

Time error OB80

Power Supply Error OB81

Diagnostic interrupt OB82

CPU hardware fault OB84

Priority class error OB85

Rack failure or failure of a station in the distributed I/O OB86

Communication error OB87

Programming error OB121

I/O access error OB122

If the appropriate OB is not available, the CPU goes into STOP mode. Otherwise, it
is possible to store instructions in the OB as to how it should react to this error
situation. This means the effects of an error can be reduced or eradicated.

Basic Procedure

Creating and Opening the OB

1. Display the module information for your CPU.

2. Select the "Performance Data" tab.

3. Decide on the basis of the list displayed whether the OB you want to program is
permitted for this CPU.

4. Insert the OB in the "Blocks" folder of your program and open the OB.

5. Enter the program for handling the error.

6. Download the OB to the programmable controller.

Programming Measures for Handling Errors

1. Evaluate the local data of the OB to determine the exact cause of the error.
The variables OB8xFLTID and OB12xSWFLT in the local data contain the error
code. Their meaning is described in the "System and Standard Functions
Reference Manual."

2. Branch to the program segment which reacts to this error.

You will find an example of handling diagnostic interrupts in the reference online
help on System and Standard Functions under the heading "Example of Module
Diagnostics with SFC51 (RDSYSST)."

You can find detailed information on OBs, SFBs, and SFCs in the corresponding
Help on Blocks.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-22 A5E00293884-01

11.11.1 Evaluating the Output Parameter RET_VAL

Using the RET_VAL output parameter (return value), a system function indicates
whether or not the CPU was able to execute the SFC function correctly.

Error Information in the Return Value

The return value is of the integer data type (INT). The sign of an integer indicates
whether it is a positive or negative integer. The relationship of the return value to
the value ”0" indicates whether or not an error occurred while the function was
being executed (see table):

• If an error occurs while the function is being executed, the return value is less
than "0." The sign bit of the integer is ”1."

• If the function is executed free of errors, the return value is greater than or equal
to "0." The sign bit of the integer is ”0."

Processing of the SFC by the CPU Return Value Sign of the Integer

Error occurred Less than ”0" Negative (sign bit is "1")

No error Greater than or
equal to ”0"

Positive (sign bit is "0")

Reacting to Error Information

If an error occurs while an SFC is being executed, the SFC provides an error code
in the return value (RET_VAL).

A distinction is made between the following:

• A general error code that all SFCs can output and

• A specific error code that the SFC can output depending on its specific function.

Transferring the Function Value

Some SFCs also use the output parameter RET_VAL to transfer the function
value, for example, SFC64 TIMETCK transfers the system time it has read using
RET_VAL.

You can find more detailed information on the output parameter RET_VAL in the
Help on SFBs/SFCs.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-23

11.11.2 Error OBs as a Reaction to Detected Errors

Detectable Errors

The system program can detect the following errors:

• CPU functioning incorrectly

• Error in the system program execution

• Errors in the user program

• Error in the I/Os

Depending on the type of error, the CPU is set to STOP mode or an error OB is
called.

Programming Reactions

You can design programs to react to the various types of errors and to determine
the way in which the CPU reacts. The program for a particular error can then be
saved in an error OB. If the error OB is called, the program is executed.

The CPU calls the corresponding error OB.

If an error OB is programmed, the CPU executes
the program in the OB. If no error OB is
programmed, the CPU goes into "STOP" mode.
(Exception: OB 81)

An error occurs...

Error OBs

A distinction is made between synchronous and asynchronous errors as follows:

• Synchronous errors can be assigned to an MC7 instruction (for example, load
instruction for a signal module which has been removed).

• Asynchronous errors can be assigned to a priority class or to the entire
programmable logic controller (for example, cycle time exceeded).

Diagnostics

 Programming with STEP 7 Lite V3.0
11-24 A5E00293884-01

The following table shows what types of errors can occur. Refer to your S7-300
Programmable Controller, Hardware and Installation Manual for information as to
whether your CPU provides the specified OBs.

Error Class Error Type OB Priority

Asynchronous Time error OB 80 26

 Power Supply Error OB 81 (or 28, if the error OB is called
in the startup program)

 Diagnostic interrupt OB 82 (or 28, if the error OB is called
in the startup program_

 CPU hardware fault OB 84

 Priority class error OB 85

 Rack failure OB 86

 Communication error OB 87

Synchronous Programming error OB 121 Priority of the OB that caused
the error

 I/O access error OB 122

Example of Using Error OB81

Using the local data (start information) of the error OB, you can evaluate the type
of error that has occurred.

If, for example, the CPU detects a battery error, the operating system calls OB81
(see figure).

Program
execution

OB 81

Operating
system

OB 81 checks the type of power
supply error that was detected and
displays whether the error was
caused by a battery failure.

Battery exhausted
(CPU) 1

No backup voltage
(CPU)
24 V power supply failure
(CPU) 1

Battery exhausted
(Expansion unit) 1

No backup voltage
(Expansion unit) 1

24V power supply failure
(Expansion unit) 1

21

22

23

31

32

33

1 Not with the S7-300.

The CPU detects a
battery error.

Types of power supply error

You can write a program that evaluates the event code triggered by the OB81 call.
You can also write a program that brings about a reaction, such as activating an
output connected to a lamp on the operator station.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-25

Local Data of Error OB81

The following table shows the temporary variables that must be declared, in this
case, in the variable declaration table of OB81.

The symbol "Battery error" (BOOL) must be identified as an output (for example,
Q 4.0) so that other parts of the program can access these data.

Decl. Name Type Description

TEMP OB81EVCLASS BYTE Error class/error identifier 39xx

TEMP OB81_FLT_ID BYTE Error code:

b#16#22 =

No backup voltage in the CPU

TEMP OB81PRIORITY BYTE Priority class = 26/28

TEMP OB81OBNUMBR BYTE 81 = OB81

TEMP OB81RESERVED1 BYTE Reserved

TEMP OB81RESERVED2 BYTE Reserved

TEMP OB81MDLADDR INT Reserved

TEMP OB81RESERVED3 BYTE Only relevant for error codes B#16#31,
B#16#32, B#16#33

TEMP OB81RESERVED4 BYTE

TEMP OB81RESERVED5 BYTE

TEMP OB81RESERVED6 BYTE

TEMP OB81DATETIME DATEAND
TIME

Date and time at which the OB was started

Sample Program for the Error OB81

The sample STL program shows how you can read the error code in OB81.

The program is structured as follows:

• The error code in OB81 (OB81FLTID) is read and compared with the value of
the event ”battery exhausted" (B#16#3921).

• If the error code corresponds to the code for ”battery exhausted," the program
jumps to the label Berr and activates the output batteryerror.

• If the error code does not correspond to the code for ”battery exhausted," the
program compares the code with the code for ”battery failure".

• If the error code corresponds to the code for ”battery failure," the program jumps
to the label Berr and activates the output batteryerror. Otherwise the block is
terminated.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-26 A5E00293884-01

 STL Description

 L B#16#21 // Compare event code "battery exhausted"
 //(B#16#21) with
 L #OB81_FLT_ID // the error code for OB81.
 ==I // If the same (battery is exhausted),
 // jump to Berr.
 JC Berr
 L B#16#22 // Compare event code "battery failure"
 //(b#16#22) with
 ==I // the error code for OB81.
 JC BF // If the same, jump to Berr.
 BEU // No message about battery failure

Berr: L B#16#39 // Compare the ID for the next event with
 L #OB81_EV_CLASS // the error code for OB81.
 ==I // If a battery failure or an exhausted battery
 // is found,
 S batteryerror // set the output "battery error."
 // (Variable from the symbol table)
 L B#16#38 // Compare the ID for the concluding event with
 ==I // the error code for OB81.
 R batteryerror // reset the output "battery error, when
 // the error is fixed.

You can find detailed information on OBs, SFBs, and SFCs, as well as an
explanation of event IDs, in the corresponding Help on Blocks.

11.11.3 Inserting Substitute Values for Error Detection

With certain types of error (for example, a wire break affecting an input signal), you
can supply substitute values for values that are not available due to the error.
There are two ways in which you can supply substitute values:

• You can assign substitute values for configurable output modules using
STEP 7 Lite. Output modules that cannot have parameters assigned have the
default substitute value 0.

• Using SFC44 RPLVAL, you can program substitute values in error OBs (only for
input modules).

For all load instructions that lead to synchronous errors, you can specify a
substitute value for the accumulator content in the error OB.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-27

Sample Program for Substituting a Value

In the following sample program, a substitute value is made available in SFC44
RPLVAL. The following figure shows how OB122 is called when the CPU
recognizes that an input module is not reacting.

OB1

OB 122

L PIB0
T IB0

SFC44

RPL_VAL

In this example, the substitute value in the following figure is entered in the
program so that the program can continue to operate with feasible values.

Substitute value: 0 0 0 1 0 0 1 0

Stop_Sw I 0.1

Stand_Eval I 0.3

Full_Sw I 0.4

Start_Sw I 0.0

If an input module fails, the processing of the statement L PIB0 produces a
synchronous error and starts OB122. As standard, the load instruction reads in the
value 0. With SFC44, however, you can define any substitute value suitable for the
process. The SFC replaces the accumulator content with the specified substitute
value.

The following sample program could be written in OB122. The following table
shows the temporary variables that must be declared, in this case, in the variable
declaration table of OB122.

Decl. Name Type Description

TEMP OB122EVCLASS BYTE Error class/error ID 29xx

TEMP OB122SWFLT BYTE Error code:

16#42, 16#43

TEMP OB122PRIORITY BYTE Priority class = priority of the OB in which the
error occurred

TEMP OB122OBNUMBR BYTE 122 = OB122

TEMP OB122BLKTYPE BYTE Block type in which the error occurred

TEMP OB122MEMAREA BYTE Memory area and type of access

TEMP OB122MEMADDR WORD Address in the memory at which the error
occurred

TEMP OB122BLKNUM WORD Number of the block in which the error occurred

TEMP OB122PRGADDR WORD Relative address of the instruction that caused
the error

Diagnostics

 Programming with STEP 7 Lite V3.0
11-28 A5E00293884-01

Decl. Name Type Description

TEMP OB122DATETIME DATEANDTIME Date and time at which the OB was started

TEMP Error INT Saves the error code of SFC44

STL Description

 L B#16#2942
 L #OB122SWFLT
 ==I
 JC Aerr
 L B#16#2943
 <> I
 JC Stop

Aerr: CALL ”REPL_VAL"
 VAL : = DW#16#2912
 RETVAL : = #Error
 L #Error
 L 0
 ==I
 BEC

Stop: CALL ”STP"

Compare the event code of OB122 with the event
code (B#16#2942) for the acknowledgement of a
time error when reading the I/O. If the same,
jump to ”Aerr".
Compare the event code of OB122 with the event
code (B#16#2943) for an addressing error (writing
to a module that does not exist). If not the
same, jump to ”Stop."
Label ”Aerr": transfers DW#16#2912 (binary 10010)
to SFC44 (REPL_VAL). SFC44 loads this value in
accumulator 1 (and substitutes the value that
triggered the OB122 call). The SFC error code is
saved in #Error.

Compare #Error with 0 (if the same, no error
occurred when executing OB122). End the block if
no error occurred.
"Stop" label: calls SFC46 ”STP" and changes the
CPU to STOP mode.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-29

11.11.4 Time Error (OB80)

Description

The operating system of the CPU calls OB80 when a time error occurs. Time errors
include the following, for example:

• Maximum cycle time exceeded

• Time-of-day interrupts skipped by moving the time forward

• Delay too great when processing a priority class

Programming OB80

You must create OB80 as an object in your program using STEP 7 Lite. Write the
program to be executed in OB80 in the generated block and download it to the
CPU as part of your user program.

You can use OB80, for example, for the following purposes:

• To evaluate the start information of OB80 and to determine which time-of-day
interrupts were skipped.

• By including SFC29 CANTINT, you can deactivate the skipped time-of-day
interrupt so that it is not executed and only time-of-day interrupts relative to the
new time will be executed.

If you do not deactivate skipped time-of-day interrupts in OB80, the first skipped
time-of-day interrupt is executed, all others are ignored.

If you do not program OB80, the CPU changes to STOP mode when a time error is
detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding
Help on Blocks.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-30 A5E00293884-01

11.11.5 Power Supply Error (OB81)

Description

The operating system of the CPU calls OB81 when in the central controller or in an
expansion unit one of the following element fails, or when the failure is rectified
(call for incoming and outgoing event):

• The 24V power supply

• A battery

• The entire backup

Programming OB81

You can insert OB81 as a block in your S7 program with STEP 7. Write the
program to be edited in OB81 to the block you have created.

You can, for example, use OB81 for the following purposes:

• To evaluate the start information of OB81 and determine which power supply
error has occurred

• To identify the number of the rack with the defective power supply

• To control a lamp at an operator station to notify maintenance personnel that a
battery needs to be changed

If you do not program OB81, unlike all other asynchronous error OBs, the CPU
does not change to STOP mode when a power supply error is detected. Instead,
the error is entered in the diagnostics buffer, and the corresponding LED on the
front panel indicates the error.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding
Help on Blocks.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-31

11.11.6 Diagnostic Interrupt (OB82)

Description

The operating system of the CPU calls OB82 when a module with diagnostics
capability on which you have enabled the diagnostic interrupt detects an error and
when the error is eliminated (the OB is called when the event comes and goes).

Programming OB82

You must create OB82 as an object in your program using STEP 7 Lite. Write the
program to be executed in OB82 in the generated block and download it to the
CPU as part of your user program.

You can, for example, use OB82 for the following purposes:

• To evaluate the start information of OB82.

• To obtain exact diagnostic information about the error that has occurred.

When a diagnostic interrupt is triggered, the module on which the problem has
occurred automatically enters 4 bytes of diagnostic data and their start address in
the start information of the diagnostic interrupt OB and in the diagnostic buffer. This
provides you with information about when an error occurred and on which module.

With a suitable program in OB82, you can evaluate further diagnostic data for the
module (which channel the error occurred on, which error has occurred). Using
SFC51 RDSYSST, you can read out the module diagnostic data and enter this
information in the diagnostic buffer with SFC52 WRUSRMSG. You can also send a
user-defined diagnostic message to a monitoring device.

If you do not program OB82, the CPU changes to STOP mode when a diagnostic
interrupt is triggered.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding
Help on Blocks.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-32 A5E00293884-01

11.11.7 CPU Hardware Fault (OB84)

Description
The operating system of the CPU calls OB84 when an error is detected on the
interface to the MPI network, to the communication bus, or to the network card for
the distributed I/Os; for example, if an incorrect signal level is detected on the line.
The OB is also called when the error is eliminated (the OB is called when the event
comes and goes).

Programming OB84
You must create OB84 as an object in your program using STEP 7 Lite. Write the
program to be executed in OB84 in the generated block and download it to the
CPU as part of your user program.

You can use OB84, for example, for the following purposes:

• To evaluate the start information of OB84.

• By including system function SFC52 WRUSMSG to send a message to the
diagnostic buffer.

If you do not program OB84, the CPU changes to STOP mode when a CPU
hardware fault is detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding
Help on Blocks.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-33

11.11.8 Program Execution Error (OB85)

Description
The operating system of the CPU calls OB85:

• When a start event for an interrupt OB exists but the OB cannot be executed
because it has not been downloaded to the CPU.

• When an error occurs accessing the instance data block of a system function
block.

• When an error occurs updating the process image table (module does not exist
or defective).

Programming OB85
You must create OB85 as an object in your S7 program using STEP 7 Lite. Write
the program to be executed in OB85 in the generated block and download it to the
CPU as part of your user program.

You can use OB85, for example, for the following purposes:

• To evaluate the start information of OB85 and determine which module is
defective or not inserted (the module start address is specified).

• By including SFC49 LGC_GADR to find out the slot of the module involved.

If you do not program OB85, the CPU changes to STOP mode when a priority
class error is detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding
Help on Blocks.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-34 A5E00293884-01

11.11.9 Rack Failure (OB86)

Description

The operating system of the CPU calls OB86 when a rack failure is detected; for
example:

• Rack failure (missing or defective IM or break on the connecting cable)

• Distributed power failure on a rack

• Failure of a DP slave in a master system of the PROFIBUS-DP bus system

The OB is also called when the error is eliminated (the OB is called when the event
comes and goes).

Programming OB86

You must create OB86 as an object in your program using STEP 7 Lite. Write the
program to be executed in OB86 in the generated block and download it to the
CPU as part of your user program.

You can use OB86, for example, for the following purposes:

• To evaluate the start information of OB86 and determine which rack is defective
or missing.

• To enter a message in the diagnostic buffer with system function SFC 52
WR_USMSG and to send the message to a monitoring device.

If you do not program OB86, the CPU changes to "STOP" mode when a rack
failure is detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding
Help on Blocks.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-35

11.11.10 Communication Error (OB87)

Description

The operating system of the CPU calls OB87 when a communication error occurs
in data exchange using communication function blocks or in global data
communication, for example:

• When receiving global data, an incorrect frame ID was detected

• The data block for the status information of the global data does not exist or is
too short.

Programming OB87

You must create OB87 as an object in your program using STEP 7 Lite. Write the
program to be executed in OB87 in the generated block and download it to the
CPU as part of your user program.

You can use OB87, for example, for the following purposes:

• To evaluate the start information of OB87.

• To create a data block if the data block for the status information of global data
communication is missing.

If you do not program OB87, the CPU changes to STOP mode when a
communication error is detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding
Help on Blocks.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-36 A5E00293884-01

11.11.11 Programming Error (OB121)

Description

The operating system of the CPU calls OB121 when a programming error occurs,
for example:

• Addressed timers do not exist.

• A called block is not loaded.

Programming OB121

You must create OB121 as an object in your program using STEP 7 Lite. Write the
program to be executed in OB121 in the generated block and download it to the
CPU as part of your user program.

You can use OB121, for example, for the following purposes:

• To evaluate the start information of OB121.

• To enter the cause of an error in a message data block.

If you do not program OB121, the CPU changes to STOP mode when a
programming error is detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding
Help on Blocks.

 Diagnostics

Programming with STEP 7 Lite V3.0
A5E00293884-01 11-37

11.11.12 I/O Access Error (OB122)

Description

The operating system of the CPU calls OB122 when a STEP 7 Lite instruction
accesses an input or output of a signal module to which no module was assigned
at the last warm restart, for example:

• Errors with direct I/O access (module defective or missing)

• Access to an I/O address that is not known to the CPU.

Programming OB122

You must create OB122 as an object in your program using STEP 7 Lite. Write the
program to be executed in OB122 in the generated block and download it to the
CPU as part of your user program.

You can use OB122, for example, for the following purposes:

• To evaluate the start information of OB122

• To call the system function SFC 44 and supply a substitute value for an input
module so that program execution can continue with a meaningful, process-
dependent value.

If you do not program OB122, the CPU changes to STOP mode when an I/O
access error is detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding
Help on Blocks.

Diagnostics

 Programming with STEP 7 Lite V3.0
11-38 A5E00293884-01

Programming with STEP 7 Lite V3.0
A5E00293884-01 12-1

12 Printing Project Documentation

12.1 Project Documentation Overview

In STEP 7 Lite, you can freely and individually create your project documentation.
To open the view for creating your project documentation layout, double-click on
the "Project Documentation" icon.

• In the print object list, select your desired print objects for your project
documentation, for example, cover sheet, cross reference list, symbols table,
block folder, etc. and adapt their sequence according to the desired result.

• The presentation (display with/without symbols etc.) of individual print objects
can be customized in "Options".

• The font type/size/style can be customized for every print object. If individual
differentiation of print objects is not desired, you can use "Standard" in Font
type format templates or a previously saved template.

• The "Portrait" or "Landscape" formats, as well as the layout for headers and
footers can be customized for every print object in the page layout. If you want a
universal page layout you can also select the "Standard" layout in Page layout
format templates or a previously saved template.

• To have an initial check on every print object, you can open each one the a
"Print Preview".

• After having customized your complete project documentation, you can save all
changes to use it as Document Template at a later date. Thus, you can create
your own documentation for different applications, for example, for the
"Acceptance Documentation", for commissioning or service and maintenance.

• Before you print out your project documentation you can select the printer and
customize it to your individual requirements.

Printing Project Documentation

 Programming with STEP 7 Lite V3.0
12-2 A5E00293884-01

 Printing Project Documentation

Programming with STEP 7 Lite V3.0
A5E00293884-01 12-3

12.2 Creating the Project Documentation

STEP 7 Lite allows you to freely design a project documentation and to select
elements for the printout using print objects.

Selecting Print Objects

To put together the content of your project documentation, follow the steps outlined
below:

1. Open the view in which you can design your project documentation be selecting
the menu command View -> Project Documentation. As an alternative, you
can display the view by double-clicking on “Project Documentation” (in the
project window).
To the left you will see the list of all print objects that will appear in your printout.
The right hand side lists the available print objects (the “Contents” button below
the title “Settings” is activated).

2. Now drag the print objects you want from the right to the left to the position in
the list at which they will later be printed. Alternatively, you can select the print
object on the right and insert it into your print object list using the "Move print
object" button. You can insert some of the print objects (such as the cover
sheet) several times in your project documentation.

In the print objects list, uncheck the options box for print objects you want to
exclude temporarily from your project documentation. To remove a print object
from your print list, drag it back to the right side. Alternatively, you can select the
print object on the left and delete it from the print list with the "Remove print object"
button.

Sorting the Print Objects

You can customize the sequence of the print objects in the print list (and, therefore,
in the printout).

1. Select the print object you want to reposition for your project documentation
printout.

2. Select the "Up" or "Down" button if you want to print out the object at another
position.

The table of contents is an exception. The TOC can only be positioned at the
beginning or end of the project documentation. You can, however, include any
number of cover sheets as print objects before the table of contents.

With more than one cover sheet, the "TOC" position in the print list determines the
print object position at which the listing and numbering of objects in the TOC starts.
For example, if the "TOC" is positioned between the 2nd and the 3rd cover sheet
the 3rd cover sheet is included and numbered in the table of contents. The cover
sheets 1 and 2 will not appear in the TOC.

Printing Project Documentation

 Programming with STEP 7 Lite V3.0
12-4 A5E00293884-01

 Printing Project Documentation

Programming with STEP 7 Lite V3.0
A5E00293884-01 12-5

12.3 Print Objects

The following table lists the printable objects from the print list. You will also find
information as to whether a print preview is available and whether the print object
can be created more than once.

Print Object Symbol Print Preview
Available?

Multiple
Printouts
Possible?

Remarks

Cover Sheet

Yes Yes Text entry and font selection
possible

The plus symbol in the list of
available print objects indicates that
an object can be used multiple
times.

Table of Contents Yes No The TOC is always printed out at
the end of the project
documentation. With multiple cover
sheets, the position of the "TOC" in
the print list decides print object
after which the objects are listed
and numbered in the TOC. If the
position of the "TOC" is, for
example, between the 2nd and the
3rd cover sheet the 3rd cover sheet
is listed in the TOC and included in
the numbering. The cover sheets 1
and 2 do not appear in the TOC.

Symbol Table Yes Yes Filter and sorting can be set

Cross References

Yes Yes Filtering and sorting can be
customized

The plus symbol in the list of
available print objects indicates that
an object can be used multiple
times.

Addresses Used Yes No -

Program Structure Yes No Prints a graphical program tree
structure

Hardware offline Yes No Prints the hardware configuration

Project overview Yes No Categories are also printed

Printing Project Documentation

 Programming with STEP 7 Lite V3.0
12-6 A5E00293884-01

Print Object Symbol Print Preview
Available?

Multiple
Printouts
Possible?

Remarks

Block folder Yes No Move the print objects
DB/OB/FB/FC/UDT/SFB/SFCfolder
from the list of available print
objects to your print object list per
Drag&Drop or via "Move print
object" button.

A plus sign in the print object list
indicates that additional print objects
are available in the subfolder of the
print object folder. Click on the plus
sign to expand the view to display
all blocks of the folder as print
objects.

The options configuration of the
block folder is default for the blocks
in the lower level. To change the
options for individual blocks, check
mark the options box "Individual
customization" and customize as
desired.

DB folder Yes No

Data blocks (DBs) Yes No

OB folder Yes No

Organization
blocks (OBs)

 Yes No

FB folder Yes No

Function blocks
(FBs)

 Yes No

FC folder Yes No

Functions (FCs) Yes No

UDT folder Yes No

Data types (UDTs) Yes No

SFB folder Yes No

System function
block (SFBs)

 Yes No

SFC folder Yes No

System functions
(SFCs)

 Yes No

 Printing Project Documentation

Programming with STEP 7 Lite V3.0
A5E00293884-01 12-7

12.4 Options, Determining the Font Type and Page Layout

Presentation and layout of the individual print objects is determined in the
"Options", "Fonts" and "Page layout" tabs.

To set "Options", "Font" or "Page layout" for individual print objects, follow the
steps outlined below:

1. Click on the "Objects" button (below the "Settings" title).

2. Select the print object in the left print list and select the required tab.

Options

Options can be set for

• Block folders and for blocks

• Symbol tables

• Hardware offline

• Cross references

• Cover sheets

The settings for block folders also apply to single blocks contained in them unless
the “Individual settings” option is activated in the block options (the default setting
is deactivated). If this option is activated, you can make different settings for a
block.

Example of Options for Block Folders and Blocks:

• Open logic block in
You can print out the block(s) in the language they have been created in, or
select the "STL, "FDB" or "LAD" language for the printout.

• Display symbols
If this options box is checked all symbolic names of the operands of the print
object are used for the printout.

• Display symbol information
If this options box is checked all print object comment information on the symbol
is included in the printout.

• Display comments
If this options box is checked all instruction comments of the print object are
included in the printout.

Printing Project Documentation

 Programming with STEP 7 Lite V3.0
12-8 A5E00293884-01

Font

You can customize the text format individually for each print object.

Proportional and non-proportional text format can be set separately. Proportional
text format is used for text that is to appear in blocks, for example, code listings.

The sample text below demonstrates the print result to be expected.

You can use the "Standard" in Format Templates or a previously stored template if
a differentiation of print objects is not desired.

Page Layout

Headers, footers and their content as well as "Portrait" or "Landscape" page format
can be individually set in the page layout of every print object.

 Printing Project Documentation

Programming with STEP 7 Lite V3.0
A5E00293884-01 12-9

The header and footer range is split into a left, center and a right section. The
header appears in a single row, the footer in a double row. You can edit the
contents or insert them via insert menu ("Right" button).

The selected object is inserted in the left box when selected from the insert menu.
The object content is updated dynamically during the printout.

Depending on the print object, the following dynamic objects are available:

• Object: name of the print object

• Date: current date of printout

• TOD: current time-of-day at printout

• Page: current page (relative to the overall documentation)

• Total pages: total number of pages

• Project name / file name: Name of the STEP 7 Lite project

• Author: the block author

• Version: the block version

In addition to selecting objects from the Insert menu, you can also enter a static
text in a field.

You can select existing texts and objects and delete them with the DEL key.

If you want a uniform page layout for the print objects you can assign the
"Standard" format template or a previously stored template for page layout.

Printing Project Documentation

 Programming with STEP 7 Lite V3.0
12-10 A5E00293884-01

12.5 Defining and Using Templates

Templates have the advantage that you only have to customize them once for your
project documentation and then store them for retrieval.

Documentation Templates

Documentation templates are used to store all the project documentation settings
(this does not include individual settings for single blocks in block folders).

The settings that can be stored in a documentation template include the font and
the page layout set for the project.

By clicking on the “Save” button, you can save your individually defined
documentation settings as a template that you can then use for new projects.

Creating a Documentation Template with the Current Settings

1. Click on the “Save” button in the “Project Documentation” view (below the
“Documentation Template” title).

2. Select a destination and a name for the documentation template in the "Save
Documentation Template” dialog box.

Using the Documentation template

1. In the “Project Documentation” view, click on the “Load” button (below the
“Documentation Template” title).

2. Locate the documentation template you require in the “Load Documentation
Template” dialog box and select it.

 Printing Project Documentation

Programming with STEP 7 Lite V3.0
A5E00293884-01 12-11

Format Template Font

In font format templates you can edit and store repetitive settings for proportional
and non-proportional fonts.

Creating a New Font Format Template

1. Click on the “Objects” button (below the “Settings” title).

2. Select the “Font” tab".

3. Click on the "Font Format Template" button.

4. Click on the "New" button and enter a name for the format template.

5. Select the font, size, and style for proportional and non-proportional fonts.

6. If you want these fonts to apply to all new print objects, activate the option
"Default for new print objects".

7. Save the font format template with the "OK" or "Apply" button (choose "Apply" if
you want to keep the dialog box open).

Printing Project Documentation

 Programming with STEP 7 Lite V3.0
12-12 A5E00293884-01

Using Font Format Templates

You can now use your defined font format template in the "Font" tab for all print
objects. You can select the fonts from the “Font Format Template” drop-down list.

As soon as you change the settings of a selected font format template, the content
of the drop-down list changes to “Individual”.

Format Template for Page Layout

You can use the format template for page layout to store customized page layout
and the contents of headers and footers.

Creating New Format Templates for Page Layout
1. Click on the “Objects” button (below the “Settings” title).

2. Select the "Page Layout" tab.

3. Click on the "Page Layout Format Template" button.

4. Click on the “New” button and enter a name for the new format template.

5. Select the page format and define the header and footer lines.

6. If you want this page layout to apply to all new print objects, activate the option
“Default for new print objects".

7. Save the page layout format template with the "OK" or "Apply" button (choose
"Apply" if you want to keep the dialog box open).

 Printing Project Documentation

Programming with STEP 7 Lite V3.0
A5E00293884-01 12-13

Using Format Templates for Page Layout

You can now use this defined format template for page layout in the "Page Layout"
tab for all print objects. You can select the page layout from the “Page Layout
Format Template” drop-down list.

As soon as you change the settings of a selected page layout format template, the
content of the drop-down list changes to “Individual”.

12.6 Printing Project Documentation

You can initialize printing of the project documentation you have selected via "Print
Documentation" button. In the following dialog you can select and customize the
printer. The customization options depend on the used printer driver.

You can preview and check the printing result via "Print Preview" button.

Printing Individual Objects

To print, proceed as follows:

1. Open the appropriate object in the project window to display the information to
be printed.

2. You can print out the individual object via menu command File -> Print. In the
following dialog you can customize the printer settings before you start printing.

3. You can preview and check the printing result via File -> Print Preview.

The objects are printed according to the settings in the project documentation
(options, font type and page layout). If not customized, the printer will use the
default settings.

Printing Project Documentation

 Programming with STEP 7 Lite V3.0
12-14 A5E00293884-01

Programming with STEP 7 Lite V3.0
A5E00293884-01 13-1

13 Tips and Tricks

13.1 Exchanging Modules in the Hardware Configuration

If you are revising a station configuration and you want to exchange a module for
one with a new order number, for example, proceed as follows:

1. Use a drag-and-drop operation to drag the module from the catalog over the old
module that is already placed in the graphical or tabular view of the hardware
configuration.

2. Drop the new module. To the extent possible, the new module assumes the
parameters of the one that was already inserted.

This procedure is faster than exchanging modules by deleting the old module and
then inserting the new one and assigning parameters to it.

13.2 Testing with the Variable Table

For monitoring, modifying and forcing variables, note the following editing tips:

• You can enter symbols and addresses in both the "Symbol" column as well as
the "Address" column. The entry is written into the appropriate column
automatically.

• To display the modified value in the "Status value" column, you should set the
trigger point for monitoring mode to "Permanent".

• If the "Expanded" button is active:

- For modifying outputs, it is advisable to set the modifying mode to End of
Scan Cycle Every Cycle or End of Scan Cycle Once.

- For modifying inputs, it is advisable to set the modifying mode to Start of
Scan Cycle Every Cycle or Start of Scan Cycle Once.

- The "Permanent" monitoring mode combines both of the properties
discussed above.

• You can enter only symbols that are already defined in the symbol table.
You must enter a symbol exactly as it is defined in the symbol table.
Symbol names that contain special characters must be enclosed in quotation
marks (for example, "Motor.Off," "Motor+Off," "Motor-Off").

• The monitoring mode can be defined while monitoring variables.

• Entering a Contiguous Address Range:
Use the menu command Insert > Address Range.

Tips and Tricks

 Programming with STEP 7 Lite V3.0
13-2 A5E00293884-01

• Changing the display format of several rows of the table at the same time:

- Select the area of the table in which you want to change the display format
by holding the left mouse button down and dragging across the desired row
selection buttons.

- Select the presentation with the menu command View > Select Display
Format. The format is changed only for those rows of the selected table for
which a format change is permitted.

13.3 Working Without Original Project on the
Programming Device/PC

If there is no original project on the programming device or PC (service case) and
you want to customize modules, the CPU or programs, you can do this as follows:

1. Make sure the PG/PC is linked online to the CPU.

2. Select the object you want to edit in the online project window ("Online CPU"
tab); for example, the "Online CPU" symbol, if you want to make extensive
changes.

3. Select the menu command File > Download to Programming Device
If no project is opened, a new project will be created automatically.
All selected objects are downloaded to the programming device. You can
subsequently open and edit them via the project window ("Project" tab).

4. Save your project changes (menu command File > Save).

5. Download the changes to the CPU (menu command File > Download to CPU.

If you open blocks and the configuration online (in the project window, "Online
CPU" tab), you will not be able to edit these objects.

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-1

A Appendix

A.1 Operating Modes

A.1.1 Operating Modes and Mode Transitions

Operating Modes

Operating modes describe the behavior of the CPU at a particular point in time.
Knowing the operating modes of CPUs is useful when programming the startup,
testing the controller, and for troubleshooting.

CPUs can adopt the following operating modes:

• STOP

• STARTUP

• RUN

• HOLD

In STOP mode, the CPU checks whether all the configured modules or modules
set by the default addressing actually exist and sets the I/Os to a predefined initial
status. The user program is not executed in STOP mode.

In STARTUP mode, a distinction is made between the startup types "warm restart"
and "cold restart."

• In a warm restart, program processing starts at the beginning of the program
with initial settings for the system data and user address areas (the non-
retentive timers, counters, and bit memory are reset).

• In a cold restart, the process-image input table is read in and the STEP 7 Lite
user program is processed starting at the first command in OB1 (also applies to
warm restart).

- Any data blocks created by SFC in the work memory are deleted; the
remaining data blocks have the preset value from the load memory.

- The process image and all timers, counters, and bit memory are reset,
regardless of whether they were assigned as retentive or not.

In RUN mode, the CPU executes the user program, updates the inputs and
outputs, services interrupts, and process error messages.

In HOLD mode, processing of the user program is halted and you can test the user
program step by step. The HOLD mode cannot be set in STEP 7 Lite.

In all these modes, the CPU can communicate via the multipoint interface (MPI).

Appendix

 Programming with STEP 7 Lite V3.0
A-2 A5E00293884-01

Other Operating Modes

If the CPU is not ready for operation, it is in one of the following modes:

• Off, in other words, the power supply is turned off.

• Defective, in other words, a fault has occurred.
To check whether the CPU is really defective, switch the CPU to STOP and turn
the power switch off and then on again. If the CPU starts up, display the
diagnostic buffer to analyze the problem. If the CPU does not start up it must be
replaced.

Operating Mode Transitions

The following figure shows the operating modes and mode transitions for S7-300
CPUs:

STARTUP
STOP RUN1.

2.

3.

7.

8.

HOLD

4.5.

6.

9.10.

The table shows the conditions under which the operating modes can change.

Transition Description

1. After you turn on the power supply, the CPU is in STOP mode.

2. The CPU changes to STARTUP mode:
• After the CPU is changed to RUN or RUN-P using the keyswitch or by

the programming device.
• After a startup triggered automatically by turning on the power.
• If the RESUME or START communication function is executed.
In both cases the keyswitch must be set to RUN or RUN-P.

3. The CPU changes back to STOP mode when:
• An error is detected during the startup.
• The CPU is changed to STOP by the keyswitch or on the programming

device.
• A stop command is executed in the startup OB.
• The STOP communication function is executed.

4. The CPU changes to HOLD mode when a breakpoint is reached in the
startup program. (You cannot set breakpoints in STEP 7 Lite.)

5. The CPU changes to STARTUP mode when the breakpoint in a startup
program was set and the ”EXIT HOLD" command was executed (test
function).

6. The CPU changes back to STOP mode when:
• The CPU is changed to STOP with the keyswitch or by the

programming device.
• The STOP communication command is executed.

7. If the startup is successful, the CPU changes to RUN.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-3

Transition Description

8. The CPU changes back to STOP mode when:
• An error is detected in RUN mode and the corresponding OB is not

loaded.
• The CPU is changed to STOP by the keyswitch or on the programming

device.
• A stop command is executed in the user program.
• The STOP communication function is executed.

9. The CPU changes to HOLD mode when a breakpoint is reached in the user
program. (You cannot set breakpoints in STEP 7 Lite.)

10. The CPU changes to RUN mode when a breakpoint was set and the ”EXIT
HOLD" command is executed.

Operating Mode Priority

If a number of operating mode transitions are requested simultaneously, the
operating mode with the highest priority is selected. If, for example, the mode
selector is set to RUN and you attempt to set the CPU to STOP at the
programming device, the CPU will change to STOP because this mode has the
highest priority.

Priority Mode

Highest STOP

 HOLD

 STARTUP

Lowest RUN

Appendix

 Programming with STEP 7 Lite V3.0
A-4 A5E00293884-01

A.1.2 STOP Mode

The user program is not executed in STOP mode. All the outputs are set to
substitute values so that the controlled process is in a safe state. The CPU makes
the following checks:

• Are there any hardware problems(for example, modules not available)?

• Should the default setting apply to the CPU or are there parameter sets?

• Are the conditions for the programmed startup behavior satisfied?

• Are there any system software problems?

In STOP mode, the CPU can also receive global data and passive one-way
communication is possible using communication SFBs for configured connections
and communication SFCs for non-configured connections.

Memory Reset

The CPU memory can be reset in STOP mode. The memory can be reset manually
using the keyswitch (MRES) or from the programming device (for example, before
downloading a user program).

Resetting the CPU memory returns the CPU to its initial status, as follows:

• The entire user program in the work memory and in the RAM load memory and
all address areas are cleared.

• The system parameters and the CPU and module parameters are reset to the
default settings. The MPI parameters set prior to the memory reset are retained.

• If a memory card (Flash EPROM) is plugged in, the CPU copies the user
program from the memory card to the work memory (including the CPU and
module parameters if the appropriate configuration data are also on the memory
card).

The diagnostic buffer, the MPI parameters, the time, and the run-time meters are
not reset.

A.1.3 STARTUP Mode

Before the CPU can start processing the user program, a startup program must
first be executed. By programming startup OBs in your startup program, you can
specify certain settings for your cyclic program.

There are two types of startup: warm restart and cold restart.

The features of the STARTUP mode are as follows:

• The program in the startup OB is processed (OB100 for warm restart, OB102
for cold restart).

• No time-driven or interrupt-driven program execution is possible.

• Timers are updated.

• Run-time meters start running.

• Disabled digital outputs on signal modules (can be set by direct access).

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-5

Warm Restart

A warm restart is always permitted unless the system has requested a memory
reset. A warm restart is the only possible option after:

• Memory reset

• Downloading the user program with the CPU in STOP mode

• I stack/B stack overflow

• Warm restart aborted (due to a power outage or changing the mode selector
setting)

• When the interruption before a hot restart exceeds the selected time limit.

Manual Warm Restart

A manual warm restart can be triggered by the following:

• The mode selector

• The corresponding command on the programming device or by communication
functions

(if the mode selector is set to RUN or RUN-P)

Automatic Warm Restart

An automatic warm restart can be triggered following power up in the following
situations:

• The CPU was not in STOP mode when the power outage occurred.

• The mode selector is set to RUN or RUN-P.

• The CPU was interrupted by a power outage during a warm restart (regardless
of the programmed type of restart).

Automatic Warm Restart Without a Backup Battery

If you operate your CPU without a backup battery (if maintenance-free operation is
necessary), the CPU memory is automatically reset and a warm restart executed
after the power is turned on or when power returns following a power outage. The
user program must be located on a flash EPROM (memory card).

Retentive Data Areas Following Power Down

With STEP 7 Lite, within the framework of CPU parameter assignment, you can
specify memory bits, timers, counters, and areas in data blocks as retentive to
avoid data loss caused by a power outage. The areas that are programmed as
retentive are maintained in the NV-RAM inside the CPU if there is a power outage.

The following table "Retentive Behavior in the Work Memory (for EPROM and RAM
Load Memories)" shows the data that are retained on S7-300 CPUs during a warm
restart and a cold restart.

Appendix

 Programming with STEP 7 Lite V3.0
A-6 A5E00293884-01

Retentive Behavior in the work Memory (for EPROM and RAM Load Memories)

Startup Type (S7-300) Addresses Addresses after Startup

Restart (warm start)

(CPU has battery backup)

Logic and data blocks are maintained.

Restart (warm start)

(CPU has battery backup)

Bit memory, timers, counters are retained only if they were
programmed as retentive in the
parameter assignment; otherwise they
are reset.

Restart (warm start) (CPU
is does not have battery
backup)

Logic and data blocks are copied from the EPROM load
memory to the work memory.

Those data block contents that were
programmed as retentive in the
parameter assignment are retained;
blocks that were loaded afterwards or
generated by the program are lost.

Restart (warm start) (CPU
is does not have battery
backup)

Bit memory, timers, counters are retained only if they were
programmed as retentive in the
parameter assignment; otherwise they
are reset.

Cold restart Logic and data blocks are copied from the EPROM load
memory to the work memory.

Cold restart Bit memory, timers, counters are reset (if they were programmed
as retentive during parameter
assignment).

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-7

Startup Activities

The following table shows which activities are performed by the CPU during
startup:

Activities in Order of Execution In Warm Restart In Cold Restart

Clear I stack/B stack X X

Clear volatile memory bits, timers, counters X 0

Clear all memory bits, timers, counters 0 X

Clear process-image output table X X

Reset outputs of digital signal modules X X

Discard hardware interrupts X X

Discard time-delay interrupts x x

Discard diagnostic interrupts X X

Update the system status list (SZL) X X

Evaluate module parameters and transfer to
modules or transfer default values

X X

Execution of the relevant startup OB X X

Execute remaining cycle (part of the user program
not executed due to the power down)

0 0

Update the process-image input table X X

Enable digital outputs (cancel OD signal) after
transition to RUN

X X

X means is performed

0 means is not performed

Aborting a Startup

If an error occurs during startup, the startup is aborted and the CPU changes to or
remains in STOP mode.

An aborted warm restart must be repeated.

A startup (restart (warm start) or hot restart) is not executed or it is aborted in the
following situations:

• The keyswitch of the CPU is set to STOP.

• A memory reset is requested.

• A memory card with an application code that is not permitted for STEP 7 Lite is
plugged in (for example, STEP 5).

• If the user program contains an OB that the CPU does not recognize or that has
been disabled.

• If, after power on, the CPU recognizes that not all the modules listed in the
configuration table created with STEP 7 Lite are actually inserted (difference
between preset and actual parameter assignment not permitted).

• If errors occur when evaluating the module parameters.

Appendix

 Programming with STEP 7 Lite V3.0
A-8 A5E00293884-01

Sequence of Activities

The following figure shows the activities of the CPU during STARTUP and RUN:

The startup type "Hot Restart" is included only for the sake of being complete
(S7-400 only); it is not relevant for the module spectrum that you can program with
STEP 7 Lite.

= Behavior can be influenced by user actions

RUN STOP

Warm restart-
OB100 Request for a

warm restart

Read in process-
image input table

(PII)

Process the user
program
(see 2)

Output the process-
image output table

(PIQ)

Outputs
are

enabled
(see 3)

Peripheral
outputs

are switched to a
safe state.

(see 1)

User data
Delete
PII/PIQ,

non-retentive
memory bits,

timers, counters
Retained

retentive memory
bits, timers,

counters, and DBs
(see 4)

STARTUP

Peripheral -
outputs

outside of the
process-

image
(see 1)

Transfer PIQ
to I/O

modules

Cold restart - OB102 Request for a
cold restart

Peripheral
outputs

are switched to a
safe state .

(see 1)

User data
Delete

PII/PIQ, retentive
and

non-retentive
memory bits,
timers, and

counters
Initialize with load

values
all DBs

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-9

Key to the figure "Activities of the CPU during STARTUP and RUN"

1. All peripheral outputs are switched to a safe state (default value = 0) on the hardware
side by the I/O modules. This switch takes place regardless of whether the user program
employs the outputs inside the process-image area or outside of it.

If you are using signal modules that have substitute value capability, you can
assign parameters to the behavior of the outputs, such as Keep Last Value.

2. A current process-image input table is also available to the interrupt OBs the first time
that they are called up.

3. You can determine the status of the peripheral outputs in the first scan cycle of the user
program by taking the following steps:

- Use output modules to which you can assign parameters to enable the
output of substitute values or to keep the last value.

- Preset the outputs in the startup OB (OB100, OB102).

4. In S7-300 systems that are not backed up, only those DB areas that were configured as
retentive are retained.

A.1.4 RUN Mode

In RUN mode, the CPU executes the cyclic, time-driven, and interrupt-driven
program, as follows:

• The process image of the inputs is read in.

• The user program is executed.

• The process-image output table is output.

The active exchange of data between CPUs using global data communication
(global data table) and using communication SFBs for configured connections and
using communication SFCs for non-configured connections is only possible in RUN
mode.

The following table shows an example of when data exchange is possible in
different operating modes:

Type of Communication Mode of CPU 1 Direction of Data
Exchange

Mode of CPU 2

Global data communication RUN ↔ RUN
 RUN → STOP/HOLD
 STOP ← RUN
 STOP X STOP
 HOLD X STOP/HOLD
One-way communication RUN → RUN
with communication SFBs RUN → STOP/HOLD
Two-way with communication
SFBs

RUN ↔ RUN

One-way communication RUN → RUN
with communication SFCs RUN → STOP/HOLD
Two-way with communication
SFCs

RUN ↔ RUN

↔ means data exchange is possible in both directions
→ means data exchange is possible in only one direction
X means data exchange is not possible

Appendix

 Programming with STEP 7 Lite V3.0
A-10 A5E00293884-01

Mode Selector and Operating Mode

• Mode selector is a keyswitch:
On CPUs with keyswitches, the mode is obtained when the keyswitch is set to
RUN or RUN-P.
In the RUN setting, access to the load memory of the CPU is not possible from
a PG/PC unless a password for protection level 1 was set in the CPU
parameters and the password is known.
In the RUN-P setting, access is unrestricted if no password was set in the CPU
parameters.

• Mode selector is a toggle switch (CPU 31xC):
On CPUs with toggle switches, there is the switch setting RUN but there is no
RUN-P setting. In the RUN setting, access is unrestricted if no password was
set in the CPU parameters (corresponds to RUN-P on CPUs with a keyswitch).

A.1.5 HOLD Mode

The HOLD mode is a special mode. This is only used for test purposes during
startup or in RUN mode. The HOLD mode means the following:

• All timers are frozen: timers and run-time meters are not processed, monitoring
times are stopped, the basic clock pulses of the time-driven levels are stopped.

• The real-time clock runs.

• Outputs are not enabled but can be enabled explicitly for test purposes.

• Inputs and outputs can be set and reset.

• If a power outage occurs on a CPU with a backup battery while in HOLD mode,
the CPU changes to STOP when the power returns but does not execute an
automatic hot restart or warm restart. CPUs without battery backup execute an
automatic warm restart when power returns.

• Global data can be received and passive one-way communication using
communication SFBs for configured connections and communication SFCs for
non-configured connections is possible (see also table in RUN Mode).

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-11

A.2 Memory Areas of S7 CPUs

A.2.1 Splitting the Memory Areas

The memory of an S7 CPU can be divided into three areas (see figure below):

• The load memory is used for user programs without symbolic address
assignments or comments (these remain in the memory of the programming
device). The load memory can be either RAM or EPROM.

• Blocks not marked as required for startup will be stored only in the load
memory.

• The work memory (integrated RAM) contains the parts of the program relevant
for running your program. The program is executed only in the work memory
and system memory areas.

• The system memory (RAM) contains the memory elements provided by every
CPU for the user program, such as the process-image input and output tables,
bit memory, timers, and counters. The system memory also contains the block
stack and interrupt stack.

• In addition to the areas above, the system memory of the CPU also provides
temporary memory (local data stack) that contains temporary data for a block
when it is called. This data only remains valid as long as the block is active.

Local data stack

Process-image input/output tables,
bit memory, timers, counters

Dynamic load memory (RAM,
integrated or on a memory card):
contains the user program

Retentive load memory (FEPROM,
on memory card or integrated in S7-
300 CPUs):
contains the user program

Work memory (RAM)
contains the executable user
program
(for example logic and data blocks)

System memory (RAM) contains:

CPU

Block stack

Interrupt stack

Diagnostic buffer

Splitting the Memory Areas

Appendix

 Programming with STEP 7 Lite V3.0
A-12 A5E00293884-01

A.2.2 Load Memory and Work Memory

When you download the user program from the programming device to the CPU,
only the logic and data blocks are loaded in the load and work memory of the CPU.

The symbolic address assignment (symbol table) and the block comments remain
on the programming device.

Dividing Up the User Program

To ensure fast execution of the user program and to avoid unnecessary load on
the work memory that cannot be expanded, only the parts of the blocks relevant for
program execution are loaded in the work memory.

Parts of blocks that are not required for executing the program (for example, block
headers) remain in the load memory.

The following figure shows a program being loaded in the CPU memory.

Comments

Symbols

Programming
device

Saved on the hard disk

Entire logic
blocks

Entire data
blocks

Load memory Work memory

S7-400
S7-300

Parts of logic and
data blocks
relevant to

program execution

Logic blocks

Data blocks

 Note

The CPU saves data blocks that are created in the user program with the help of
system functions (for example, SFC22 CREAT_DB) entirely in the work memory.

Some CPUs have separately managed areas for code and data in the work
memory. The size and assignment of these areas is shown in the "Memory" tab of
the Module Information for these CPUs.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-13

Identifying Data Blocks as "Not Relevant for Execution"

Data blocks that were programmed in a source file as part of an STL program can
be identified as ”Not Relevant for Execution" (keyword UNLINKED). This means
that when they are downloaded to the CPU, the DBs are stored only in the load
memory. The content of such blocks can, if necessary, be copied to the work
memory using SFC20 BLKMOV.

This technique saves space in the work memory. The expandable load memory is
then used as a buffer (for example, for formulas for a mixture: only the formula for
the next batch is loaded in the work memory).

Load Memory Structure

The load memory can be expanded using memory cards. Refer to your
S7-300 Programmable Controller, Hardware and Installation Manual.

The load memory can also have an integrated EPROM part as well as an
integrated RAM part in S7-300 CPUs. Areas in data blocks can be declared as
retentive by assigning parameters in STEP 7 (see Retentive Memory Areas on
S7-300 CPUs).

Load Memory Behavior in RAM and EPROM Areas

Depending on whether you select a RAM or an EPROM memory card to expand
the load memory, the load memory may react differently during downloading,
reloading, or memory reset.

The following table shows the various loading methods:

Memory Type Method of Loading Type of Loading

RAM Downloading and deleting individual
blocks

PG-CPU connection

 Downloading and deleting an entire
program

PG-CPU connection

 Reloading individual blocks PG-CPU connection

Integrated or plug-in
EPROM

Downloading entire programs PG-CPU connection

Plug-in EPROM Downloading entire programs Uploading the EPROM to
the PG and inserting the
memory card in the CPU
Downloading the EPROM
to the CPU

Programs stored in RAM are lost when you reset the CPU memory (MRES) or if
you remove the CPU or RAM memory card.

Programs saved on EPROM memory cards are not erased by a CPU memory
reset and are retained even without battery backup (transport, backup copies).

Appendix

 Programming with STEP 7 Lite V3.0
A-14 A5E00293884-01

A.2.3 System Memory

A.2.3.1 Using the System Memory Areas

The system memory of the S7 CPUs is divided into address areas (see table
below). Using instructions in your program, you address the data directly in the
corresponding address area.

Address Area Access via Units of
Following Size

S7 Notation
(IEC)

Description

Process image input
table

Input (bit) I At the beginning of the scan cycle,
the CPU reads the inputs from the
input modules and records the values
in this area.

 Input byte IB

 Input word IW

 Input double word ID

Process image
output table

Output (bit) Q During the scan cycle, the program
calculates output values and places
them in this area. At the end of the
scan cycle, the CPU sends the
calculated output values to the output
modules.

 Output byte QB

 Output word QW

 Output double word QD

Bit memory Memory (bit) M This area provides storage for interim
results calculated in the program.

 Memory byte MB

 Memory word MW

 Memory double word MD

Timers Timer (T) T This area provides storage for timers.

Counters Counter (C) C This area provides storage for
counters.

Data block Data block, opened with
"OPN DB":

DB Data blocks contain information for
the program. They can be defined for
general use by all logic blocks
(shared DBs) or they are assigned to
a specific FB or SFB (instance DB).

 Data bit DBX

 Data byte DBB

 Data word DBW

 Data double word DBD

 Data block, opened with
"OPN DI":

DI

 Data bit DIX

 Data byte DIB

 Data word DIW

 Data double word DID

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-15

Address Area Access via Units of
Following Size

S7 Notation
(IEC)

Description

Local data Local data bit L This area contains the temporary
data of a block while the block is
being executed. The L stack also
provides memory for transferring
block parameters and for recording
interim results from Ladder Logic
networks.

 Local data byte LB

 Local data word LW

 Local data double word LD

Peripheral (I/O)
area:

inputs

Peripheral input byte PIB The peripheral input and output areas
allow direct access to central and
distributed input and output modules
(DP).

 Peripheral input word PIW

 Peripheral input double
word

PID

Peripheral (I/O)
area:

outputs

Peripheral output byte PQB

 Peripheral output word PQW

 Peripheral output double
word

PQD

Refer to the following CPU manual or instruction list for information on which
address areas are possible for your CPU:

• S7-300 Programmable Controller, Hardware and Installation Manual

• S7-300 Programmable Controller, Instruction List

Appendix

 Programming with STEP 7 Lite V3.0
A-16 A5E00293884-01

A.2.3.2 Process-Image Input/Output Tables

If the input (I) and output (Q) address areas are accessed in the user program, the
program does not scan the signal states on the digital signal modules but accesses
a memory area in the system memory of the CPU and distributed I/Os. This
memory area is known as the process image.

The process image is divided into two parts: the process-image input table and the
process-image output table.

Requirement for Accessing the Process Image

The CPU can only access the process image of the modules that you have
configured with STEP 7 Lite.

Updating the Process Image

The process image is updated cyclically by the operating system. The following
figure shows the processing steps within a scan cycle, showing a comparison
between the existing CPUs and the new CPUs available from October 1998.

...

Execute the user program (OB1
and all the blocks called in it)

Transfer the values of the process-
image output table to the modules

Read the inputs from the modules
and update the data in the process-
image input table

F
re

e
sc

an
 c

yc
le

Startup program

...

...

Read the inputs from the modules
and update the data in the process-
image input table

Execute the user program (OB1
and all the blocks called in it)

Transfer the values of the process-
image output table to the modules

F
re

e
sc

an
 c

yc
le

Startup program

...

.Scan cycle on existing CPUs .Scan cycle on new CPUs (10/98)

Advantages of the Process Image

Compared with direct access to the input/output modules, the main advantage of
accessing the process image is that the CPU has a consistent image of the
process signals for the duration of one program cycle. If a signal state on an input
module changes while the program is being executed, the signal state in the
process image is retained until the process image is updated again in the next
cycle. Access to the process image also requires far less time than direct access to
the signal modules since the process image is located in the internal memory of
the CPU.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-17

I/O Access Error (PZF) during Update of the Process Image

The default reaction of the S7-300 CPU family to an error during the update of the
process image is as follows:

• No entry is made in the diagnostic buffer, no OB is called, the corresponding
input/output bytes are reset to 0.

For new CPUs (as of 4/99), you can reassign parameters for the reaction to I/O
access errors:

• OB85 starts only when a PZF enters or leaves the state and creates an entry in
the diagnostic buffer

• No OB85 call (default reaction of an S7-300)

How Often Does OB85 Start?

In addition to the reaction to PZF that is assigned as a parameter
(incoming/outgoing, or for each I/O access), the address space of a module also
influences how often OB85 starts:

For a module with an address space of up to a double word, OB85 starts once, for
example, for a digital module with a maximum of 32 inputs or outputs, or for an
analog module with two channels.

For modules with a larger address space, OB85 starts as often as access has to
be made to it with double word commands, for example, twice for an analog
module with four channels.

A.2.3.3 Local Data Stack

The L stack saves the following:

• The temporary variables of the local data of blocks

• The start information of the organization blocks

• Information about transferring parameters

• Interim results of the logic in Ladder Logic programs

When you are programming organization blocks, you can declare temporary
variables (temp) that are only available when the block is executed and are then
overwritten again. Before you access the local data stack for the first time, the local
data must be initialized. In addition to this, every organization block also requires
20 bytes of local data for its start information.

The CPU has a limited amount of memory for the temporary variables (local data)
of blocks currently being executed. The size of this memory area, the local data
stack, is dependent on the CPU. The local data stack is divided up equally among
the priority classes (default). This means that every priority class has its own local
data area, thus guaranteeing that higher priority classes and their OBs also have
space available for their local data.

Appendix

 Programming with STEP 7 Lite V3.0
A-18 A5E00293884-01

The following figure shows the assignment of local data to the priority classes in an
example in which in the L stack OB1 is interrupted by OB10 which is then
interrupted by OB81.

OB 1
needs 20 Bytes
in the L-Stack

FB FC

FB

SFC

OB 10
needs 20 Bytes in

the L-Stack

OB 81
needs 20 Bytes in

the L-Stack

L stack

Priority class 2

Priority class 26

Priority
class 1

!
Caution

All the temporary variables (temp) of an OB and its associated blocks are saved in
the L stack. If you use too many nesting levels when executing your blocks, the L
stack can overflow.

S7 CPUs change to STOP mode if the permitted L stack size for a program is
exceeded.

Test the L stack (the temporary variables) in your program.

The local data requirements of synchronous error OBs must be taken into
consideration.

Assigning Local Data to Priority Classes

With the S7-300 CPUs every priority class is assigned a fixed amount of local data
(256 bytes) that cannot be changed.

A.2.3.4 Interrupt Stack

If program execution is interrupted by a higher priority OB, the operating system
saves the current contents of the accumulators and address registers, and the
number and size of the open data blocks in the interrupt stack.

Once the new OB has been executed, the operating system loads the information
from the I stack and resumes execution of the interrupted block at the point at
which the interrupt occurred.

When the CPU is in STOP mode, you can display the I stack on a programming
device using STEP 7 Lite. This allows you to find out why the CPU changed to
STOP mode.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-19

A.2.3.5 Block Stack

If processing of a block is interrupted by the call of another block or by a higher
priority class (interrupt/error servicing), the B stack stores the following data:

• Number, type (OB, FB, FC, SFB, SFC), and return address of the block that
was interrupted.

• Numbers of the data blocks (from the DB and DI register) that were open when
the block was interrupted.

Using this data, the user program can then be resumed after the interrupt.

If the CPU is in STOP mode, you can display the B stack with STEP 7 Lite on a
programming device. The B stack lists all the blocks that had not been completely
executed when the CPU changed to STOP mode. The blocks are listed in the
order in which processing was started (see figure below).

Local data of FC 2

Block stack (B stack)

Data of FC 3:
• Block number
• Return address

Data of FC 2:
• Block number
• Return address

Data of FB 1:
• Block number
• Return address

The number of
blocks that can be
stored in the B
stack (per priority
class) depends on
the CPU

Local data stack (L stack)

FB1 FC2 FC3Order in which the
blocks are called

Local data of FB 1

Local data of FC 3

DB and DI register:
• No. of open DB
• No. of open instance DB

Data Block Registers

There are two data block registers which contain the numbers of opened data
blocks.

• The DB register contains the number of the open shared data block.

• The DI register contains the number of the open instance data block.

Appendix

 Programming with STEP 7 Lite V3.0
A-20 A5E00293884-01

A.2.3.6 Diagnostic Buffer

The diagnostic buffer displays the diagnostic messages in the order in which they
occur. The first entry contains the newest event. The number of entries in the
diagnostic buffer is dependent on the module and its current operating mode.

Diagnostic events include the following:

• Faults on a module

• Errors in the process wiring

• System errors in the CPU

• Mode transitions on the CPU

• Errors in the user program

• User-defined diagnostic events (via the system function SFC52).

A.2.3.7 Evaluating the Diagnostic Buffer

One part of the system status list is the diagnostic buffer that contains more
information about system diagnostic events and user-defined diagnostic events in
the order in which they occurred. The information entered in the diagnostic buffer
when a system diagnostic event occurs is identical to the start information
transferred to the corresponding organization block.

You cannot clear the entries in the diagnostic buffer and its contents are retained
even after a memory reset.

The diagnostic buffer provides you with the following possibilities:

• If the CPU changes to STOP mode, you can evaluate the last events leading up
to the STOP and locate the cause.

• The causes of errors can be detected far more quickly increasing the availability
of the system.

• You can evaluate and optimize the dynamic system response.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-21

Organizing the Diagnostic Buffer

The diagnostic buffer is designed to act as a ring buffer for a maximum number of
entries which is dependent on the individual module. This means that when the
maximum number of entries is reached, the next diagnostic buffer event causes
the oldest entry to be deleted. All entries then move back one place. This means
that the newest entry is always the first entry in the diagnostic buffer. For the
S7-300 CPU 314 the number of possible entries is 100:

100 99

1 2 99 100

12101st
entry

The number of entries displayed in the diagnostic buffer is dependent on the
module and its current operating mode. With some CPUs, it is possible to set the
length of the diagnostic buffer.

Diagnostic Buffer Content

The upper list box contains a list of all the diagnostic events that occurred with the
following information:

• Serial number of the entry (the newest entry has the number 1)

• Time and date of the diagnostic event: The time and date of the module are
displayed if the module has an integrated clock. For the time data in the buffer
to be valid, it is important that you set the time and date on the module and
check it regularly.

• Short description of the diagnostic event

In the lower text box, all the additional information is displayed for the event
selected in the list in the upper window. This information includes:

• Event number

• Description of the event

• Mode transition caused by the diagnostic event

• Reference to the location of the error in a block (block type, block number,
relative address) which caused the entry in the buffer

• Event state being entered or left

• Additional information specific to the event

With the ”Help on Event" button you can display additional information on the event
selected in the upper list box.

Information on event IDs can be found in the Reference Help on System Blocks
and System Functions (Links to Language Descriptions and Help on Blocks and
System Attributes).

Appendix

 Programming with STEP 7 Lite V3.0
A-22 A5E00293884-01

Saving the Contents in a Text File

Using the "Save As" button in the "Diagnostic Buffer" tab of the "Module
Information" dialog box you can save the contents of the diagnostic buffer as ASCII
text.

Displaying the Diagnostic Buffer

You can display the contents of the diagnostic buffer on the programming device
via the "Diagnostic Buffer" tab in the "Module Information" dialog box or in a
program using the system function SFC51 RDSYSST.

Last Entry before STOP

You can specify that the last diagnostic buffer entry before the transition from RUN
to STOP is automatically sent to a logged on monitoring device (for example, PG,
OP, TD) in order to locate and remedy the cause of the change to STOP more
quickly.

A.2.3.8 Retentive Memory Areas on S7-300 CPUs

Retentive Areas

The diagnostic buffer, MPI parameters and the operating hours counter are
retentive areas. This data is retained both following a power outage and a memory
reset.

Data Backup in a CPU 31x

If the memory of an S7-300 CPU (dynamic load memory (RAM), work memory, and
system memory) is not battery backed, all the data contained in these areas is lost
if there is a power outage. You can backup your program or data in the following
ways:

• You can protect all the data in the load memory, work memory, and in parts of
the system memory with battery backup.

• You can store your program in the EPROM (either memory card or integrated
on the CPU, refer to the S7-300 Programmable Controller, Hardware and
Installation Manual).

• You can store a certain amount of data depending on the CPU in an area of the
non-volatile NVRAM.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-23

Using the NVRAM

Your S7-300 CPU provides an area in the NVRAM (static RAM) (see figure below).
If you have stored your program in the EPROM of the load memory, you can save
certain data (if there is a power outage or when the CPU changes from STOP to
RUN) by configuring your CPU accordingly.

Static load
memory

(FEPROM) Plug-in FEPROM-
cartridge (optional)

Dynamic load
memory
(RAM)

Work
memory

System
memory

Configurable
memory

(NVRAM)

CPU

Non-Volatile Memory Area on S7-300 CPUs

To do this set the CPU so that the following data are saved in the non-volatile
RAM:

• Data contained in a DB (this is only useful if you have also stored your program
in an EPROM of the load memory)

• Values of timers and counters

• Data saved in bit memory.

On every CPU, you can save a certain number of timers, counters, and memory
bits. A specific number of bytes is also made available, in which the data contained
in DBs can be saved.

Using Battery Backup to Protect Data

By using a backup battery, the load memory and work memory are retentive during
a power outage. If you configure your CPU so that timers, counters, and bit
memory are saved in the NVRAM, this information is also retained regardless of
whether you use a backup battery or not.

Configuring the Data of the NVRAM

When you configure your CPU with STEP 7 Lite, you can decide which memory
areas will be retentive.

The amount of memory that can be configured in the NVRAM depends on the CPU
you are using. You cannot back up more data than is specified for your CPU.

Appendix

 Programming with STEP 7 Lite V3.0
A-24 A5E00293884-01

Data Backup in CPU 31xC ("Compact CPUs")

The load memory in CPU 31xC is completely located on a Micro Memory Card
(MMC). The available memory area is exactly the same size as the MMC itself.

Programs can be downloaded and the CPU 31xC can be operated only when an
MMC is inserted.

Retentive Objects:

• User program in the load memory (on the MMC),

• The bit memory, timers, and counters configured as retentive (in system
memory)

• Contents of data blocks (saved from the work memory to MMC if there is a
power outage).

• This is the case with CPUs that support the retentive property of DBs (e. g. CPU
317 V2.1) if the option "Non-Retain" (data block property) is deactivated. If you
select the "Non-Retain" checkbox, the contents of the datablock will be reset to
the storage values after every POWER OFF and POWER ON as well as after
every CPU STOP-RUN transition.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-25

A.3 Data Types and Parameter Types

A.3.1 Introduction to Data Types and Parameter Types

All the data in a user program must be identified by a Data type. The following Data
types are available:

• Elementary Data types provided by STEP 7 Lite

• Complex Data types that you yourself can create by combining elementary Data
types

• Parameter types with which you define parameters to be transferred to FBs or
FCs

General Information

Statement List, Ladder Logic, and Function Block Diagram instructions work with
data objects of specific sizes. Bit logic instructions work with bits, for example.
Load and transfer instructions (STL) and move instructions (LAD and FBD) work
with bytes, words, and Double Words.

A bit is a binary digit "0" or "1." A byte is made up of eight bits, a word of 16 bits,
and a Double Word of 32 bits.

Math instructions work with bytes, words, or Double Words. In these byte, word, or
Double Word addresses you can code numbers of various formats such as
Integers and floating-point numbers.

When you use symbolic addressing, you define symbols and specify a Data type
for these symbols (see table below). Different Data types have different format
options and number notations.

This chapter describes only some of the ways of writing numbers and constants.
The following table lists the formats of numbers and constants that will not be
explained in detail.

Format Size in Bits Number Notation

Hexadecimal 8, 16, and 32 B#16#, W#16#, and DW#16#

Binary 8, 16, and 32 2#

IEC date 16 D#

IEC time 32 T#

Time of day 32 TOD#

Character 8 'A'

Appendix

 Programming with STEP 7 Lite V3.0
A-26 A5E00293884-01

A.3.2 Elementary Data Types

Each elementary data type has a defined length. The following table lists the
elementary data types.

Type and
Description

Size
in
Bits

Format Options Range and Number Notation
(lowest to highest value)_

Example

BOOL (Bit)

1 Boolean text TRUE/FALSE TRUE

BYTE
(Byte)

8 Hexadecimal
number

B#16#0 bis B#16#FF L B#16#10
L byte#16#10

WORD
(Word)

16 Binary number

Hexadecimal
number

BCD
Decimal number
unsigned

2#0 to
2#1111_1111_1111_1111
W#16#0 to W#16#FFFF

C#0 to C#999
B#(0.0) to B#(255.255)

L 2#0001_0000_0000_0000

L W#16#1000
L word#16#1000
L C#998
L B#(10,20)
L byte#(10,20)

DWORD
(Double
word)

32 Binary number

Hexadecimal
number
Decimal number
unsigned

2#0 to
2#1111_1111_1111_1111
1111_1111_1111_1111
DW#16#0000_0000 to
DW#16#FFFF_FFFF
B#(0,0,0,0) to
B#(255,255,255,255)

2#1000_0001_0001_1000_
1011_1011_0111_1111

L DW#16#00A2_1234
L dword#16#00A2_1234
L B#(1, 14, 100, 120)
L byte#(1,14,100,120)

INT
(Integer)

16 Decimal number
signed

-32768 to 32767 L 1

DINT
(Integer, 32
bits)

32 Decimal number
signed

L#-2147483648 to
L#2147483647

L L#1

REAL
(Floating-
point
number)

32 IEEE
Floating-point
number

Upper limit: ±3.402823e+38
0
Lower limit: ±1.175 495e-38

L 1.234567e+13

S5TIME
(SIMATIC
time)

16 S7 time in
steps of
10 ms (default)

S5T#0H_0M_0S_10MS to
S5T#2H_46M_30S_0MS and
S5T#0H_0M_0S_0MS

L S5T#0H_1M_0S_0MS
L
S5TIME#0H_1H_1M_0S_0MS

TIME
(IEC time)

32 IEC time in
steps of 1 ms,
Integer signed

-
T#24D_20H_31M_23S_648MS
to
T#24D_20H_31M_23S_647MS

L T#0D_1H_1M_0S_0MS
L TIME#0D_1H_1M_0S_0MS

DATE
(IEC date)

16 IEC date in
steps of 1 day

D#1990-1-1 to
D#2168-12-31

L D#1996-3-15
L DATE#1996-3-15

TIME_OF_
DAY (Time)

32 Time in steps of
1 ms

TOD#0:0:0.0 to
TOD#23:59:59.999

L TOD#1:10:3.3
L TIME_OF_DAY#1:10:3.3

CHAR
(Character)

8 ASCII
characters

'A','B' etc. L 'E'

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-27

A.3.2.1 Format of the Data Type INT (16-Bit Integers)

An Integer has a sign that indicates whether it is a positive or negative Integer. The
space that an Integer (16 bits) occupies in the memory is one word. The following
table shows the range of an Integer (16 bits).

Format Range

Integer (16 bits) –32 768 to +32 767

The following figure shows the Integer +44 as a binary number.

1 1 0 0
037 48111215Bits

Sign Decimal values: 32 + 8 + 4 = 44

0 0 1 00 0 0 00 0 0 0

A.3.2.2 Format of the Data Type DINT (32-Bit Integers)

An Integer has a sign that indicates whether it is a positive or negative Integer. The
space that a double Integer occupies in the memory is two words. The following
table shows the range of a double Integer.

Format Range

Integer (32 bits) –2 147 483 648 to +2 147 483 647

The following figure shows the Integer –500 000 as a binary number. In the binary
system, the negative form of an Integer is represented as the twos complement of
the positive Integer. You obtain the twos complement of an Integer by reversing the
signal states of all bits and then adding +1 to the result.

1

037 481112151619202324272831

1 1 1 1 1 1 11 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0

Sign

Bits

Appendix

 Programming with STEP 7 Lite V3.0
A-28 A5E00293884-01

A.3.2.3 Format of the Data Type REAL (Floating-Point Numbers)

Numbers in floating-point format are represented in the general form "number = m *
b to the power of E." The base "b" and the exponent "E" are Integers; the mantissa
"m" is a rational number.

This type of number representation has the advantage of being able to represent
both very large and very small values within a limited space. With the limited
number of bits for the mantissa and exponent, a wide range of numbers can be
covered.

The disadvantage is in the limited accuracy of calculations. For example, when
forming the sum of two numbers, the exponents must be matched by shifting the
mantissa (hence floating decimal point) since only numbers with the same
exponent can be added.

Floating-point number format in STEP 7 Lite

Floating-point numbers in STEP 7 Lite conform to the basic format, single width,
described in the ANSI/IEEE standard 754–1985, IEEE Standard for Binary
Floating-Point Arithmetic. They consist of the following components:

• The sign S

• The exponent e = E + bias, increased by a constant (bias = +127)

• The fractional part of the mantissa m.
The whole number part of the mantissa is not stored with the rest, because it is
always equal to 1 within the valid number range.

The three components together occupy one Double Word (32 bits):

034781112
Bit

Sign (1 bit)

151619202324272831

Exponent: e
(8 bits)

Mantissa: m
(23 bits)

S e f

The following table shows the values of the individual bits in floating-point format.

Component of the Floating-
Point Number

Bit Number Value

Sign S 31

Exponent e 30 2 to the power of 7

...

Exponent e 24 2 to the power of 1

Exponent e 23 2 to the power of 0

Mantissa m 22 2 to the power of –1

...

Mantissa m 1 2 to the power of –22

Mantissa m 0 2 to the power of –23

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-29

Using the three components S, e, and m, the value of a number represented in this
form is defined by the formula:

Number = 1.m ∗ 2 to the power of (e - bias)

Where:

• e: 1 ≤ e ≤ 254

• Bias: bias = 127. This means that an additional sign is not required for the
exponent.

• S: for a positive number, S = 0 and for a negative number, S = 1.

Value Range of Floating-Point Numbers

Using the floating-point format shown above, the following results:

• The smallest floating-point number = 1.0 ∗ 2 to the power of (1-127) = 1.0 ∗ 2 to
the power of (-126)
= 1.175 495E–38 and

• The largest floating-point number = 2-2 to the power of (-23) ∗ 2 to the power of
(254-127) = 2-2 to the power of (-23) ∗ 2 to the power of (+127)
= 3.402 823E+38

The number zero is represented with e = m = 0; e = 255 and m = 0 stands for
"infinite."

Format Range1)

Floating-point numbers according to the
ANSI/IEEE standard

–3.402 823E+38 to –1.175 495E–38
and 0 and

+1.175 495E–38 to +3.402 823E+38

The following table shows the signal state of the bits in the status word for the
results of instructions with floating-point numbers that do not lie within the valid
range:

Invalid Range for a Result CC1 CC0 OV OS

-1.175494E-38 < result < -1.401298E-45 (negative number)
underflow

0 0 1 1

+1.401298E-45 < result < +1.175494E-38 (positive number)
underflow

0 0 1 1

Result < -3.402823E+38 (negative number) overflow 0 1 1 1

Result > 3.402823E+38 (positive number) overflow 1 0 1 1

Not a valid floating-point number or invalid instruction (input
value outside the valid value range)

1 1 1 1

Note when using mathematical operations:

The result "Not a valid floating-point number" is obtained, for example, when you
attempt to extract the square root from –2. You should therefore always evaluate
the status bits first in math operations before continuing calculations based on the
result.

Appendix

 Programming with STEP 7 Lite V3.0
A-30 A5E00293884-01

Note when modifying variables:

If the values for floating-point operations are stored in memory Double Words, for
example, you can modify these values with any bit patterns. However, not every bit
pattern is a valid number.

Accuracy when Calculating Floating-Point Numbers

!
Caution

Calculations involving a long series of values including very large and very small
numbers can produce inaccurate results.

The floating-point numbers in STEP 7 Lite are accurate to 6 decimal places. You
can therefore only specify a maximum of 6 decimal places when entering floating-
point constants.

 Note

The calculation accuracy of 6 decimal places means, for example, that the addition
of number1 + number2 = number1 if number1 is greater than number2 ∗ 10 to the
power of y, where y>6:

100 000 000 + 1 = 100 000 000.

Examples of Numbers in Floating-Point Format

The following figure shows the floating-point format for the following decimal
values:

• 10.0

• p (3.141593)

• Square root of 2 (p2 = 1.414214)

The number 10.0 in the first example results from its floating-point format
(hexadecimal representation: 4120 0000) as follows:

e = 2 to the power of 1 + 2 to the power of 7 = 2 + 128 = 130

m = 2 to the power of (-2) = 0.25

This results in: 1.m ∗ 2 to the power of (e – bias) = 1.25 ∗ 2 to the power of
(130 – 127) = 1.25 ∗ 2 to the power of 3 = 10.0.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-31

0

037 481112Bits

Sign of
Mantissa: s
(1 bit)

151619202324272831

Exponent: e
(8 bits)

e = 27 + 21 = 130
1.f _ 2e-bias = 1.25 _ 23 = 10.0
[1.25 _ 2(130-127) = 1.25 _ 23 = 10.0]

Mantissa: m
(23 bits)

f = 2-2 = 0.25

0 1 0 0 0 1 10 0

Hexadecimal
value 4 1 2 0 0 0 0 0

1

037 481112Bits

Sign of
Mantissa: s (1
bit)

151619202324272831

Exponent: e
(8 bits)

Mantissa: m
(23 bits)

0 1 0 0 0 0 00 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0

4 0 4 9 0 F D C

0

037 481112Bits 151619202324272831

Exponent: e
(8 bits)

Mantissa: m
(23 bits)

0 0 1 1 1 1 11 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1

3 F B 5 0 4 F 7

Decimal value 10.0

Decimal value 3.141593

Decimal value 1.414214

Sign of
Mantissa: s
(1 bit)

Hexadecimal
value

Hexadecimal
value

Appendix

 Programming with STEP 7 Lite V3.0
A-32 A5E00293884-01

A.3.2.4 Format of the Data Type WORD

Data type Length (Bit) Format Format example

 Min. Max.

WORD 16 Binary 2#0 2#1111111111111111

 Hexadecimal W#16#0 W#16#FFFF

 Bytes without prefix B#(0,0) B#(255,255)

 7 6 5 4 3 2 1 0

Word n

Byte n

MSB

 7 6 5 4 3 2 1 0

Byte n+1

LSB

MSB: Most Significant Bit

LSB: Least Significant Bit

A.3.2.5 Format of the Data Type DWORD

Data type Length (Bit) Format Format example

DWORD 32 Binary, Min. 2#0

 Binary, Max. 2#11111111111111111111111111111111

 Min. Max.

 Hexadecimal DW#16#0 DW#16#FFFFFFFF

 Bytes, without
prefix

B#(0,0,0,0) B#(255,255,255,255)

 7 0 7 0

Byte n

MSB

 7 0 7 0

Byte n+2

LSB

Byte n+1 Byte n+3

MSB: Most Significant Bit

LSB: Least Significant Bit

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-33

A.3.2.6 Format of the Data Types WORD and DWORD in Binary Coded
Decimal Numbers

The binary-coded decimal (BCD) format represents a decimal number by using
groups of binary digits (bits). One group of 4 bits represents one digit of a signed
decimal number or the sign of the decimal number. The groups of 4 bits are
combined to form a word (16 bits) or Double Word (32 bits). The four most
significant bits indicate the sign of the number (1111 indicates minus and 0000
indicates plus). Commands with BCD-coded addresses only evaluate the
highest-value bit (15 in word, 31 in Double Word format). The following table shows
the format and range for the two types of BCD numbers.

Format Range

Word
(16 bits, three-digit BCD number with sign)

–999 to +999

Double word
(32 bits, seven-digit BCD number with sign)

–9 999 999 to +9 999 999

The following figures provide an example of a binary coded decimal number in the
following formats:

• Word format

+310 (Decimal format)

0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
037 48111215Bits

Sign Hundreds
(102)

Tens
(101)

Ones
(100)

• Double word format

-9 999 999 (Decimal format)

1 0 0 1 1 0 0 1 1 0 0 1
037 481112

Bits

Sign Hundreds
(102)

Tens
(101)

Ones
(100)

Thousands
(103)

Tens of
Thousands

(104)

Hundreds of
Thousands

(105)

Millions
(106)

1 1 1 1
151619202324272831
1 0 0 11 0 0 11 0 0 11 0 0 1

Appendix

 Programming with STEP 7 Lite V3.0
A-34 A5E00293884-01

A.3.2.7 Format of the Data Type S5TIME (Time Duration)

When you enter time duration using the S5TIME data type, your entries are stored
in binary coded decimal format. The following figure shows the content of the time
address with a time value of 127 and a time base of 1 s.

Irrelevant: These bits are ignored when the timer is started.

Time value in BCD (0 to 999)

15... ...8 7... ...0

1 2 7

x x 1 0 0 0 0 1 0 0 1 0 0 1 1 1

Time base
1 second

When working with S5TIME, you enter a time value in the range of 0 to 999 and
you indicate a time base (see the following table). The time base indicates the
interval at which a timer decrements the time value by one unit until it reaches 0.

Time base for S5TIME

Time Base Binary Code for Time Base

10 ms 00

100 ms 01

1 s 10

10 s 11

You can preload a time value using either of the following syntax formats:

• L1) W#16#wxyz

- Where w = time base (that is, the time interval or resolution)

- Where xyz = the time value in binary coded decimal format

• L1) S5T#aH_bbM_ccS_dddMS

- Where a = hours, bb = minutes, cc = seconds, and dd = milliseconds

- The time base is selected automatically and the value is rounded to the
next lower number with that time base.

The maximum time value that you can enter is 9,990 seconds, or 2H_46M_30S.

 1) = L only to be specified in STL programming

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-35

A.3.2.8 Format of the Data Type TIME

Data type Length (Bit) Format

TIME 32 Time range with prefix:

+ or - days, hours, minutes, seconds, milliseconds

Format Example (Upper and Lower Limit Values)

Max. T#+24d20h31m23s647ms

Min. T# -24d20h31m23s648ms

It is not required to specify all time units (for example: T#5h10s is valid).

If only one unit is specified the absolute value of days, hours and minutes must not
exceed the upper or lower limit values.

T# -65535 and T#+65535 are the upper and lower limit values for seconds and
milliseconds.

If more than one unit is specified these values must not exceed:

• Hours = 23,

• Minutes = 59,

• Seconds = 59,

• Milliseconds = 999.

 7 0 7 0

Byte n

MSB

 7 0 7 0

Byte n+2

LSB

Byte n+1 Byte n+3

MSB: Most Significant Bit

LSB: Least Significant Bit

 Notice

The data type TIME is stored with milliseconds prefix as two's complement
INTEGER.

Appendix

 Programming with STEP 7 Lite V3.0
A-36 A5E00293884-01

A.3.3 Complex Data Types

Complex data types define data groups that are larger than 32 bits or data groups
consisting of other data types. STEP 7 Lite permits the following complex data
types:

• DATE_AND_TIME

• STRING

• ARRAY

• STRUCT

• UDT (user-defined data types)

• FBs and SFBs

The following table describes the complex data types. You define structures and
arrays either in the variable declaration of the logic block or in a data block.

Data Type Description

DATE_AND_TIME

DT

Defines an area with 64 bits (8 bytes). This data type saves in binary coded
decimal format.

STRING Defines a group with a maximum of 254 characters (data type CHAR). The
standard area reserved for a character string is 256 bytes long. This is the space
required to save 254 characters and a header of 2 bytes. You can reduce the
memory required for a string by defining the number of characters that will be
stored in the character string (for example: string[9] 'Siemens').

ARRAY Defines a multi-dimensional grouping of one data type (either elementary or
complex). Example: ”ARRAY [1..2,1..3] OF INT" defines an array in the format 2 x
3 consisting of Integers. You access the data stored in an array using the Index
(”[2,2]"). You can define up to a maximum of 6 dimensions in one array. The index
can be any Integer (-32768 to 32767).

STRUCT Defines a grouping of any combination of data types. You can, for example,
define an array of structures or a structure of structures and arrays.

UDT Simplifies the structuring of large quantities of data and entering data types when
creating data blocks or declaring variables in the variable declaration. In
STEP 7 Lite, you can combine complex and elementary data types to create your
own ”user defined" data type. UDTs have their own name and can therefore be
used more than once.

FB, SFB You determine the structure of the assigned instance data block and allow the
transfer of instance data for several FB calls in one instance DB.

Structured data types are saved in accordance with word limits (WORD aligned).

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-37

A.3.3.1 Format of the Data Type DATE_AND_TIME

When you enter date and time using the DATE_AND_TIME data type (DT), your
entries are stored in binary coded decimal format in 8 bytes. The
DATE_AND_TIME data type has the following range:

DT#1990-1-1-0:0:0.0 to DT#2089-12-31-23:59:59.999

The following examples show the syntax for the date and time for Thursday,
December 25, 1993, at 8:01 and 1.23 seconds in the morning. The following two
formats are possible:

• DATE_AND_TIME#1993-12-25-8:01:1.23

• DT#1993-12-25-8:01:1.23

The following special IEC (International Electrotechnical Commission) standard
functions are available for working with the DATE_AND_TIME data type:

• Convert date and time of day to the DATE_AND_TIME format

FC3: D_TOD_DT

• Extract the date from the DATE_AND_TIME format

FC6: DT_DATE

• Extract the day of the week from the DATE_AND_TIME format

FC7: DT_DAY

• Extract the time of day from the DATE_AND_TIME format

FC8: DT_TOD

The following table shows the contents of the bytes that contain the date and time
information for the example Thursday, December 25, 1993, at 8:01 and 1.23
seconds in the morning.

Byte Contents Example

 0 Year B#16#93

 1 Month B#16#12

 2 Day B#16#25

 3 Hour B#16#08

 4 Minute B#16#01

 5 Second B#16#01

 6 Two most significant digits of MSEC B#16#23

 7
(4MSB)

Two least significant digits of MSEC

B#16#0

 7
(4LSB)

Day of week
1 = Sunday
2 = Monday
...
7 = Saturday

B#16#5

Appendix

 Programming with STEP 7 Lite V3.0
A-38 A5E00293884-01

The permitted range for the data type DATE_AND_TIME is:

• min.: DT#1990-1-1-0:0:0.0

• max.: DT#2089-12-31-23:59:59.999

 Possible Value Range BCD Code

Year 1990 – 1999
 2000 – 2089

90h – 99h
00h – 89h

Month 1 – 12 01h – 12h

Day 1 – 31 01h – 31h

Hour 00 – 23 00h – 23h

Minute 00 – 59 00h – 59h

Second 00 – 59 00h – 59h

Millisecond 0 – 999 000h – 999h

Day of week Sunday – Saturday 1h – 7h

A.3.3.2 Format of the Data Type STRING

A string (STRING) includes a group of up to 254 characters (data type CHAR). The
standard area that is reserved for this data type consists of 256 bytes (254 bytes
for the characters and 2 bytes for the header of the data type STRING). You can
reduce the memory requirement for a variable of this type by also defining the
number of characters that are supposed to be stored in the string after the keyword
STRING.

Example: STRING [7] = 'SIEMENS'. The string must be indicated with single
quotation marks.

Data Type Length (in bytes) Format

STRING[n]

or

STRING

n+2 ASCII character string of any length. n specifies the length of
the character string. A maximum length of 254 characters is
permitted. If no length is specified, the default setting is 254
characters.

Data Type Examples of Format Used

STRING[2]

STRING[55]

'AB'

'The character string can consist of up to 55 characters.'

 Note

You must enclose your character string in single quotation marks.

The following example shows the byte order when specifying the data type
STRING[4] with the output value 'AB'.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-39

Example:

7 0 7 0

Byte 0

7 0 7 0

Byte 1 Byte 3

Max. length of
string: 4

Actual length of
string
("AB" = 2)

ASCII value

of A

Byte 2

ASCII value
of B

 7 0 7 0

Byte 5Byte 4

Dynamic local data of the data type STRING must be initialized by the user before
first use; for example, using an STL sequence of the form:

LAR1 P#local_string_var // Local_string_var is declared as STRING[200] in var_temp

L 200 // Enter STRING length as specified above

T LB [AR1, P#0.0] // in the MAX length byte of the string

L 5 // Actual length of string

T LB [AR1, P#1.0] // Enter actual length of string

 Note

If the contents of a string is modified by the user program, the "actual length" byte
must also be written or updated, so that the string can be displayed by the
programming device.

If a temporary variable of the data type STRING has been defined, the "max.
length" byte must be written with the defined length before the variable is used in
the user program.

A.3.3.3 Format of the Data Type ARRAY

An ARRAY is a complex data type with up to six dimensions. All elements in an
ARRAY can be of any data type (except parameter types), however, all the
elements must be of the same data type. ARRAYs cannot be nested and must
consist of at least two elements.

Example: "ARRAY [1..2,1..3] OF INT" defines a field in the format 2 x 3 in Integers.

They access the data by means of the index ("[m,n]"), where 1<=m<= 2 and
1<=n<=3 should be noted.

The index can be any Integer value. In the declaration, the ARRAY limits must be
set such that the ARRAY includes a total maximum of 65535 elements. The limit
values of a dimension (for example, x1 and x2) can be positive, negative, or zero.
However, the value specified for the upper limit of the dimension (x2) must be
higher than the value for the lower limit (x1).

Appendix

 Programming with STEP 7 Lite V3.0
A-40 A5E00293884-01

Specifying Dimensions

Examples: One-dimensional: ARRAY[x1..x2]

ARRAY[-2..-1]

ARRAY[0..1]

ARRAY[1..2]

Additional dimensions are separated by commas.

Example: Three-dimensional: ARRAY[x1..x2, y1..y2, z1..z2]

Editing the Variable Table

ARRAYs can be used in the program. You can define default initial values in the
initialization column.

Initial Values

Elements are initialized with a list of values that are separated from one another by
commas. You can use a repetition factor, for example "4(10)" ("assigns the value
10 to the following four elements"), in order to assign initial values in an array.
Elements without an initial value have a default value of zero.

Symbolic Addressing

Your program instructions can access the array values via the variable names.

Example:

L #ARRAY[3] Load the value located in element 3 of the ARRAY with the name "ARRAY"
to accumulator 1

A.3.3.4 Format of the Data Type STRUCT

A structure (STRUCT) is a complex data type that can be nested in up to eight
levels. The elements of a structure can be of any valid data type. The STRUCT
data type must consist of at least two components, which must be located between
STRUCT and END_STRUCT. A structure can be declared in the variable
declaration table of a logic block or in a user-defined data type (UDT).

Using <structure_name.variable_name> you can access the individual variables of
a structure in the user program. A structure within another structure only counts as
a component.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-41

A.3.3.5 Using Complex Data Types

You can create new data types by combining the elementary and complex data
types to create the following complex data types:

• Array (data type ARRAY): an array combines a group of one data type to form a
single unit.

• Structure (data type STRUCT): a structure combines different data types to
form a single unit.

• Character string (data type STRING): a character string defines a
one-dimensional array with a maximum of 254 characters (data type CHAR). A
character string can only be transferred as a unit. The length of the character
string must match the formal and actual parameter of the block.

• Date and time (data type DATE_AND_TIME): the date and time data type
stores the year, month, day, hours, minutes, seconds, milliseconds, and day of
the week.

The following figure shows how arrays and structures can structure data types in
one area and save information. You define an array or a structure either in a DB or
in the variable declaration of an FB, OB, or FC.

1,1

1,2

1,3

2,1

2,2

2,3

ARRAY [1..2,1..3]
INTEGER

Integer

Integer

Integer

Integer

Integer

Integer

STRUCT
Integer

Character

Real number

Boolean value

Byte
INT
BYTE

CHAR
REAL
BOOL

Structures

Arrays

Appendix

 Programming with STEP 7 Lite V3.0
A-42 A5E00293884-01

A.3.3.6 Using Arrays to Access Data

Arrays

An array combines a group of one data type (elementary or complex) to form a
unit. You can create an array consisting of arrays. When you define an array, you
must do the following:

• Assign a name to the array.

• Declare an array with the keyword ARRAY.

• Specify the size of the array using an index. You specify the first and last
number of the individual dimensions (maximum 6) in the array. You enter the
index in square brackets with each dimension separated by a comma and the
first and last number of the dimension by two periods. The following index
defines, for example, a three-dimensional array:

[1..5,–2..3,30..32]

• You specify the data type of the data to be contained in the array.

Example: 1

The following figure shows an array with three Integers. You access the data
stored in an array using the index. The index is the number in square brackets. The
index of the second Integer, for example, is Op_temp[2].

An index can be any Integer (-32768 to 32767) including negative values. The
array in the following figure could also be defined as ARRAY [-1..1]. The index of
the first Integer would then be Op_temp[-1], the second would be Op_temp[0], and
the third Integer would then be Op_temp[1].

1

2

3

Op_Temp = ARRAY [1..3]
 INTEGER

Op_Temp[1]

Op _Temp[2]

Op _Temp[3]

Address Name Type Init. Value Comment

Op Temp
STRUCT

ARRAY[1..3]

INT

0.0
+0.0

*2.0

=3.0 END STRUCT

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-43

Example 2

An array can also describe a multi-dimensional group of data types. The following
figure shows a two-dimensional array of Integers.

1,1

1,2

1,3

2,1

2,2

2,3

Op_Temp = ARRAY [1..2,1..3]
 INTEGER

Integer

Integer

Integer

Integer

Integer

Integer

You access the data in a multi-dimensional array using the index. In this example,
the first Integer is Op_temp[1,1], the third is Op_temp[1,3], the fourth is
Op_temp[2,1], and the sixth is Op_temp[2,3].

You can define up to a maximum of 6 dimensions (6 indexes) for an array. You
could, for example, define the variable Op_temp as follows as a six-dimensional
array:

ARRAY [1..3,1..2,1..3,1..4,1..3,1..4]

The index of the first element in this array is Op_temp[1,1,1,1,1,1]. The index of the
last element Op_temp[3,2,3,4,3,4].

Creating Arrays

You define arrays when you declare the data in a DB or in the variable declaration.
When you declare the array, you specify the keyword (ARRAY) followed by the
size in square brackets, as follows:

[lower limit value..upper limit value]

In a multi-dimensional array you also specify the additional upper and lower limit
values and separate the individual dimensions with a comma. The following figure
shows the declaration for creating an array of the format 2 x 3.

Address Name Type Init. Value Comment

Heat 2x3
STRUCT
ARRAY[1..2,1..3]

INT

0.0

+0.0

*2.0
=6.0 END STRUCT

Appendix

 Programming with STEP 7 Lite V3.0
A-44 A5E00293884-01

Entering Initial Values for an Array

You can assign an initial value to every array element when you create arrays.
STEP 7 Lite provides two methods for entering initial values:

• Entry of individual values: for each element of the array, you specify a value that
is valid for the data type of the array. You specify the values in the order of the
elements: [1,1]. Remember that the individual elements must be separated from
each other by a comma.

• Specifying a repetition factor: with sequential elements that have the same
initial value, you can specify the number of elements (the repetition factor) and
the initial value for these elements. The format for entering the repetition factor
is x(y), where x is the repetition factor and y is the value to be repeated.

If you use the array declared in the above figure, you can specify the initial value
for all six elements as follows: 17, 23, -45, 556, 3342, 0. You could also set the
initial value of all six elements to 10 by specifying 6(10). You could specify specific
values for the first two elements and then set the remaining four elements to 0 by
specifying the following: 17, 23, 4(0).

Accessing Data in an Array

You access data in an array via the index of the specific element in the array. The
index is used with the symbolic name.

Example: If the array declared in the above figure begins at the first byte of DB20
(motor), you access the second element in the array with the following address:

Motor.Heat_2x3[1,2].

Using Arrays as Parameters

You can transfer arrays as parameters. If a parameter is declared in the variable
declaration as ARRAY, you must transfer the entire array (and not individual
elements). An element of an array can, however be assigned to a parameter when
you call a block, providing the element of the array corresponds to the data type of
the parameter.

If you use arrays as parameters, the arrays do not need to have the same name
(they do not even need a name). Both arrays (the formal parameter and the actual
parameter) must however have the same structure. An array in the format 2 x 3
consisting of Integers, for example, can only be transferred as a parameter when
the formal parameter of the block is defined as an array in the format 2 x 3
consisting of Integers and the actual parameter that is provided by the call
operation is also an array in the format 2 x 3 consisting of Integers.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-45

A.3.3.7 Using Structures to Access Data

Structures

A structure combines various data types (elementary and complex data types,
including arrays and structures) to form one unit. You can group the data to suit
your process control. You can therefore also transfer parameters as a data unit
and not as single elements. The following figure illustrates a structure consisting of
an Integer, a byte, a character, a floating-point number, and a Boolean value.

STRUCT
Integer

Character

Real number

Boolean value

Byte
INT

BYTE

CHAR

REAL
BOOL

A structure can be nested to a maximum of 8 levels (for example, a structure
consisting of structures containing arrays).

Creating a Structure

You define structures when you declare data within a DB or in the variable
declaration of a logic block.

The following figure illustrates the declaration of a structure (Stack_1) that consists
of the following elements: an Integer (for saving the amount), a byte (for saving the
original data), a character (for saving the control code), a floating-point number (for
saving the temperature), and a Boolean memory bit (for terminating the signal).

Address Name Type Init. Value Comment

Stack 1

Amount
Original data

Temperature

STRUCT

INT

BYTE

REAL

100

0.0

+0.0

+2.0

+4.0

+6.0

Control code CHAR

End BOOL+8.1
END STRUCT

FALSE

=10.0

120

Appendix

 Programming with STEP 7 Lite V3.0
A-46 A5E00293884-01

Assigning Initial Values for a Structure

If you want to assign an initial value to every element of a structure, you specify a
value that is valid for the data type and the name of the element. You can, for
example, assign the following initial values (to the structure declared in the above
figure):

Amount = 100
Original_data = B#(0)
Control_code = 'C'
Temperature = 120
End = False

Saving and Accessing Data in Structures

You access the individual elements of a structure. You can use symbolic
addresses (for example, Stack_1.Temperature). You can, however, specify the
absolute address at which the element is located (example: if Stack_1 is located in
DB20 starting at byte 0, the absolute address for amount is DB20.DBW0 and the
address for temperature is DB20.DBD6).

Using Structures as Parameters

You can transfer structures as parameters. If a parameter is declared as STRUCT
in the variable declaration, you must transfer a structure with the same
components. An element of a structure can, however, also be assigned to a
parameter when you call a block providing the element of the structure
corresponds to the data type of the parameter.

If you use structures as parameters, both structures (for the formal parameters and
the actual parameters) must have the same components, in other words the same
data types must be arranged in the same order.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-47

A.3.3.8 Using User-Defined Data Types to Access Data

User-Defined Data Types

User-defined data types (UDTs) can combine elementary and complex data types.
You can assign a name to UDTs and use them more than once. The following
figure illustrates the structure of a user-defined data type consisting of an Integer, a
byte, a character, a floating-point number, and a Boolean value.

UDT20
Integer

Character

Real number

Boolean value

Byte
INT

BYTE

CHAR

REAL

BOOL

Instead of entering all the data types singly or as a structure, you only need to
specify ”UDT20" as the data type and STEP 7 Lite automatically assigns the
corresponding memory space.

Creating a User-Defined Data Type

You define UDTs with STEP 7 Lite. The following figure shows a UDT consisting of
the following elements: an Integer (for saving the amount), a byte (for saving the
original data), a character (for saving the control code), a floating-point number (for
saving the temperature), and a Boolean memory bit (for terminating the signal).
You can assign a symbolic name to the UDT in the symbol table (for example,
process data).

Address Name Type Init. Value Comment

Stack 1

Amount
Original data

Temperature

STRUCT

INT

BYTE

REAL

100

0.0

+0.0

+2.0

+4.0

+6.0
Control code CHAR

End BOOL+8.1
END STRUCT

FALSE

=10.0

120

Once you have created a UDT, you can use the UDT like a data type if, for
example, you declare the data type UDT200 for a variable in a DB (or in the
variable declaration of an FB).

The following figure shows a DB with the variables process_data_1 with the data
type UDT200. You only specify UDT200 and process_data_1. The arrays shown in
italics are created when you compile the DB.

Address Name Type Init. Value Comment

Process_data 1
STRUCT

UDT200

END STRUCT

0.0

+6.0
=6.0

Appendix

 Programming with STEP 7 Lite V3.0
A-48 A5E00293884-01

Assigning Initial Values for a User-Defined Data Type

If you want to assign an initial value to every element of a user-defined data type,
you specify a value that is valid for the data type and the name of the element. You
can, for example, assign the following initial values (to the user-defined data type
declared in the above figure):

Amount = 100
Original_data = B#(0)
Control_code = 'C'
Temperature = 120
End = False

If you declare a variable as a UDT, the initial values of the variables are the values
you specified when you created the UDT.

Saving and Accessing Data in a User-Defined Data Type

You access the individual elements of a UDT. You can use symbolic addresses
(for example Stack_1.Temperature). You can, however specify the absolute
address at which the element is located (example: if Stack_1 is located in DB20
starting at byte 0, the absolute address for amount is DB20.DBW0 and the address
for temperature is DB20.DBD6).

Using User-Defined Data Types as Parameters

You can transfer variables of the data type UDT as parameters. If a parameter is
declared as UDT in the variable declaration, you must transfer a UDT with the
same structure. An element of a UDT can, however, also be assigned to a
parameter when you call a block providing the element of the UDT corresponds to
the data type of the parameter.

Advantages of DBs with an Assigned UDT

By using UDTs you have created once, you can generate a large number of data
blocks with the same data structure. You can then use these data blocks to enter
different actual values for specific tasks.

If, for example, you structure a UDT for a formula (for example, for blending
colors), you can assign this UDT to several DBs each containing different amounts.

UDT1 “Formula"

DB17 "DARK_BLUE"

DB22 "LIGHT_BLUE"

DB 23 "TURQUOISE"

User-defined data type

The structure of the data block is determined by the UDT assigned to it.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-49

A.3.4 Parameter Types

In addition to elementary and complex data types, you can also define parameter
types for formal parameters that are transferred between blocks. STEP 7 Lite
recognizes the following parameter types:

• TIMER or COUNTER: this specifies a particular timer or particular counter that
will be used when the block is executed. If you supply a value to a formal
parameter of the TIMER or COUNTER parameter type, the corresponding
actual parameter must be a timer or a counter, in other words, you enter "T" or
"C" followed by a positive Integer.

• BLOCK: specifies a particular block to be used as an input or output. The
declaration of the parameter determines the block type to be used (FB, FC, DB
etc.). If you supply values to a formal parameter of the BLOCK parameter type,
specify a block address as the actual parameter. Example: ”FC101" (when
using absolute addressing) or ”Valve" (with symbolic addressing).

• POINTER: references the address of a variable. A pointer contains an address
instead of a value. When you supply a value to a formal parameter of the
parameter type POINTER, you specify an address as the actual parameter. In
STEP 7 Lite, you can specify a pointer in the pointer format or simply as an
address (for example, M 50.0). Example of a pointer format for addressing the
data beginning at M 50.0: P#M50.0

• ANY: this is used when the data type of the actual parameter is unknown or
when any data type can be used. For more information about the ANY
parameter type, refer to the sections "Format of the Parameter Type ANY" and
"Using the Parameter Type ANY".

A parameter type can also be used in a user-defined data type (UDT). For more
information about UDTs, refer to the section "Using User-Defined Data Types to
Access Data".

Parameter Capacity Description

TIMER 2 bytes Indicates a timer to be used by the program in the called logic
block.
Format: T1

COUNTER 2 bytes Indicates a counter to be used by the program in the called
logic block.
Format: C10

BLOCK_FB
BLOCK_FC
BLOCK_DB
BLOCK_SDB

 2 bytes Indicates a block to be used by the program in the called logic
block.
Format: FC101
 DB42

POINTER 6 bytes Identifies the address.
Format: P#M50.0

 ANY 10 Bytes Is used when the data type of the current parameter is
unknown.
Format: P#M50.0 BYTE 10 ANY format for
 P#M100.0 WORD 5 data types

 L#1COUNTER 10 ANY format for
 parameter types

Appendix

 Programming with STEP 7 Lite V3.0
A-50 A5E00293884-01

A.3.4.1 Format of the Parameter Types BLOCK, COUNTER, and TIMER

STEP 7 Lite stores the parameter types BLOCK, COUNTER, and TIMER as binary
numbers in a word (32 bits). The following figure shows the format of these
parameter types.

07Bits

Byte 1

815

Byte 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

The permitted number of blocks, timers, and counters is dependent on the type of
your S7 CPU. You will find more information on the permitted number of timers and
counters and on the maximum number of available blocks in the data sheets for
your CPU in the S7-300 Programmable Controller, Hardware and Installation
Manual".

In this way, you can transfer to the logic block the number of a timer, counter,
function block, data block, system data block, or function that the block is
supposed to use for processing. When you supply this declared formal parameter,
you indicate a "T", "C", "FB", "DB", "SDB", or "FC" as actual parameter that is
followed by a positive Integer.

Example:

Call FB 10, DB110(

:

Input_Var_Counter:= C5, // FB10 will use

 // counter 5 for

 // processing.

:

);

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-51

A.3.4.2 Format of the Parameter Type POINTER

STEP 7 Lite stores the parameter type POINTER in 6 bytes (48 bits). The following
figure shows the type of data that is stored in each byte.

15... ...8 7... ...0

Byte 1

Byte 3

Byte 5

b = Byte address

Byte 0

Byte 2

Byte 4

DB number (or 0)

x = Bit address

Memory area 0 0 0 0 0 b b b

b b b b b x x xb b b b b b b b

Pointer format

The parameter type POINTER stores the following information:

• DB number (or 0 if the data are not stored in a DB)

• Memory area in the CPU (the following table shows the hexadecimal codes of
the memory areas for the parameter type POINTER)

Hexadecimal Code Memory Area Description

b#16#81 I Input area

b#16#82 Q Output area

b#16#83 M Bit memory area

b#16#84 DB Data block

b#16#85 DI Instance data block

b#16#86 L Local data (L stack)

b#16#87 V Previous local data

• Address of the data (in the format Byte.Bit)

STEP 7 Lite provides the pointer format: p#memory_area byte.bit_address. (If
the formal parameter was declared as the parameter type POINTER, you only
need to indicate the memory area and the address. STEP 7 Lite automatically
reformats your entry into pointer format.) The following examples show how
you enter the parameter type POINTER for the data that start at M50.0:

• P#M50.0

• M50.0 (if the formal parameter was declared as POINTER).

Example:

Call FB10, DB110(

:

Input_Var_Addr:= P#M20.0, // FB10 will use the address

 // of memory bit 20.0 for

 // processing.

:

);

Appendix

 Programming with STEP 7 Lite V3.0
A-52 A5E00293884-01

A.3.4.3 Using the Parameter Type POINTER

A pointer is used to point to an address. The advantage of this type of addressing
is that you can modify the address of the statement dynamically during program
processing.

Pointer for Memory-Indirect Addressing

Program statements that work with memory-indirect addressing are made up of an
instruction, an address identifier, and an offset (the offset must be given in square
brackets).

Example of a pointer in Double Word format:

L P#8.7 Load the value of the pointer into accumulator 1.

T MD2 Transfer the pointer to MD2.

A I [MD2] Query the signal state at input bit I 8.7 and

= Q [MD2] assign the signal state to output bit Q 8.7.

Pointer for Area-Internal and Area-Crossing Addressing

The program statements that work with these types of addressing are comprised of
an instruction and the following parts: address identifier, address register identifier,
offset.

The address register (AR1/2) and the offset must be specified together in square
brackets.

Example for Area-Internal Addressing

The pointer contains no indication of a memory area:

L P#8.7 Load the value of the pointer into accumulator 1.

LAR1 Load the pointer from accumulator 1 into AR1.

A I [AR1, P#0.0] Query the signal state at input bit I 8.7 and

= Q [AR1, P#1.1] assign the signal state to output bit Q 10.0.

The offset 0.0 has no influence. Output 10.0 is calculated from 8.7 (AR1) plus the
offset 1.1. The result is 10.0 and not 9.8, see pointer format.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-53

Example for Area-Crossing Addressing

In area-crossing addressing the memory area is indicated in the pointer (in the
example I and Q).

L P# I8.7 Load the value of the pointer and the area
identification in accumulator 1.

LAR1 Load memory area I and the address 8.7 into AR1.

L P# Q8.7 Load the value of the pointer and the area
identification in accumulator 1.

LAR2 Load memory area Q and the address 8.7 into AR2.

A [AR1, P#0.0] Query the signal state at input bit I 8.7 and

= [AR2, P#1.1] assign the signal state to output bit Q 10.0.

The offset 0.0 has no influence. Output 10.0 is calculated from 8.7 (AR2) plus the
offset 1.1. The result is 10.0 and not 9.8, see pointer format.

A.3.4.4 Block for Changing the Pointer

Using the sample block FC3 "Routing Pointers" it is possible to change the bit or
byte address of a pointer. The pointer to be changed is transferred to the variable
"pointer" when the FC is called (area-internal and area-crossing pointers in Double
Word format can be used).

With the parameter "Bit-Byte" you can change the bit or byte address of the pointer
(0: bit address, 1: byte address). The variable "Inc_Value" (in Integer format)
specifies the number that should be added to or subtracted from the address
contents. You can also specify negative numbers to decrement the address.

With a bit address change, there is a carry over to the byte address (also when
decrementing), for example:

• P#M 5.3, Bit_Byte = 0, Inc_Value = 6 => P#M 6.1 or

• P#M 5.3, Bit_Byte = 0, Inc_Value = -6 => P#M 4.5.

The area information of the pointer is not influenced by the function.

The FC intercepts an overflow/underflow of the pointer. In this case the pointer is
not changed and the output variable "RET_VAL" (error handling possible) is set to
"1" (until the next correct processing of FC3). This is the case where:

• 1. Bit address is selected and Inc_Value >7, or <-7

• 2. Bit or byte address is selected and the change would result in a "negative"
byte address

• 3. Bit or byte address is selected and the change would result in an illegally
large byte address.

Appendix

 Programming with STEP 7 Lite V3.0
A-54 A5E00293884-01

Sample Block in STL to Change the Pointer
FUNCTION FC 3: BOOL

TITLE =Routing Pointers

//FC3 can be used to change pointers.

AUTHOR : AUT1CS1

FAMILY : INDADDR

NAME : ADDRPOINT

VERSION : 0.0

VAR_INPUT

 Bit_Byte : BOOL ; //0: Bit address, 1: byte address

 Inc_Value : INT ; //Increment (if value neg. => decrement/

 //if value pos. => increment)

END_VAR

VAR_IN_OUT

 Pointer : DWORD ; //Pointer to be changed

END_VAR

VAR_TEMP

 Inc_Value1 : INT ; //Interim value increment

 Pointer1 : DWORD ; //Interim value pointer

 Int_Value : DWORD ; //Auxiliary variable

END_VAR99

BEGIN

NETWORK

TITLE =

//The block intercepts changes that change the area information

//of the pointer

//or that lead to "negative" pointers automatically.

 SET ; //Set RLO to 1 and

 R #RET_VAL; //reset overflow

 L #Pointer; //Supply value to temporary

 T #Pointer1; //interim value pointer

 L #Inc_Value; //Supply value of temporary

 T #Inc_Value1; //interim value increment

 A #Bit_Byte; //If =1, byte address instruction

 JC Byte; //Jump to byte address calculation

 L 7; //If value of increment > 7,

 L #Inc_Value1;

 <I ;

 S #RET_VAL; //then set RET_VAL and

 JC End; //jump to End

 L -7; //If value of increment < -7,

 <I ;

 S #RET_VAL; //then set RET_VAL and

 JC End; //jump to End

 A L 1.3; //If bit 4 of the value = 1 (Inc_Value negative)

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-55

 JC neg; //then jump to bit address subtraction

 L #Pointer1; //Load pointer address information

 L #Inc_Value1; //and add the increment

 +D ;

 JU test; //Jump to test for negative result

neg: L #Pointer1; //Load pointer address information

 L #Inc_Value1; //Load the increment

 NEGI ; //Negate the negative value,

 -D ; //subtract the value

 JU test; //and jump to test

Byte: L 0; //Start of byte address change

 L #Inc_Value1; //If increment >=0, then

 <I ;

 JC pos; //jump to addition, otherwise

 L #Pointer1; //Load pointer address information,

 L #Inc_Value1; / /load the increment,

 NEGI ; //negate the negative value,

 SLD 3; //shift the increment 3 digits to the left,

 –D ; //subtract the value,

 JU test; //and jump to test

pos: SLD 3; //Shift the increment 3 digits to the left

 L #Pointer1; //Load pointer address information

 +D ; //Add increment

test: T #Int_Value; //Transfer results of calculation to Int_Value

 A L 7.3; //If invalid byte address (too large or

 S #RET_VAL; //negative), then set RET_VAL

 JC End; //and jump to End,

 L #Int_Value; //otherwise transfer result

 T #Pointer; //to pointer

End: NOP 0;

END_FUNCTION

Appendix

 Programming with STEP 7 Lite V3.0
A-56 A5E00293884-01

A.3.4.5 Format of the Parameter Type ANY

STEP 7 Lite stores the parameter type ANY in 10 bytes. When constructing a
parameter of the type ANY, you must ensure that all 10 bytes are occupied
because the called block evaluates the whole contents of the parameter. If, for
example, you specify a DB number in byte 4, you must also explicitly specify the
memory area in byte 6.

STEP 7 Lite manages the data of elementary and complex data types differently
from the data for parameter types.

ANY Format for Data Types

For elementary and complex data types STEP 7 Lite stores the following data:

• Data types

• Repetition factor

• DB number

• Memory area in which the information is stored

• Start address of the data

15... ...8 7... ...0

Byte 1

Byte 3

Byte 5

Byte 7

Byte 9

Byte 0

Byte 2

Byte 4

Byte 6

Byte 8

Repetition factor

10h for S7 Data type

Memory area

DB number (or 0)

Data from elementary and complex data types

0 0 0 0 0 b b b

b = Byte address x = Bit address

b b b b b x x xb b b b b b b b

The repetition factor identifies a quantity of the indicated data type to be transferred
by the parameter type ANY. This means you can specify a data area and also use
arrays and structures in conjunction with the parameter type ANY. STEP 7 Lite
identifies arrays and structures as a number (with the help of the repetition factor)
of data types. If, for example, 10 words are to be transferred, the value 10 must be
entered for the repetition factor and the value 04 must be entered for the data type.

The address is stored in the format Byte.Bit where the byte address is stored in bits
0 to 2 of byte 7, in bits 0 to 7 of byte 8, and in bits 3 to 7 of byte 9. The bit address
is stored in bits 0 to 2 of byte 9.

With a null pointer of the type NIL all bytes from byte 1 are assigned 0.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-57

The following tables show the coding of the data types or of the memory areas for
the parameter type ANY.

Coding of the Data Types

Hexadecimal Code Data Type Description

b#16#00 NIL Null pointer

b#16#01 BOOL Bits

b#16#02 BYTE Bytes (8 bits)

b#16#03 CHAR Characters (8 bits)

b#16#04 WORD Words (16 bits)

b#16#05 INT Integers (16 bits)

B#16#06 DWORD Words (32 bits)

b#16#07 DINT Double Integers (32 bits)

b#16#08 REAL Floating-point numbers (32 bits)

b#16#09 DATE Date

b#16#0A TIME_OF_DAY (TOD) Time of day

b#16#0B TIME Time

b#16#0C S5TIME Data type S5TIME

b#16#0E DATE_AND_TIME (DT) Date and time (64 bits)

b#16#13 STRING String

Coding of the Memory Areas

HexadecimalCode Area Description

b#16#81 I Input area

b#16#82 Q Output area

b#16#83 M Bit memory area

b#16#84 DB Data block

b#16#85 DI Instance data block

b#16#86 L Local data (L stack)

b#16#87 V Previous local data

Appendix

 Programming with STEP 7 Lite V3.0
A-58 A5E00293884-01

ANY Format for Parameter Types

For parameter types STEP 7 Lite stores the data type and the address of the
parameters. The repetition factor is always 1. Bytes 4, 5, and 7 are always 0. Bytes
8 and 9 indicate the number of the timer, counter, or block.

15... ...8 7... ...0

Byte 1

Byte 3

Byte 5

Byte 7

Byte 9

Byte 0

Byte 2

Byte 4

Byte 6

Byte 8

Repetition factor = 1

10h for S7 Data type

0

0 0 0 0 0 0 0 0Data type

Data from parameter types (timers, counters, blocks)

Number of timer, counter or block

The following table shows the coding of the data types for the parameter type ANY
for parameter types.

Hexadecimal Code Data Type Description

b#16#17 BLOCK_FB FB number

b#16#18 BLOCK_FC FC number

b#16#19 BLOCK_DB DB number

b#16#1A BLOCK_SDB SDB number

b#16#1C COUNTER Counter number

b#16#1D TIMER Timer number

Example:

Call FB10, DB110(

:

Input_Var_Any:= MW100, // Here FB10 will use a word (MW100)

 // for

 // processing.

:

);

:

Call FB10, DB110(

:

Input_Var_Any:= M1.3, // Here FB10 will use a bit (M1.3)

 // for

 // processing.

:

);

A.3.4.6 Using the Parameter Type ANY

You can define formal parameters for a block that are suitable for actual
parameters of any data type. This is particularly useful when the data type of the

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-59

actual parameter that is provided when the block is called is unknown or can vary
(and when any data type is permitted). In the variable declaration of the block, you
declare the parameter as data type ANY. You can then assign an actual parameter
of any data type in STEP 7 Lite.

STEP 7 Lite assigns 80 bits of memory for a variable of the ANY data type. If you
assign an actual parameter to this formal parameter, STEP 7 Lite codes the start
address, the data type, and the length of the actual parameter in the 80 bits. The
called block analyzes the 80 bits of data saved for the ANY parameter and obtains
the information required for further processing.

Assigning an Actual Parameter to an ANY Parameter
If you declare the data type ANY for a parameter, you can assign an actual
parameter of any data type to the formal parameter. In STEP 7 Lite, you can
assign the following data types as actual parameters:

• Elementary data types: you specify the absolute address or the symbolic name
of the actual parameter.

• Complex data types: you specify the symbolic name of the data with a complex
data type (for example, arrays and structures).

• Timers, counters, and blocks: you specify the number (for example, T1, C20, or
FB6).

• The following figure shows how data are transferred to an FC with parameters
of the ANY data type.

INTSpeed

FB10

CALL FC100
 in_par1 := #Speed
 in_par2 := MW100
 in_par3 := DB10.DBD40

FC100

with DB10

Variable declaration

Variable declaration

STAT

ANY

in_par2 ANY

in_par3 ANY

in_par1IN

IN

IN

Thermo

FB11 with DB20

Variable declaration

TEMP

in_par2
in_par3

in_par1
M 1.3

T 2

#Thermo
FC100

REAL

ARRAY [1..3]

Appendix

 Programming with STEP 7 Lite V3.0
A-60 A5E00293884-01

In this example, FC100 has three parameters (in_par1, in_par2, and in_par3)
declared as the ANY data type.

• When FB10 calls FC100, FB10 transfers an Integer (the static variable
"speed"), a word (MW100), and a Double Word to DB10 (DB10.DBD40).

• When FB11 calls FC10, FB11 transfers an array of real numbers (the temporary
variable "Thermo"), a Boolean value (M 1.3), and a timer (T2).

Specifying a Data Area for an ANY Parameter

You can assign not only individual addresses (for example, MW100) to an ANY
parameter but you can also specify a data area. If you want to assign a data area
as the actual parameter, use the following format of a constant to specify the
amount of data to be transferred:

p# Area ID Byte.Bit Data Type Repetition Factor

For the Data Type element, you can specify all elementary data types and the data
type DATE_AND_TIME in the format for constants. If the data type is not BOOL,
the bit address of 0 (x.0) must be specified. The following table illustrates examples
of the format for specifying memory areas to be transferred to an ANY parameter.

Actual Parameter Description

p# M 50.0 BYTE 10 Specifies 10 bytes in the byte memory area:
MB50 to MB59.

p# DB10.DBX5.0 S5TIME 3 Specifies 3 units of data of the data type S5TIME, that are
located in DB10:
DB byte 5 to DB byte 10.

p# Q 10.0 BOOL 4 Specifies 4 bits in the output area:
Q 10.0 to Q 10.3.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-61

Example for Using the Parameter Type ANY

The following example shows how you can copy a memory area of 10 bytes using
the parameter type ANY and the system function SFC20 BLKMOV.

STL Explanation
FUNCTION FC 10:VOID
VAR_TEMP
 Source : ANY;
 Target : ANY;
END_VAR
BEGIN
LAR1 P#Source;

L B#16#10;
T LB[AR1,P#0.0];

L B#16#02;
T LB[AR1,P#1.0];

L 10;
T LW[AR1,P#2.0];

L 22;
T LW[AR1,P#4.0];
L P#DBX11.0;
T LD[AR1,P#6.0];

LAR1 P#Target;

L B#16#10;
T LB[AR1,P#0.0];

L B#16#02;
T LB[AR1,P#1.0];

L 10;
T LW[AR1,P#2.0];

L 33;
T LW[AR1,P#4.0];
L P#DBX202.0;
T LD[AR1,P#6.0];

CALL SFC 20 (
 SRCBLK := Source,
 RET_VAL := MW 12,
 DSTBLK := Target
);
END_FUNCTION

//Load the start address of the ANY pointer in AR1.

//Load the syntax ID and
//transfer it to the ANY pointer.

//Load data type Byte and
//transfer it to the ANY pointer

//Load 10 bytes and
//transfer them to the ANY pointer.

//Source is DB22, DBB11

//Load the start address of the ANY pointer in AR1.

//Load the syntax ID and
//transfer it to the ANY pointer.

//Load data type Byte and
//transfer it to the ANY pointer.

//Load 10 bytes and
//transfer them to the ANY pointer.

//Target is DB33, DBB202

//Call the system function BLKMOV

//Evaluate the BR bit and MW12

System Function Blocks (SFB) and System Functions (SFC)

Appendix

 Programming with STEP 7 Lite V3.0
A-62 A5E00293884-01

A.3.4.7 Assigning Data Types to Local Data of Logic Blocks

With STEP 7 Lite, the data types (elementary and complex data types and
parameter types) that can be assigned to the local data of a block in the variable
declaration are restricted.

Valid Data Types for the Local Data of an OB

The following table illustrates the restrictions (–) for declaring local data for an OB.
Since you cannot call an OB, an OB cannot have parameters (input, output, or
in/out). Since an OB does not have an instance DB, you cannot declare any static
variables for an OB. The data types of the temporary variables of an OB can be
elementary or complex data types and the data type ANY.

The valid assignments are shown by the ! symbol.

Declaration
Type

Elementary
Data Types

Complex
Data Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY

Input — — — — — — —

Output — — — — — — —

In/out — — — — — — —

Static — — — — — — —

Temporary !(1) !(1) — — — — !(1)

 (1) Located in the L stack of the OB.

Valid Data Types for the Local Data of an FB

The following table illustrates the restrictions (–) for declaring local data for an FB.
Due to the instance DB, there are less restrictions when declaring local data for an
FB. When declaring input parameters there are no restrictions whatsoever; for an
output parameter you cannot declare any parameter types, and for in/out
parameters only the parameter types POINTER and ANY are permitted. You can
declare temporary variables as the ANY data type. All other parameter types are
illegal.

The valid assignments are shown by the ! symbol.

Declaration
Type

Elementary
Data Types

Complex
Data Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY

Input ! ! ! ! ! ! !

Output ! ! — — — — —

In/out ! !(1)(3) — — — ! !

Static ! ! — — — — —

Temporary !(2) !(2) — — — — !(2)

 1 Stored as a reference (48-bit pointer) in the instance data block.
 2 Located in the L stack of the FB.
 3 STRINGS can be defined in the default length only.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-63

Valid Data Types for the Local Data of an FC

The following table illustrates the restrictions (–) for declaring local data for an FC.
Since an FC does not have an instance DB, it also has no static variables. For
input, output, and in/out parameters of an FC, only the parameter types POINTER
and ANY are permitted. You can also declare temporary variables of the ANY
parameter type.

The valid assignments are shown by the ! symbol.

Declaration
Type

Elementary
Data Types

Complex
Data Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY
Input ! !(2) ! ! ! ! !
Output ! !(2) — — — ! !
In/out ! !(2) — — — ! !
Temporary !(1) !(1) — — — — !(1)

 1 Located in the L stack of the FC.
 2 STRINGS can be defined in the default length only.

A.3.4.8 Permitted Data Types when Transferring Parameters

Rules for Transferring Parameters Between Blocks

When you assign actual parameters to formal parameters, you can specify either
an absolute address, a symbolic name, or a constant. STEP 7 Lite restricts the
valid assignments for the various parameters. Output and in/out parameters, for
example, cannot be assigned a constant value (since the purpose of an output or
an in/out parameter is to change its value). These restrictions apply particularly to
parameters with complex data types to which neither an absolute address nor a
constant can be assigned.

The following tables illustrate the restrictions (–) involving the data types of actual
parameters that are assigned to formal parameters.

The valid assignments are shown by the ! symbol.

 Elementary Data Types
Declaration

Type
Absolute
Address

Symbolic Name
(in the Symbol Table)

Temporary Local
Symbol

Constant

Input ! ! ! !
Output ! ! ! —
In/out ! ! ! —

 Complex Data Types

Declaration
Type

Absolute
Address

Symbolic Name of the DB
Element

(in the Symbol Table)

Temporary Local
Symbol

Constant

Input — ! ! —
Output — ! ! —
In/out — ! ! —

Appendix

 Programming with STEP 7 Lite V3.0
A-64 A5E00293884-01

Valid Data Types for the Call of a Function by a Function

You can assign the formal parameters of a calling FC to the formal parameters of a
called FC. The following figure illustrates the formal parameters of FC10 that are
assigned as actual parameters to the formal parameters of FC12.

Input

Param_2 Output

Param_3 In/out

Param_1

FC10

Call FC12
 A_Param := Param_1
 B_Param := Param_2
 C_Param := Param_3

Input

B_Param Output

C_Param In/out

A_Param

FC12

Function (FC) –-------- Call ---------- Function (FC)

Variable declaration Variable declaration

STEP 7 Lite restricts the assignment of formal parameters of an FC as actual
parameters for the formal parameters of a different FC. You cannot, for example,
assign parameters with complex data types or a parameter type as the actual
parameter.

The following table shows the permitted data types (!) when one FC calls another
FC.

Declaration Type Elementary
Data Types

Complex
Data
Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY

Input → Input ! — — — — — —

Input → Output — — — — — — —

Input → In/out — — — — — — —

Output → Input — — — — — — —

Output → Output ! — — — — — —

Output → In/out — — — — — — —

In/out → Input ! — — — — — —

In/out → Output ! — — — — — —

In/out → In/out ! — — — — — —

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-65

Valid Data Types for the Call of a Function by a Function Block

You can assign the formal parameters of a calling FB to the formal parameters of a
called FC. The following figure illustrates the formal parameters of FB10 that are
assigned as actual parameters to the formal parameters of FC12.

Input

Param_2 Output

Param_3 In/out

Param_1

FB10

Call FC12
 A_Param := Param_1
 B_Param := Param_2
 C_Param := Param_3

Input

B_Param Output

C_Param In/out

A_Param

FC12

Function Block (FB) ------------- Call ------------- Function (FC)

with DB10

Variable declaration Variable declaration

STEP 7 Lite restricts the assignment of the formal parameters of an FB to the
formal parameters of an FC. You cannot, for example, assign parameters of the
parameter type as actual parameters. The following table shows the permitted data
types (!) when an FB calls an FC.

Declaration
Type

Elementary
Data Types

Complex
Data

Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY

Input → Input ! ! — — — — —

Input → Output — — — — — — —

Input → In/out — — — — — — —

Output → Input — — — — — — —

Output → Output ! ! — — — — —

Output → In/out — — — — — — —

In/out → Input ! — — — — — —

In/out → Output ! — — — — — —

In/out → In/out ! — — — — — —

Appendix

 Programming with STEP 7 Lite V3.0
A-66 A5E00293884-01

Valid Data Types for the Call of a Function Block by a Function

You can assign the formal parameters of a calling FC to the formal parameters of a
called FB. The following figure illustrates the formal parameters of FC10 that are
assigned as actual parameters to the formal parameters of FB12.

Input

Param_2 Output

Param_3 In/out

Param_1

FC10

Call FB12,DB11
 A_Param := Param_1
 B_Param := Param_2
 C_Param := Param_3

Input

B_Param Output

C_Param In/out

A_Param

FB12

Function (FC) ------------ Call ----------- Function Block (FB)

with DB11

Variable declaration Variable declaration

STEP 7 Lite restricts the assignment of formal parameters of an FC to the formal
parameters an FB. You cannot, for example, assign parameters with a complex
data type as actual parameters. You can, however, assign input parameters of the
parameter types TIMER, COUNTER, or BLOCK to the input parameters of the
called FB.

The following table shows the permitted data types (!) when an FC calls an FB.

Declaration
Type

Elementary
Data Types

Complex
Data

Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY

Input → Input ! — ! ! ! — —

Input → Output — — — — — — —

Input → In/out — — — — — — —

Output → Input — — — — — — —

Output → Output ! — — — — — —

Output → In/out — — — — — — —

In/out → Input ! — — — — — —

In/out → Output ! — — — — — —

In/out → In/out ! — — — — — —

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-67

Valid Data Types for the Call of a Function Block by a Function Block

You can assign the formal parameters of a calling FB to the formal parameters of a
called FB. The following figure illustrates the formal parameters of FB10 that are
assigned as actual parameters to the formal parameters of FB12.

Input

Param_2 Output

Param_3 In/out

Param_1

FB10

Call FB12,DB11
 A_Param := Param_1
 B_Param := Param_2
 C_Param := Param_3

Input

B_Param Output

C_Param In/out

A_Param

FB12

Function Block (FB) ---------- Call ---------- Function Block (FB)

with DB11

Variable declaration Variable declaration

with DB10

STEP 7 Lite restricts the assignment of the formal parameters of an FB to the
formal parameters of another FB. You cannot, for example, assign input and output
parameters with complex data types as the actual parameters for the input and
output parameters of a called FB. You can, however, assign input parameters of
the parameter types TIMER, COUNTER, or BLOCK to the input parameters of the
called FB.

The following table shows the permitted data types (!) when an FB calls another
FB.

Declaration
Type

Elementary
Data Types

Complex
Data

Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY

Input → Input ! ! ! ! ! — —

Input → Output — — — — — — —

Input → In/out — — — — — — —

Output → Input — — — — — — —

Output → Output ! ! — — — — —

Output → In/out — — — — — — —

In/out → Input ! — — — — — —

In/out → Output ! — — — — — —

In/out → In/out ! — — — — — —

Appendix

 Programming with STEP 7 Lite V3.0
A-68 A5E00293884-01

A.3.4.9 Transferring to In_Out Parameters of a Function Block

When complex data types are transferred to In_Out parameters of a function block
(FB) the address of the variable is transferred (call by reference).

When elementary data types are transferred to In_Out parameters of a function
block the values are copied into the instance data block before the function block is
started and copied out of the instance data block after the function block is ended.

This means In_Out variables of elementary data type can be initialized with a
value.

It is not possible, however, to specify a constant in place of an In_Out variable as
the actual parameter in a call because a constant cannot be written to.

Variables of the data type STRUCT or ARRAY cannot be initialized because only
one address is in the instance data block in this case.

A.4 Sample Programs

A.4.1 Sample Projects and Sample Programs

The installation CD contains a number of sample projects. For the projects that are
not described in this chapter, a description is included with the corresponding OB1.

Examples and Sample Projects Included on CD Described in
this Chapter

"Getting_Started_LAD", "Getting_Started_FBD" and
"Getting_Started_STL" projects

• Separate
manual "First
Steps with
STEP 7 Lite"

Example of an industrial blending process •

Example of handling time-of-day interrupts •

Example of handling time-delay interrupts •

The emphasis of the examples is not on teaching a particular programming style or
the specialist knowledge needed to control a particular process. The examples are
simply intended to illustrate the steps that must be followed to design a program.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-69

Deleting and Installing the Supplied Sample Projects

The supplied sample projects can be deleted and then reinstalled. To install the
sample projects, you must start the STEP 7 Lite setup program. The sample
projects can be installed selectively at a later date.

You can find the sample projects in the STEP 7 Lite installation on your drive under
drive:\Siemens\S7lite\Examples.

 Notice

When STEP 7 Lite is installed, the supplied sample projects are copied, unless
otherwise specified. If you have edited the supplied sample projects, these
modified projects are overwritten with the originals when STEP 7 Lite is reinstalled.

For this reason, you should copy the supplied sample projects before making any
changes and then only edit the copies.

A.4.2 Example of Masking and Unmasking Synchronous Errors

The following example of a user program illustrates how to mask and unmask
synchronous errors. Using SFC36 "MSK_FLT" the following errors are masked in
the programming error filter:

• Area length error when reading

• Area length error when writing

With a second call of SFC36 "MSK_FLT" an access area can also be masked:

• I/O access error when writing

With SFC38 "READ_ERR" the masked synchronous errors are queried. The "I/O
access error when writing" is unmasked again with SFC37 "DMSK_FLT."

Appendix

 Programming with STEP 7 Lite V3.0
A-70 A5E00293884-01

Code Section

Below you will find the OB1 in which the example of the user program was
programmed in Statement List.

STL (Network 1) Explanation
 AN M 255.0

 JNB m001
 CALL SFC 36

 PRGFLT_SET_MASK :=DW#16#C

 ACCFLT_SET_MASK :=DW#16#0

 RET_VAL :=MW 100
 PRGFLT_MASKED :=MD 10

 ACCFLT_MASKED :=MD 14

m001: A BR
 S M 255.0

//Non-retentive memory bit M 255.0
//(only in first run = 0)

//SFC36 MSK_FLT (mask synchronous
//errors)
//Bit 2 = Bit 3 = 1 (BLFL and BLFS are
//masked)
//All bits=0 (no access errors are
//masked)
//Return value
//Output current programming error
//filter to MD10
//Output current access error filter to
//MD14

//Set M255.0 if masking successful

STL (Network 2) Explanation
 CALL SFC 36

 PRGFLT_SET_MASK :=DW#16#0

 ACCFLT_SET_MASK :=DW#16#8

 RET_VAL :=MW 102
 PRGFLT_MASKED :=MD 20

 ACCFLT_MASKED :=MD 24

//SFC36 MSK_FLT (mask synchronous
//errors)
//All bits=0 (no further programming
//errors masked)
//Bit 3 = 1 (write access errors are
//masked)
//Return value
//Output current programming error
//filter to MD20
//Output current access error filter to
//MD24

STL (Network 3) Explanation
 AN M 27.3
 BEC

//Block end if write access error (bit 3
//in ACCFLT_MASKED) not masked

STL (Network 4) Explanation
 L B#16#0
 T PQB 16

//Write access (with value 0) to PQB 16

STL (Network 5) Explanation
 CALL SFC 38

 PRGFLT_QUERY :=DW#16#0

 ACCFLT_QUERY :=DW#16#8

 RET_VAL :=MW 104
 PRGFLT_CLR :=MD 30

 ACCFLT_CLR :=MD 34

 A BR

 A M 37.3
 NOT
 = M 0.0

//SFC38 READ_ERR (query synchronous
//errors)
//All bits=0 (no programming errors
//queried)
//Bit 3 = 1 (write access error queried)

//Return value
//Output current programming error
//filter to MD30
//Output current access error filter to
//MD34
//No error occurred and write access
//error detected

//Invert RLO
//M 0.0=1 if PQB 16 present

STL (Network 6) Explanation
 L B#16#0
 T PQB 17

//Write access (with value 0) to PQB 17

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-71

STL (Network 7) Explanation
 CALL SFC 38

 PRGFLT_QUERY :=DW#16#0

 ACCFLT_QUERY :=DW#16#8

 RET_VAL :=MW 104
 PRGFLT_CLR :=MD 30

 ACCFLT_CLR :=MD 34

 A BR

 A M 37.3
 NOT
 = M 0.1

//SFC38 READ_ERR (query synchronous
//errors)
//All bits=0 (no programming errors
//queried)
//Bit 3 = 1 (write access error queried)

//Return value
//Output current programming error
//filter to MD30
//Output current access error filter to
//MD34
//No error occurred and write access
//error detected

//Invert RLO
//M 0.1=1 if PQB 17 present

STL (Network 8) Explanation
 L B#16#0
 T PQB 18

//Write access (with value 0) to PQB 18

STL (Network 9) Explanation
 CALL SFC 38

 PRGFLT_QUERY :=DW#16#0

 ACCFLT_QUERY :=DW#16#8

 RET_VAL :=MW 104
 PRGFLT_CLR :=MD 30

 ACCFLT_CLR :=MD 34

 A BR

 A M 37.3
 NOT
 = M 0.2

//SFC38 READ_ERR (query synchronous
//errors)
//All bits=0 (no programming errors
//queried)
//Bit 3 = 1 (write access error queried)

//Return value
//Output current programming error
//filter to MD30
//Output current access error filter to
//MD34
//No error occurred and write access
//error detected

//Invert RLO
//M 0.2=1 if PQB 18 present

STL (Network 10) Explanation
 L B#16#0
 T PQB 19

//Write access (with value 0) to PQB 19

STL (Network 11) Explanation
 CALL SFC 38

 PRGFLT_QUERY :=DW#16#0

 ACCFLT_QUERY :=DW#16#8

 RET_VAL :=MW 104
 PRGFLT_CLR :=MD 30

 ACCFLT_CLR :=MD 34

 A BR

 A M 37.3
 NOT
 = M 0.3

//SFC38 READ_ERR (query synchronous
//errors)
//All bits=0 (no programming errors
//queried)
//Bit 3 = 1 (write access error queried)

//Return value
//Output current programming error
//filter to MD30
//Output current access error filter to
//MD34
//No error occurred and write access
//error detected

//Invert RLO
//M 0.3=1 if PQB 19 present

Appendix

 Programming with STEP 7 Lite V3.0
A-72 A5E00293884-01

STL (Network 12) Explanation
 CALL SFC 37

 PRGFLT_RESET_MASK :=DW#16#0

 ACCFLT_RESET_MASK :=DW#16#8

 RET_VAL :=MW 102
 PRGFLT_MASKED :=MD 20

 ACCFLT_MASKED :=MD 24

//SFC37 DMSK_FLT (unmask synchronous
//errors)
//All bits=0 (no further programming
//errors unmasked)
//Bit 3 = 1 (write access error
//unmasked)
//Return value
//Output current programming error
//filter to MD20
//Output current access error filter to
//MD24

STL (Network 13) Explanation
 A M 27.3
 BEC

//Block end if write access error (bit 3
//in ACCFLT_MASKED) not unmasked

STL (Network 14) Explanation
 A M 0.0
 JNB m002
 L IB 0
 T PQB 16
m002: NOP 0

//Transfer IB0 to PQB 16 if present

STL (Network 15) Explanation
 A M 0.1
 JNB m003
 L IB 1
 T PQB 17
m003: NOP 0

//Transfer IB1 to PQB 17 if present

STL (Network 16) Explanation
 A M 0.2
 JNB m004
 L IB 2
 T PQB 18
m004: NOP 0

//Transfer IB2 to PQB 18 if present

STL (Network 17) Explanation
 A M 0.3
 JNB m005
 L IB 3
 T PQB 19
m005: NOP 0

//Transfer IB3 to PQB 19 if present

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-73

A.4.3 Example of Disabling and Enabling Interrupts and
Asynchronous Errors (SFC39 and SFC40)

In this example of a user program, a program section is assumed that cannot be
interrupted by interrupts. For this program section, OB35 calls (time-of-day
interrupt) are disabled using SFC 39 "DIS_IRT" and later enabled again using
SFC 40 "EN_IRT".

SFC39 and SFC40 are called in OB1:

STL (OB1) Explanation
 A M 0.0
 S M 90.1
 A M 0.1
 S M 90.0
 :
 :

 CALL SFC 39
 MODE :=B#16#2

 OB_NO :=35
 RET_VAL :=MW 100
 :
 :
 L PIW 100
 T MW 200
 L MW 90
 T MW 92
 :
 :
 CALL SFC 40
 MODE :=B#16#2

 OB_NO :=35
 RET_VAL :=MW 102

 A M 10.0
 S M 190.1
 A M 10.1
 S M 190.0
 :
 :

//Program section that can be //interrupted
without problems:

//Program section that must not be
//interrupted by interrupts:
//Disable and discard interrupts
//Mode 2: disable individual interrupt OBs
//Disable OB35

//Enable interrupts
//Mode 2: enable individual interrupt OBs
//Enable OB35

//Program section that can be
//interrupted without problems:

Appendix

 Programming with STEP 7 Lite V3.0
A-74 A5E00293884-01

A.4.4 Example of the Delayed Processing of Interrupts and
Asynchronous Errors (SFC41 and SFC42)

In this example of a user program, a program section is assumed that cannot be
interrupted by interrupts. For this program section, interrupts are delayed using
SFC41 "DIS_AIRT" and later enabled again using SFC42 "EN_AIRT."

SFC41 and SFC42 are called in OB1:

STL (OB1) Explanation
 A M 0.0
 S M 90.1
 A M 0.1
 S M 90.0
 :
 :

 CALL SFC 41
 RET_VAL :=MW 100
 RET_VAL :=MW 100
 L PIW 100
 T MW 200
 L MW 90
 T MW 92
 :
 :
 :
 CALL SFC 42
 RET_VAL :=MW 102
 L MW 100

 DEC 1
 L MW 102

 <>I

 JC err

 A M 10.0
 S M 190.1
 A M 10.1
 S M 190.0
 :
 :
 BEU
err: L MW 102
 T QW 12

//Program section that can be interrupted
//without problems:

//Program section that must not be
//interrupted by interrupts:
//Disable and delay interrupts

//Enable interrupts

//The number of set interrupt disables is
//in the return value

//The number of set interrupt disables is
//in the return value
//The number must have the same value after
//the interrupt is enabled
//as before the interrupt disable (here
//"0")

//Program section that can be interrupted
//without problems:

//The number of set interrupt disables is
//displayed

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-75

A.4.5 Sample Program for an Industrial Blending Process

A.4.5.1 Sample Program for an Industrial Blending Process

The sample program is makes use of information that you have already read in
part 1 of the manual about controlling an industrial blending process.

Task

Two ingredients (ingredient A and ingredient B) are mixed together in a mixing tank
by an agitator. The finished product is drained from the tank through a drain valve.
The following figure shows a diagram of the sample process.

M

M

 Drain valve

Switch for tank
level measuring

Agitator motor
Inlet
valve

Feed
valve

Feed
pump

Inlet
valve

Feed
valve

Feed
pump

Flow
sensor

Area: Ingredient B

Area: Ingredient A

Area: Mixing tank
M

M M

M

Area: Drain

Appendix

 Programming with STEP 7 Lite V3.0
A-76 A5E00293884-01

Describing the Parts of a Process

Part 1 of the manual included a description of how you divide up the sample
process into functional areas and individual tasks. The individual areas are
described below.

The area for ingredients A and B:

• The pipes for each of the ingredients are equipped with an inlet and a feed
valve and feed pump.

• The inlet pipes also have flow sensors.

• Turning on the feed pumps must be interlocked when the tank level sensor
indicates that the tank is full.

• The activation of the feed pumps must be interlocked when the drain valve is
open.

• The inlet and feed valves must be opened at the earliest 1 second after starting
the feed pump.

• The valves must be closed immediately after the feed pumps stop (signal from
the flow sensor) to prevent ingredients leaking from the pump.

• The activation of the feed pumps is combined with a time monitoring function, in
other words, within 7 seconds after the pumps start, the flow sensor must report
a flow.

• The feed pumps must be turned off as quickly as possible if the flow sensor no
longer signals a flow while the feed pumps are running.

• The number of times that the feed pumps are started must be counted
(maintenance interval).

Mixing tank area:

• The activation of the agitator motor must be interlocked when the tank level
sensor indicates ”level below minimum" or the drain valve is open.

• The agitator motor sends a response signal after reaching the rated speed. If
this signal is not received within 10 seconds after the motor is activated, the
motor must be turned off.

• The number of times that the agitator motor starts must be counted
(maintenance interval).

• Three sensors must be installed in the mixing tank:

- Tank full: a normally closed contact. When the maximum tank level is
reached, the contact is opened.

- Level in tank above minimum: a normally open contact. If the minimum
level is reached, the contact is closed.

- Tank not empty: a normally open contact. If the tank is not empty, the
contact is closed.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-77

Drain area:

• Drainage of the tank is controlled by a solenoid valve.

• The solenoid valve is controlled by the operator, but must be closed again at the
latest when the ”tank empty" signal is generated.

• Opening the drain valve is interlocked when

- the agitator motor is running

- the tank is empty

Operator Station

To allow an operator to start, stop, and monitor the process, an operator station is
also required. The operator station is equipped with the following:

• Switches for controlling the most important stages of the process. Using the
"reset maintenance display" switch, you can turn off the maintenance display
lamps for the motors due for maintenance and reset the corresponding counters
for the maintenance interval to 0.

• Display lamps to indicate the status of the process.

• The emergency stop switch.

Appendix

 Programming with STEP 7 Lite V3.0
A-78 A5E00293884-01

A.4.5.2 Defining Logic Blocks

You structure the program by distributing the user program in various blocks and
by establishing a hierarchy for block calls.

Hierarchy of the Block Calls

The following figure shows the hierarchy of the blocks to be called in the structured
program.

DB 3

Feed pump
ingredient A

Feed pump
ingredient B

OB 1

Motor

Valves

FB1

FC1

Ingredient A

DB 1

Ingredient B

DB 2

Agitator
motor

Inlet valves
A and B

Feed
valves

A and B

Agitator
motor

Drain valve

• OB1: The interface to the operating system of the CPU and contains the main
program. In OB1 the blocks FB1 and FC1 are called and the specific
parameters required to control the process are transferred.

• FB1: The feed pump for ingredient A, the feed pump for ingredient B and the
agitator motor can be controlled by a single function block because the
requirements (on, off, count applications etc.) are identical.

• Instance DB 1-3: The actual parameters and the static data for controlling the
feed pumps for ingredient A, ingredient B and for the agitator motor are different
and are therefore stored in three instance DBs associated with FB1.

• FC1: The inlet and feed valves for ingredients A and B and the drain valve also
use a common logic block. As only the function "open and close" must be
programmed, one single FC is sufficient.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-79

A.4.5.3 Assigning Symbolic Names

Defining Symbolic Names

Symbols are used in the sample program and they must be defined in the symbol
table using STEP 7 Lite. The following tables show the symbolic names and the
absolute addresses of the program elements used.

Symbolic Addresses for Feed Pump, Agitator Motor, and Inlet Valves

Symbolic Name Address Data Type Description

Feed_pump_A_start I0.0 BOOL Starts the feed pump for ingredient A

Feed_pump_A_stop I0.1 BOOL Stops the feed pump for ingredient A

Flow_A I0.2 BOOL Ingredient A flowing

Inlet_valve_A Q4.0 BOOL Activates the inlet valve for ingredient A

Feed_valve_A Q4.1 BOOL Activates the feed valve for ingredient A

Feed_pump_A_on Q4.2 BOOL Lamp for ”feed pump ingredient A running"

Feed_pump_A_off Q4.3 BOOL Lamp for ”feed pump ingredient A not
running"

Feed_pump_A Q4.4 BOOL Activates the feed pump for ingredient A

Feed_pump_A_fault Q4.5 BOOL Lamp for ”feed pump A fault"

Feed_pump_A_maint Q4.6 BOOL Lamp for ”feed pump A maintenance"

Feed_pump_B_start I0.3 BOOL Starts the feed pump for ingredient B

Feed_pump_B_stop I0.4 BOOL Stops the feed pump for ingredient B

Flow_B I0.5 BOOL Ingredient B flowing

Inlet_valve_B Q5.0 BOOL Activates the inlet valve for ingredient B

Feed_valve_B Q5.1 BOOL Activates the feed valve for ingredient B

Feed_pump_B_on Q5.2 BOOL Lamp for ”feed pump ingredient B running"

Feed_pump_B_off Q5.3 BOOL Lamp for ”feed pump ingredient B not
running"

Feed_pump_B Q5.4 BOOL Activates the feed pump for ingredient B

Feed_pump_B_fault Q5.5 BOOL Lamp for ”feed pump B fault"

Feed_pump_B_maint Q5.6 BOOL Lamp for ”feed pump B maintenance"

Agitator_running I1.0 BOOL Response signal of the agitator motor

Agitator_start I1.1 BOOL Agitator start button

Agitator_stop I1.2 BOOL Agitator stop button

Agitator Q8.0 BOOL Activates the agitator

Agitator_on Q8.1 BOOL Lamp for "agitator running"

Agitator_off Q8.2 BOOL Lamp for "agitator not running"

Agitator_fault Q8.3 BOOL Lamp for ”agitator motor fault"

Agitator_maint Q8.4 BOOL Lamp for ”agitator motor maintenance"

Appendix

 Programming with STEP 7 Lite V3.0
A-80 A5E00293884-01

Symbolic Addresses for Sensors and Displaying the Level of the Tank

Symbolic Name Address Data Type Description

Tank_below_max I1.3 BOOL Sensor ”mixing tank not full"

Tank_above_min I1.4 BOOL Sensor ”mixing tank above minimum level"

Tank_not_empty I1.5 BOOL Sensor ”mixing tank not empty"

Tank_max_disp Q9.0 BOOL Lamp for "mixing tank full"

Tank_min_disp Q9.1 BOOL Lamp for "mixing tank below minimum level"

Tank_empty_disp Q9.2 BOOL Lamp for "mixing tank empty"

Symbolic Addresses for the Drain Valve

Symbolic Name Address Data Type Description

Drain_open I0.6 BOOL Button for opening the drain valve

Drain_closed I0.7 BOOL Button for closing the drain valve

Drain Q9.5 BOOL Activates the drain valve

Drain_open_disp Q9.6 BOOL Lamp for "drain valve open"

Drain_closed_disp Q9.7 BOOL Lamp for "drain valve closed"

Symbolic Addresses for the Other Program Elements

Symbolic Name Address Data Type Description

EMER_STOP_off I1.6 BOOL EMERGENCY STOP switch

Reset_maint I1.7 BOOL Reset switch for the maintenance lamps on all motors

Motor_block FB1 FB1 FB for controlling pumps and motor

Valve_block FC1 FC1 FC for controlling the valves

DB_feed_pump_A DB1 FB1 Instance DB for controlling feed pump A

DB_feed_pump_B DB2 FB1 Instance DB for controlling feed pump B

DB_agitator DB3 FB1 Instance DB for controlling the agitator motor

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-81

A.4.5.4 Creating the FB for the Motor

What is Required of the FB?

The FB for the motor contains the following logical functions:

• There is a start and a stop input.

• A series of interlocks allow the operation of the devices (pumps and agitator
motor). The status of the interlocks is saved in the temporary local data (L
stack) of OB1 (”Motor_enable," ”Valve_enable") and is logically combined with
the start and stop inputs when the FB for the motor is processed.

• Feedback from the devices must appear within a certain time. Otherwise, it is
assumed that an error or fault has occurred. The function then stops the motor.

• The point in time and the duration of the response or error/fault cycle must be
specified.

• If the start button is pressed and the motor enabled, the device switches itself
on and runs until the stop button is pressed.

• When the device is switched on, a timer starts to run. If the response signal
from the device is not received before the timer has expired, the device stops.

Specifying the Inputs and Outputs

The following figure shows the inputs and outputs of the general FB for the motor.

Start

Stop

Reset_Maint

Response

Timer_No

Start_Dsp

Fault

Stop_Dsp

Response_Time

Motor

Maint
Motor

Appendix

 Programming with STEP 7 Lite V3.0
A-82 A5E00293884-01

Defining the Parameters for the FB

If you use a multiple instance FB for the motor (for controlling both pumps and the
motor) you must define general parameter names for the inputs and outputs.

The FB for the motor in the sample process requires the following:

• It must have signals from the operator station to stop and start the motor and
pumps.

• It requires a response signal from the motor and pumps to indicate that the
motor is running.

• It must calculate the time between sending the signal to activate the motor and
receiving the response signal. If no response signal is received in this time, the
motor must be switched off.

• It must turn the lamps on the operator station on and off.

• It supplies a signal to activate the motor.

These requirements can be specified as inputs and outputs to the FB. The
following table shows the parameters of the FB for the motor in our sample
process.

Parameter Name Input Output In/Out

Start n

Stop n

Response n

Reset_maint n

Timer_No n

Response_Time n

Fault n

Start_Dsp n

Stop_Dsp n

Maint n

Motor n

Declaring the Variables of the FB for the Motor

You must declare the input, output, and in/out parameters of the FB for the motor.

Address Declaration Name Type Initial Value

0.0 in Start BOOL FALSE

0.1 in Stop BOOL FALSE

0.2 in Response BOOL FALSE

0.3 in Reset_Maint BOOL FALSE

2.0 in Timer_No TIMER

4.0 in Response_Time S5TIME S5T#0MS

6.0 out Fault BOOL FALSE

6.1 out Start_Dsp BOOL FALSE

6.2 out Stop_Dsp BOOL FALSE

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-83

Address Declaration Name Type Initial Value

6.3 out Maint BOOL FALSE

8.0 in_out Motor BOOL FALSE

10.0 stat Timer_bin WORD W#16#0

12.0 stat Timer_BCD WORD W#16#0

14.0 stat Starts INT 0

16.0 stat Start_Edge BOOL FALSE

With FBs, the input, output, in/out, and static variables are saved in the instance
DB specified in the call statement. The temporary variables are stored in the L
stack.

Programming the FB for the Motor

In STEP 7 Lite, every block that is called by a different block must be created
before the block containing its call. In the sample program, you must therefore
create the FB for the motor before OB1.

The code section of FB1 appears as follows in the STL programming language:

Network 1 Start/stop and latching

A(
O #Start
O #Motor
)
AN #Stop
= #Motor

Network 2 Startup monitoring

A #Motor
L #Response_Time
SD #Timer_No
AN #Motor
R #Timer_No
L #Timer_No
T #Timer_bin
LC #Timer_No
T #Timer_BCD
A #Timer_No
AN #Response
S #Fault
R #Motor

Appendix

 Programming with STEP 7 Lite V3.0
A-84 A5E00293884-01

Network 3 Start lamp and fault reset

A #Response
= #Start_Dsp
R #Fault

Network 4 Stop lamp

AN #Response
= #Stop_Dsp

Network 5 Counting the starts

A #Motor
FP #Start_Edge
JCN lab1
L #Starts
+ 1
T #Starts

lab1: NOP 0

Network 6 Maintenance lamp

L #Starts
L 50
>=I
= #Maint

Network 7 Reset counter for number of starts

A #Reset_Maint
A #Maint
JCN END
L 0
T #Starts

END: NOP 0

Creating the Instance Data Blocks

To create the three data blocks, select the menu command Insert > Block for each
one. Click the "Data Block" option, and enter the respective data block numbers. In
the adjacent "Reference" drop-down list box select the function block "FB1." The
data blocks are then specified as instance data blocks with a fixed assignment to
FB1.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-85

A.4.5.5 Creating the FC for the Valves

What is Required of the FC?

The function for the inlet and feed valves and for the drain valve contains the
following logical functions:

• There is an input for opening and an input for closing the valves.

• Interlocks allow the valves to be opened. The state of the interlocks is saved in
the temporary local data (L stack) of OB1 (”Valve_enable") and is logically
combined with the inputs for opening and closing when the FC for the valves is
processed.

The following table shows the parameters that must be transferred to the FC.

Parameters for the Valves Input Output In/Out

Open "

Close "

Dsp_Open "

Dsp_Closed "

Valve "

Specifying the Inputs and Outputs

The following figure shows the inputs and outputs of the general FC for the valves.
The devices that call the FB for the motor transfer input parameters. The FC for the
valves returns output parameters.

Valve

Open

Close

Dsp_Open

Valve

Dsp_Closed

Appendix

 Programming with STEP 7 Lite V3.0
A-86 A5E00293884-01

Declaring the Variables of the FC for the Valves

Just as with the FB for the motor, you must also declare the input, output, and
in/out parameters for the FC for the valves (see following variable declaration
table).

Address Declaration Name Type Initial Value

0.0 in Open BOOL FALSE

0.1 in Close BOOL FALSE

2.0 out Dsp_Open BOOL FALSE

2.1 out Dsp_Closed BOOL FALSE

4.0 in_out Valve BOOL FALSE

With FCs, the temporary variables are saved in the L stack. The input, output, and
in/out variables are saved as pointers to the logic block that called the FC.
Additional memory space in the L stack (after the temporary variables) is used for
these variables.

Programming the FC for the Valves

The FC1 function for the valves must be created before OB1 since the called
blocks must be created before the calling blocks.

The code section of FC1 appears as shown below in the STL programming
language:

Network 1 Open/close and latching

A(
O #Open
O #Valve
)
AN #Close
= #Valve

Network 2 Display "valve open"

A #Valve
= #Dsp_Open

Network 3 Display "valve closed"

AN #Valve
= #Dsp_Closed

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-87

A.4.5.6 Creating OB1

OB1 decides the structure of the sample program. OB1 also contains the
parameters that are transferred to the various functions, for example:

• The STL networks for the feed pumps and the agitator motor supply the FB for
the motor with the input parameters for starting ("Start"), stopping ("Stop"), for
the response ("Response"), and for resetting the maintenance display
("Reset_Maint"). The FB for the motor is processed in every cycle of the PLC.

• If the FB for the motor is processed, the inputs Timer_No and Response_Time
inform the function of the timer being used and which time must be measured.

• The FC for the valves and the FB for the motors are processed in every
program cycle of the programmable controller because they are called in OB1.

The program uses the FB for the motor with different instance DBs to handle the
tasks for controlling the feed pumps and the agitator motor.

Declaring Variables for OB1

The variable declaration table for OB1 is shown below. The first 20 bytes contain
the start information of OB1 and must not be modified.

Address Declaration Name Type

0.0 temp OB1_EV_CLASS BYTE

1.0 temp OB1_SCAN1 BYTE

2.0 temp OB1_PRIORITY BYTE

3.0 temp OB1_OB_NUMBR BYTE

4.0 temp OB1_RESERVED_1 BYTE

5.0 temp OB1_RESERVED_2 BYTE

6.0 temp OB1_PREV_CYCLE INT

8.0 temp OB1_MIN_CYCLE INT

10.0 temp OB1_MAX_CYCLE INT

12.0 temp OB1_DATE_TIME DATE_AND_TIME

20.0 temp Enable_motor BOOL

20.1 temp Enable_valve BOOL

20.2 temp Start_fulfilled BOOL

20.3 temp Stop_fulfilled BOOL

20.4 temp Inlet_valve_A_open BOOL

20.5 temp Inlet_valve_A_closed BOOL

20.6 temp Feed_valve_A_open BOOL

20.7 temp Feed_valve_A_closed BOOL

21.0 temp Inlet_valve_B_open BOOL

21.1 temp Inlet_valve_B_closed BOOL

21.2 temp Feed_valve_B_open BOOL

21.3 temp Feed_valve_B_closed BOOL

21.4 temp Open_drain BOOL

21.5 temp Close_drain BOOL

21.6 temp Valve_closed_fulfilled BOOL

Appendix

 Programming with STEP 7 Lite V3.0
A-88 A5E00293884-01

Creating the Program for OB1

In STEP 7 Lite, every block that is called by a different block must be created
before the block containing its call. In the sample program, you must therefore
create both the FB for the motor and the FC for the valves before the program in
OB1.

The blocks FB1 and FC1 are called more than once in OB1; FB1 is called with
different instance DBs:

Feed pump
ingredient B

OB 1

Inlet valve A

Feed valve A

Agitator motor

Drain valve

Feed valve B

FB 1

Instance DB 1

FB 1

Instance DB 2

FB 1

Instance DB 3

FC 1

FC 1

FC 1

FC 1

FC 1

O
pe

ra
tin

g
sy

st
em

Feed pump
ingredient A

Inlet valve B

Switch for tank level
measurement

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-89

The code section of OB1 appears as shown below in the STL programming
language:

Network 1 Interlocks for feed pump A

A "EMER_STOP_off"
A "Tank_below_max"
AN "Drain"
= #Enable_Motor

Network 2 Calling FB Motor for ingredient A

A "Feed_pump_A_start"
A #Enable_Motor
= #Start_Fulfilled
A(
O "Feed_pump_A_stop"
ON #Enable_Motor
)
= #Stop_Fulfilled
CALL "Motor_block", "DB_feed_pump_A"
 Start :=#Start_Fulfilled
 Stop :=#Stop_Fullfilled
 Response :="Flow_A"
 Reset_Maint :="Reset_maint"
 Timer_No :=T12
 Reponse_Time:=S5T#7S
 Fault :="Feed_pump_A_fault"
 Start_Dsp :="Feed_pump_A_on"
 Stop_Dsp :="Feed_pump_A_off"
 Maint :="Feed_pump_A_maint"
 Motor :="Feed_pump_A"

Network 3 Delaying the valve enable ingredient A

A "Feed_pump_A"
L S5T#1S
SD T 13
AN "Feed_pump_A"
R T 13
A T 13
= #Enable_Valve

Network 4 Inlet valve control for ingredient A

AN "Flow_A"
AN "Feed_pump_A"
= #Close_Valve_Fulfilled
CALL "Valve_block"
 Open :=#Enable_Valve
 Close :=#Close_Valve_Fulfilled
 Dsp_Open :=#Inlet_Valve_A_Open
 Dsp_Closed:=#Inlet_Valve_A_Closed
 Valve :="Inlet_Valve_A"

Appendix

 Programming with STEP 7 Lite V3.0
A-90 A5E00293884-01

Network 5 Feed valve control for ingredient A

AN "Flow_A"
AN "Feed_pump_A"
= #Close_Valve_Fulfilled
CALL "Valve_block"
 Open :=#Enable_Valve
 Close :=#Close_Valve_Fulfilled
 Dsp_Open :=#Feed_Valve_A_Open
 Dsp_Closed:=#Feed_Valve_A_Closed
 Valve :="Feed_Valve_A"

Network 6 Interlocks for feed pump B

A "EMER_STOP_off"
A "Tank_below_max"
AN "Drain"
= #Enable_Motor

Network 7 Calling FB Motor for ingredient B

A "Feed_pump_B_start"
A #Enable_Motor
= #Start_Fulfilled
A(
O "Feed_pump_B_stop"
ON #Enable_Motor
)
= #Stop_Fulfilled
CALL "Motor_block", "DB_feed_pump_B"
 Start :=#Start_Fulfilled
 Stop :=#Stop_Fulfilled
 Response :="Flow_B"
 Reset_Maint :="Reset_maint"
 Timer_No :=T14
 Reponse_Time:=S5T#7S
 Fault :="Feed_pump_B_fault"
 Start_Dsp :="Feed_pump_B_on"
 Stop_Dsp :="Feed_pump_B_off"
 Maint :="Feed_pump_B_maint"
 Motor :="Feed_pump_B"

Network 8 Delaying the valve enable ingredient B

A "Feed_pump_B"
L S5T#1S
SD T 15
AN "Feed_pump_B"
R T 15
A T 15
= #Enable_Valve

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-91

Network 9 Inlet valve control for ingredient B

AN "Flow_B"
AN "Feed_pump_B"
= #Close_Valve_Fulfilled
CALL "Valve_block"
 Open :=#Enable_Valve
 Close :=#Close_Valve_Fulfilled
 Dsp_Open :=#Inlet_Valve_B_Open
 Dsp_Closed:=#Inlet_Valve_B_Closed
 Valve :="Inlet_Valve_B"

Network 10 Feed valve control for ingredient B

AN "Flow_B"
AN "Feed_pump_B"
= #Close_Valve_Fulfilled
CALL "Valve_block"
 Open :=#Enable_Valve
 Close :=#Close_Valve_Fulfilled
 Dsp_Open :=#Feed_Valve_B_Open
 Dsp_Closed:=#Feed_Valve_B_Closed
 Valve :="Feed_Valve_B"

Network 11 Interlocks for agitator

A "EMER_STOP_off"
A "Tank_above_min"
AN "Drain"
= #Enable_Motor

Network 12 Calling FB Motor for agitator

A "Agitator_start"
A #Enable_Motor
= #Start_Fulfilled
A(
O "Agitator_stop"
ON #Enable_Motor
)
= #Stop_Fulfilled
CALL "Motor_block", "DB_agitator"
 Start :=#Start_Fulfilled
 Stop :=#Stop_Fulfilled
 Response :="Agitator_running"
 Reset_Maint :="Reset_maint"
 Timer_No :=T16
 Reponse_Time:=S5T#10S
 Fault :="Agitator_fault"
 Start_Dsp :="Agitator_on"
 Stop_Dsp :="Agitator_off"
 Maint :="Agitator_maint"
 Motor :="Agitator"

Appendix

 Programming with STEP 7 Lite V3.0
A-92 A5E00293884-01

Network 13 Interlocks for drain valve

A "EMER_STOP_off"
A "Tank_not_empty"
AN "Agitator"
= "Enable_Valve

Network 14 Drain valve control

A "Drain_open"
A #Enable_Valve
= #Open_Drain
A(
O "Drain_closed"
ON #Enable_Valve
)
= #Close_Drain
CALL "Valve_block"
 Open :=#Open_Drain
 Close :=#Close_Drain
 Dsp_Open :="Drain_open_disp"
 Dsp_Closed :="Drain_closed_disp"
 Valve :="Drain"

Network 15 Tank level display

AN "Tank_below_max"
= "Tank_max_disp"
AN "Tank_above_min"
= "Tank_min_disp"
AN "Tank_not_empty"
= "Tank_empty_disp"

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-93

A.4.6 Example of Handling Time-of-Day Interrupts

A.4.6.1 Structure of the User Program "Time-of-Day Interrupts"

Task

Output Q 4.0 should be set in the time from Monday, 5.00 am to Friday, 8.00 pm.
In the time from Friday, 8.00 pm to Monday, 5.00 am the output Q 4.0 should be
reset.

Translating into a User Program

The following table shows the sub-tasks of the blocks used.

Block Sub-Task

OB1 Calls the function FC12

FC12 Depending on the state of the output Q 4.0, the time-of-day interrupt
status, and the inputs I 0.0 and I 0.1
• Specify the starting time
• Set the time-of-day interrupt
• Activate the time-of-day interrupt
• CAN_TINT

OB10 Depending on the current day of the week
• Specify the starting time
• Set or reset output Q 4.0
• Set next time-of-day interrupt
• Activate next time-of-day interrupt

OB80 Set output Q 4.1
Store start event information of OB80 in bit memory area

Appendix

 Programming with STEP 7 Lite V3.0
A-94 A5E00293884-01

Addresses Used

The following table shows the shared addresses used. The temporary local
variables are declared in the declaration section of the respective block.

Address Meaning

I0.0 Input to enable "set time-of-day interrupt" and "activate time-of-day
interrupt"

I0.1 Input to cancel a time-of-day interrupt

Q4.0 Output set/reset by the time-of-day interrupt OB (OB10)

Q4.1 Output set by a time error (OB80)

MW16 STATUS of the time-of-day interrupt (SFC31 "QRY_TINT")

MB100 to
MB107

Memory for start event information of OB10 (time-of-day only)

MB110 to
MB129

Memory for start event information of OB80 (time error)

MW200 RET_VAL of SFC28 "SET_TINT"

MB202 Binary result (status bit BR) buffer for SFCs

MW204 RET_VAL of SFC30 "ACT_TINT"

MW208 RET_VAL of SFC31 "QRY_TINT"

System Functions and Functions Used

The following system functions and functions are used in the programming
example:

• SFC28 "SET_TINT" : Set Time-of-Day Interrupt

• SFC29 "CAN_TINT" : Cancel Time-of-Day Interrupt

• SFC30 "ACT_TINT" : Activate Time-of-Day Interrupt

• SFC31 "QRY_TINT" : Query Time-of-Day Interrupt

• FC3 "D_TOD_DT" : Combine DATE and TIME_OF_DAY to DT

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-95

A.4.6.2 FC12

Declaration Section

The following temporary local variables are declared in the declaration section of
FC12:

Variable Name Data Type Declaration Comment

IN_TIME TIME_OF_DAY temp Start time

IN_DATE DATE temp Start date

OUT_TIME_DATE DATE_AND_TIME temp Start date/time converted

OK_MEMORY BOOL temp Enable for setting time-of-day
interrupt

STL Code Section

Enter the following STL user program in the code section of FC12:

STL (FC12) Explanation
Network 1:
 CALL SFC 31
 OB_NR := 10
 RET_VAL:= MW 208
 STATUS := MW 16

Network 2:
 AN Q 4.0
 JC mond
 L D#1995–1–27
 T #IN_DATE
 L TOD#20:0:0.0
 T #IN_TIME
 JU cnvrt
mond: L D#1995–1–23
 T #IN_DATE
 L TOD#5:0:0.0
 T #IN_TIME
cnvrt: NOP 0

//SFC QRY_TINT
//Query STATUS of time-of-day interrupts

//Specify start time dependent on Q 4.0
//(in variable
//#IN_DATE and #IN_TIME)
//Start date is a Friday.

//Start date is a Monday.

Appendix

 Programming with STEP 7 Lite V3.0
A-96 A5E00293884-01

STL (FC12) Explanation
Network 3:
 CALL FC 3
 IN1 := #IN_DATE
 IN2 := #IN_TIME
 RET_VAL := #OUT_TIME_DATE
Network 4:
 A I 0.0
 AN M 17.2
 A M 17.4
 = #OK_MEMORY
Network 5:
 A #OK_MEMORY
 JNB m001
 CALL SFC 28
 OB_NO := 10
 SDT := #OUT_TIME_DATE
 PERIOD := W#16#1201
 RET_VAL := MW 200
m001 A BR
 = M 202.3
Network 6:
 A #OK_MEMORY
 JNB m002
 CALL SFC 30
 OB_NO := 10
 RET_VAL := MW 204
m002 A BR
 = M 202.4
Network 7:
 A I 0.1
 JNB m003
 CALL SFC 29
 OB_NO := 10
 RET_VAL := MW 210
m003 A BR
 = M 202.5

//Convert format from DATE and
//TIME_OF_DAY to DATE_AND_TIME (for
//setting time-of-day interrupt)

//All requirements for setting
//time-of-day interrupt fulfilled?
//(Input for enable set and time-of-day
//interrupt not active and time-of-day
//interrupt OB is loaded)
//If so, set time-of-day interrupt...

//...and activate time-of-day interrupt.

//If input for canceling time-of-day
//interrupts is set, cancel time-of-day
//interrupt.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-97

A.4.6.3 OB10

Declaration Section

In contrast to the default declaration section of OB10 the following temporary local
variables are declared:

• Structure for the entire start event information (STARTINFO)

• Within the STARTINFO structure a structure for the time (T_STMP)

• Other temporary local variables WDAY, IN_DATE, IN_TIME, and
OUT_TIME_DATE

Variable Name Data Type Declaration Comment

STARTINFO STRUCT Temp Entire start event information of
OB10 declared as structure

 E_ID WORD Temp Event ID:

 PR_CLASS BYTE Temp Priority class

 OB_NO BYTE Temp OB number

 RESERVED_1 BYTE Temp Reserved

 RESERVED_2 BYTE Temp Reserved

 PERIOD WORD Temp Periodicity of time-of-day
interrupt

 RESERVED_3 DWORD Temp Reserved

 T_STMP STRUCT Temp Structure for time-of-day details

 YEAR BYTE Temp

 MONTH BYTE Temp

 DAY BYTE Temp

 HOUR BYTE Temp

 MINUTES BYTE Temp

 SECONDS BYTE Temp

 MSEC_WDAY WORD Temp

 END_STRUCT Temp

 END_STRUCT Temp

WDAY INT Temp Day of the week

IN_DATE DATE Temp Input variable for FC3

(conversion of time format)

IN_TIME TIME_OF_DAY Temp Input variable for FC3

(conversion of time format)

OUT_TIME_DATE DATE_AND_TIME Temp Output variable for FC3 and
input variable for SFC28

Appendix

 Programming with STEP 7 Lite V3.0
A-98 A5E00293884-01

STL Code Section

Enter the following STL user program in the code section of OB10:

STL (OB10) Explanation
Network 1
 L #STARTINFO.T_STMP.MSEC_WDAY
 L W#16#F
 AW
 T #WDAY
Network 2:
 L #WDAY
 L 2
 <>I
 JC mond
Network 3:
 L D#1995–1–27
 T #IN_DATE
 L TOD#20:0:0.0
 T #IN_TIME
 SET
 = Q 4.0
 JU cnvrt

mond: L D#1995–1–23
 T #IN_DATE
 L TOD#5:0:0.0
 T #IN_TIME
 CLR
 = Q 4.0

cnvrt: NOP 0
Network 4:
 CALL FC 3
 IN1 := #IN_DATE
 IN2 := #IN_TIME
 RET_VAL := #OUT_TIME_DATE
Network 5:
 CALL SFC 28
 OB_NO := 10
 SDT := #OUT_TIME_DATE
 PERIOD := W#16#1201
 RET_VAL := MW 200
 A BR
 = M 202.1

//Select day of week

//and store.

//If day of week is not Monday, then
//specify Monday, 5.00 am as next
//starting time and reset output Q 4.0.

//Otherwise, if day of week is Monday,
//specify Friday, 8.00 pm (20.00) as
//next starting time and set output
//Q 4.0.

//Starting time specified.
//Convert specified starting time to
//format DATE_AND_TIME (for SFC28).

//Set time-of-day interrupt.

Network 6:
 CALL SFC 30
 OB_NO := 10
 RET_VAL := MW 204
 A BR
 = M 202.2
Network 7:
 CALL SFC 20
 SRCBLK := #STARTINFO.T_STMP
 RET_VAL := MW 206
 DSTBLK := P#M 100.0 BYTE 8

//Activate time-of-day interrupt.

//Block transfer: save time of day from
//start event information of OB10 to the
//memory area MB100 to MB107.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-99

A.4.6.4 OB1 and OB80

As the start event information of OB1 (OB for cyclic program) is not evaluated in
this example, only the start event information of OB80 is displayed.

OB1 Code Section

Enter the following STL user program in the code section of OB1:

STL (OB1) Explanation
 CALL FC 12 //Calls the function FC12

OB80 Declaration Section

In contrast to the default declaration section of OB80 the following temporary local
variables are declared:

• Structure for the entire start event information (STARTINFO)

• Within the STARTINFO structure a structure for the time (T_STMP)

Variable Name Data Type Declaration Comment

STARTINFO STRUCT Temp Entire start event information of OB80
declared as structure

 E_ID WORD Temp Event ID:

 PR_CLASS BYTE Temp Priority class

 OB_NO BYTE Temp OB number

 RESERVED_1 BYTE Temp Reserved

 RESERVED_2 BYTE Temp Reserved

 A1_INFO WORD Temp Additional information about the event
that caused the error

 A2_INFO DWORD Temp Additional information about the event
ID, priority class, and OB no. of the
error

 T_STMP STRUCT Temp Structure for time-of-day details

 YEAR BYTE Temp

 MONTH BYTE Temp

 DAY BYTE Temp

 HOUR BYTE Temp

 MINUTES BYTE Temp

 SECONDS BYTE Temp

 MSEC_WDAY WORD Temp

 END_STRUCT Temp

 END_STRUCT Temp

Appendix

 Programming with STEP 7 Lite V3.0
A-100 A5E00293884-01

OB80 Code Section

Enter the following STL user program in the code section of OB80 that is called by
the operating system if a time error occurs:

STL (OB80) Explanation
Network 1
 AN Q 4.1
 S Q 4.1

 CALL SFC 20
 SRCBLK := #STARTINFO
 RET_VAL := MW 210
 DSTBLK := P#M 110.0 Byte 20

//Set output Q 4.1 if time error
//occurred.

//Block transfer: save entire start
//event information to memory area
//MB110 to MB129.

A.4.7 Example of Handling Time-Delay Interrupts

A.4.7.1 Structure of the User Program "Time-Delay Interrupts"

Task

When input I 0.0 is set, output Q 4.0 should be set 10 seconds later. Every time
input I 0.0 is set, the delay time should be restarted.

The time (seconds and milliseconds) of the start of the time-delay interrupt should
appear as a user-specific ID in the start event information of the time-delay
interrupt OB (OB20).

If I 0.1 is set in these 10 seconds, the organization block OB20 should not be
called; meaning the output Q 4.0 should not be set.

When input I 0.2 is set, output Q 4.0 should be reset.

Translating into a User Program

The following table shows the sub-tasks of the blocks used.

Block Sub-Task

OB1 Read current time and prepare for start of time-delay interrupt
Dependent on edge change at input I 0.0, start time-delay interrupt
Depending on the status of the time-delay interrupt and the edge change at
input I 0.1, cancel time-delay interrupt
Dependent on the state of input I 0.2, reset output Q 4.0

OB20 Set output Q 4.0
Read and prepare current time
Save start event information to bit memory area

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-101

Addresses Used

The following table shows the shared addresses used. The temporary local
variables are declared in the declaration section of the respective block.

Address Meaning

I0.0 Input to enable "start time-delay interrupt"

I0.1 Input to cancel a time-delay interrupt

I0.2 Input to reset output Q 4.0

Q4.0 Output set by the time-delay interrupt OB (OB20)

MB1 Used for edge flag and binary result (status bit BR) buffer for SFCs

MW4 STATUS of time-delay interrupt (SFC34 "QRY_TINT")

MD10 Seconds and milliseconds BCD-coded from the start event
information of OB1

MW 100 RET_VAL of SFC32 "SRT_DINT"

MW102 RET_VAL of SFC34 "QRY_DINT"

MW104 RET_VAL of SFC33 "CAN_DINT"

MW106 RET_VAL of SFC20 "BLKMOV"

MB120 to MB139 Memory for start event information of OB20

MD140 Seconds and milliseconds BCD-coded from the start event
information of OB20

MW144 Seconds and milliseconds BCD-coded from the start event
information of OB1; acquired from start event information of OB20
(user-specific ID SIGN)

System Functions Used

The following SFCs are used in the user program "time-delay interrupts:"

• SFC32 "SRT_DINT" : Start Time-Delay Interrupt

• SFC33 "CAN_DINT" : Cancel Time-Delay Interrupt

• SFC34 "QRY_DINT" : Query Status of a Time-Delay Interrupt

Appendix

 Programming with STEP 7 Lite V3.0
A-102 A5E00293884-01

A.4.7.2 OB20

Declaration Section

In contrast to the default declaration section of OB20 the following temporary local
variables are declared:

• Structure for the entire start event information (STARTINFO)

• Within the STARTINFO structure a structure for the time (T_STMP)

Variable Name Data Type Declaration Comment

STARTINFO STRUCT Temp Start information for OB20

 E_ID WORD Temp Event ID:

 PC_NO BYTE Temp Priority class

 OB_NO BYTE Temp OB number

 D_ID 1 BYTE Temp Data ID 1

 D_ID 2 BYTE Temp Data ID 2

 SIGN WORD Temp User-specific ID

 DTIME TIME Temp Time with which the time-delay
interrupt is started

 T_STMP STRUCT Temp Structure for time-of-day details
(time stamp)

 YEAR BYTE Temp

 MONTH BYTE Temp

 DAY BYTE Temp

 HOUR BYTE Temp

 MINUTES BYTE Temp

 SECONDS BYTE Temp

 MSEC_WDAY WORD Temp

 END_STRUCT Temp

 END_STRUCT Temp

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-103

Code Section

Enter the following STL user program in the code section of OB20:

STL (OB20) Explanation
Network 1
 SET
 = Q 4.0
Network 2:
 L QW 4
 T PQW 4
Network 3:
 L #STARTINFO.T_STMP.SECONDS
 T MW 140
 L #STARTINFO.T_STMP.MSEC_WDAY
 T MW 142
 L MD 140
 SRD 4
 T MD 140

Network 4:
 L #STARTINFO.SIGN
 T MW 144

Network 5:
 CALL SFC 20
 SRCBLK := STARTINFO
 RET_VAL := MW 106
 DSTBLK := P#M 120.0 Byte 20

//Set output Q 4.0 unconditionally

//Activate output word immediately

//Read seconds from start event
//information
//Read milliseconds and day of week from
//start event information

//Eliminate day of week and
//write milliseconds back (now BCD-coded
//in MW 142)

//Read starting time of time-delay
//interrupt (= call SFC32) from start
//event information

//Copy start event information to memory
//area (MB120 to MB139)

A.4.7.3 OB1

Declaration Section

In contrast to the default declaration section of OB1 the following temporary local
variables are declared:

• Structure for the entire start event information (STARTINFO)

• Within the STARTINFO structure a structure for the time (T_STMP)

Variable Name Data Type Declaration Comment

STARTINFO STRUCT temp Start information for OB1

 E_ID WORD temp Event ID:

 PC_NO BYTE temp Priority class

 OB_NO BYTE temp OB number

 D_ID 1 BYTE temp Data ID 1

 D_ID 2 BYTE temp Data ID 2

 CUR_CYC INT temp Current cycle time

 MIN_CYC INT temp Minimum cycle time

 MAX_CYC INT temp Maximum cycle time

 T_STMP STRUCT temp Structure for time-of-day
details (time stamp)

 YEAR BYTE temp

Appendix

 Programming with STEP 7 Lite V3.0
A-104 A5E00293884-01

Variable Name Data Type Declaration Comment

 MONTH BYTE temp

 DAY BYTE temp

 HOUR BYTE temp

 MINUTES BYTE temp

 SECONDS BYTE temp

 MSEC_WDAY WORD temp

 END_STRUCT temp

 END_STRUCT temp

Code Section

Enter the following STL user program in the code section of OB1:

STL (OB1) Explanation
Network 1
 L #STARTINFO.T_STMP.SECONDS
 T MW 10
 L #STARTINFO.T_STMP.MSEC_WDAY
 T MW 12
 L MD 10
 SRD 4
 T MD 10
Network 2:
 A I 0.0
 FP M 1.0
 = M 1.1
Network 3:
 A M 1.1
 JNB m001
 CALL SFC 32
 OB_NO := 20
 DTME := T#10S
 SIGN := MW 12
 RET_VAL:= MW 100
m001: NOP 0

Network 4:
 CALL SFC 34
 OB_NO := 20
 RET_VAL:= MW 102
 STATUS := MW 4
Network 5:
 A I 0.1
 FP M 1.3
 = M 1.4

Network 6:
 A M 1.4
 A M 5.2
 JNB m002
 CALL SFC 33
 OB_NO := 20
 RET_VAL:= MW 104
m002: NOP 0
 A I 0.2
 R Q 4.0

//Read seconds from start event
//information
//Read milliseconds and day of week from
//start event information
//Eliminate day of week and
//write milliseconds back (now BCD-coded
//in MW 12)
//Positive edge at input I 0.0?

//If so, start time-delay interrupt
// (starting time of time-delay
//interrupt assigned to the parameter
//SIGN)

//Query status of time-delay interrupt
// (SFC QRY_DINT)

//Positive edge at input I 0.1?

//...and time-delay interrupt is
//activated (bit 2 of time-delay
//interrupt STATUS)?
//Then cancel time-delay interrupt

//Reset output Q 4.0 with input I 0.2

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-105

A.5 Accessing Process and I/O Data Areas

This chapter describes how the I/O data areas are addressed (user data,
diagnostic and parameter data).

For more detailed information about the system functions mentioned in this
chapter, refer to the "System Software for S7-300 and S7-400, System and
Standard Functions" Reference Manual.

A.5.1 Accessing the Process Data Area

The CPU can access inputs and outputs of central and distributed digital
input/output modules either indirectly using the process image tables or directly via
the backplane/P bus.

The CPU accesses inputs and outputs of central and distributed analog
input/output modules directly via the backplane/P bus.

Addressing Modules

You assign the addresses used in your program to the modules when you
configure the modules with STEP 7 Lite, as follows:

• With central I/O modules: arrangement of the rack and assignment of the
modules to slots in the configuration table.

• For stations with a distributed I/O (PROFIBUS-DP): arrangement of the DP
slaves in the configuration table ”master system" with the PROFIBUS address
and assignment of the modules to slots.

By configuring the modules, it is no longer necessary to set addresses on the
individual modules using switches. As a result of the configuration, the
programming device sends data to the CPU that allow the CPU to recognize the
modules assigned to it.

Peripheral I/O Addressing

There is a separate address area for inputs and outputs. This means that the
address of a peripheral area must not only include the byte or word access type
but also the I identifier for inputs and Q identifier for outputs.

The following table shows the available peripheral address areas.

Address Area Access via Units of Following Size S7 Notation (IEC)

Peripheral (I/O) area:
inputs

Peripheral input byte
Peripheral input word
Peripheral input double word

PIB
PIW
PID

Peripheral (I/O) area:
outputs

Peripheral output byte
Peripheral output word
Peripheral output double word

PQB
PQW
PQD

Appendix

 Programming with STEP 7 Lite V3.0
A-106 A5E00293884-01

To find out which address areas are possible on individual modules, refer to the
following manuals:

• S7-300 Programmable Controller, Hardware and Installation Manual

• S7-300, M7-300 Programmable Controllers, Module Specifications Reference
Manual

Module Start Address

The module start address is the lowest byte address of a module. It represents the
start address of the user data area of the module and is used in many cases to
represent the entire module.

The module start address is, for example, entered in hardware interrupts,
diagnostic interrupts, insert/remove module interrupts, and power supply error
interrupts in the start information of the corresponding organization block and is
used to identify the module that initiated the interrupt.

A.5.2 Accessing the Peripheral Data Area

The peripheral data area can be divided into the following:

• User data and

• Diagnostic and parameter data.

Both areas have an input area (can only be read) and an output area (can only be
written).

User Data

User data is addressed with the byte address (for digital signal modules) or the
word address (for analog signal modules) of the input or output area. User data
can be accessed with load and transfer commands, communication functions, or
by transferring the process image. User data can, for example, be digital and
analog input/output signals from signal modules.

When transferring user data, a consistency of a maximum of 4 bytes can be
achieved. If you use the ”transfer double word" statement, four contiguous and
unmodified (consistent) bytes are transferred. If you use four separate ”transfer
input byte" statements, a hardware interrupt OB could be inserted between the
statements and transfer data to the same address so that the content of the
original 4 bytes is changed before they were all transferred.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-107

Diagnostic and Parameter Data

The diagnostic and parameter data of a module cannot be addressed individually
but are always transferred in the form of complete data records. This means that
consistent diagnostic and parameter data are always transferred.

The diagnostic and parameter data is accessed using the start address of the
module and the data record number. Data records are divided into input and output
data records. Input data records can only be read, output data records can only be
written. You can access data records using system functions or communication
functions (user interface). The following table shows the relationship between data
records and diagnostic and parameter data.

Data Description

Diagnostic data If the modules are capable of diagnostics, you obtain the diagnostic data
of the module by reading data records 0 and 1.

Parameter data If the modules are configurable, you transfer the parameters to the
module by writing data records 0 and 1.

Accessing Data Records

You can use the information in the data records of a module to reassign
parameters to configurable modules and to read diagnostic information from
modules with diagnostic capability.

The following table shows which system functions you can use to access data
records.

SFC Purpose

Assigning parameters to modules

SFC55 WR_PARM Transfers the modifiable parameters (data record 1) to the addressed
signal module

SFC56
WR_DPARM

Transfers parameters from SDBs 100 to 129 to the addressed signal
module

SFC57
PARM_MOD

Transfers parameters from SDBs 100 to 129 to the addressed signal
module

SFC58 WR_REC Transfers any data record to the addressed signal module

Reading out diagnostic information

SFC59 RD_REC Reads the diagnostic data

Appendix

 Programming with STEP 7 Lite V3.0
A-108 A5E00293884-01

A.6 Setting the Operating Behavior

A.6.1 Setting the Operating Behavior

This chapter explains how you can modify certain properties of S7 programmable
controllers by setting system parameters or using system functions (SFCs).

You will find detailed information on the module parameters in the manuals for
each programmable controller family, such as:

• "S7-300 Programmable Controller, Hardware and Installation" Manual

• "S7-300, M7-300 Programmable Controllers, Module Specifications" Reference
Manual

You will find all you need to know about SFCs in the "System Software for S7-300
and S7-400, System and Standard Functions" Reference Manual, or in the online
help of the System Function Blocks library.

A.6.2 Changing the Behavior and Properties of Modules

Default Settings

When supplied, all the configurable modules of the S7 programmable controller
have default settings suitable for standard applications. With these defaults, you
can use the modules immediately without making any settings. The default values
are explained in the module descriptions in each manual. The default values are
also taken into account in the STEP 7 Lite dialog boxes for parameter assignment.

Which Modules Can You Assign Parameters To?

You can, however, modify the behavior and the properties of the modules to adapt
them to your requirements and the situation in your plant. Configurable modules
are CPUs, FMs, CPs, and some of the analog input/output modules and digital
input modules.

There are configurable modules with and without backup batteries.

Modules without backup batteries must be supplied with data again following any
power down. The parameters of these modules are stored in the retentive memory
area of the CPU (indirect parameter assignment by the CPU).

Setting and Loading Parameters

You set module parameters using STEP 7 Lite. When you save the hardware
configuration, which also contains the parameters, STEP 7 Lite creates ”System
Data Blocks" which are downloaded to the CPU with the user program and
transferred to the modules when the CPU starts up. Since system data blocks
represent the hardware configuration, they are visualized as "Hardware" in the
project overview.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-109

Which Settings Can Be Made?

Examples of CPU properties that can be set:

• Startup behavior

• Cycle

• MPI

• Diagnostics

• Retentive data

• Clock memory

• Interrupt handling

• Onboard I/Os

• Protection level

• Real-time clock

• Asynchronous errors

Parameter Assignment with SFCs

In addition to assigning parameters with STEP 7 Lite, you can also include system
functions in the program to modify module parameters. The following table shows
which SFCs can be used in the user program.

SFC Purpose

SFC55 WR_PARM Transfers the modifiable parameters (data record 1) to the
addressed signal module

SFC56 WR_DPARM Transfers the parameters from the corresponding SDBs to the
addressed signal module

SFC57 PARM_MOD Transfers all parameters from the corresponding SDBs to the
addressed signal module

SFC58 WR_REC Transfers any data record to the addressed signal module

The system functions are described in detail in the "System Software for S7-300
and S7-400, System and Standard Functions" Reference Manual.

Which module parameters can be modified dynamically is explained in the
manuals for each module, such as the following manuals:

• "S7-300 Programmable Controller, Hardware and Installation" Manual

• "S7-300, M7-300 Programmable Controllers, Module Specifications" Reference
Manual

Appendix

 Programming with STEP 7 Lite V3.0
A-110 A5E00293884-01

A.6.3 Using the CPU Clock Functions

All CPUs are equipped with a clock (real-time clock or software clock). The clock
can be used in the programmable controller both as clock master or clock slave
with external synchronization. The clock is required for time-of-day interrupts and
runtime meters.

Time Format

The clock always indicates the time (minimum resolution 1 s), date, and weekday.
With some CPUs it is also possible to indicate milliseconds (refer to the appropriate
documentation for the technical specifications of the CPUs).

Setting and Reading the CPU Time

You can set the time and date

• by calling SFC 0 SET_CLK in the user program or

• via the extended CPU operating panel on the programming device/PC, and thus
start the clock.

You can read the time and date

• via user program in SFC1 READ_CLK or

• via the extended CPU operating panel from the programming device/PC.

Note: To prevent the time from being displayed differently on HMI systems, you
should set winter time on the CPU.

Clock Configuration

If more than one module which is equipped with a clock exists in a network, you
must specify in your STEP 7 Lite configuration which CPU is to act as master and
which is to act as slave when the time is synchronized. In this configuration you
also specify whether to synchronize the time via communication bus or via MPI, as
well as the time synchronization intervals.

Synchronizing the Time

To make sure that the time is the same on all modules in the network, the slave
clocks are synchronized by the system program at regular (configurable) intervals.
You can transfer the date and time from the master clock to the slave clocks using
the system function SFC48 SFC_RTCB.

 Appendix

Programming with STEP 7 Lite V3.0
A5E00293884-01 A-111

Using a Runtime Meter

A runtime meter counts the operating hours of connected equipment or the total
runtime hours of the CPU.

In STOP mode, the runtime meter is stopped. Its count value is retentive even after
a memory reset. On restart (warm start), the runtime meter must be restarted by
the user program; during a hot restart, it continues automatically if it had already
been started.

You can set the runtime meter to an initial value using SFC2 SET_RTM and start
or stop the it with SFC3 CTRL_RTM. You can read the actual operating hours and
the state of the counter ("stopped" or ”counting") at SFC4 READ_RTM.

A CPU can have up to eight runtime meters. Numbering starts at 0.

A.6.4 Using Clock Memory and Timers

Clock Memory

The clock memory is a memory byte that changes its binary state periodically at a
pulse-pause ratio of 1:1. You select which memory byte is used on the CPU when
you assign parameters for the clock memory using STEP 7 Lite.

Uses

You can use clock memory bytes in the user program, for example, to activate
flashing lights or to trigger periodic activities (for example, measuring an actual
value).

Possible Frequencies

Each bit of the clock memory byte is assigned a frequency. The following table
shows the assignment:

Bit of the Clock
Memory Byte

 7 6 5 4 3 2 1 0

Period Duration (s) 2.0 1.6 1.0 0.8 0.5 0.4 0.2 0.1

Frequency (Hz) 0.5 0.625 1 1.25 2 2.5 5 10

 Notice

Clock memory bytes are not synchronous with the CPU cycle, in other words, in
long cycles, the state of the clock memory byte may change several times.

Appendix

 Programming with STEP 7 Lite V3.0
A-112 A5E00293884-01

Timers

Timers are a memory area of the system memory. You specify the function of a
timer in the user program (for example, on-delay timer). The number of timers
available depends on the CPU.

 Notice

• If you use more timers in your user program than the CPU permits, a
synchronous error is signaled and OB121 is started.

• On the S7-300, timers can be started and updated simultaneously only in OB1
and OB100. In all other OBs, timers can only be started.

Programming with STEP 7 Lite V3.0
A5E00293884-01 Index-1

Index

*

*.awl file ... 8-5
*.awl File ... 8-6, 8-7
*.awl -File ... 8-2
*.k7e... 8-2
*.k7e file ... 8-5
*.k7p file ... 8-5
*.k7p File.. 8-2
*.sdf file .. 8-5
*.sdf File....................................8-2, 8-4, 8-6, 8-7

A

Absolute and Symbolic Addressing................ 6-1
ACCESS .. 8-8
Access Rights .. 7-2
Access to Process and

Peripheral Data Areas............................A-105
Accessible Nodes .. 7-1
Accessing the Peripheral Data AreaA-106
ACT_TINT... 2-15, 2-16
Activating ... 6-12

Display of Symbols in the Block............... 6-12
Test using Program Status 10-32

Activating the Display of Symbols
in the Block .. 6-12

Actual Address see Actual Parameter 2-26
Actual parameters..A-63, A-64, A-65, A-66, A-67
Actual Parameters 2-26, 6-70
Address Areas A-14, A-15
Address Field Width..................................... 6-61
Address Overview............................... 5-14, 6-80
Address Register 6-100
Addresses... 10-2, 10-7

Inserting in a Variable Table 10-6
Overwriting in Ladder Elements 6-55
Rewiring.. 6-49, 6-50

Addresses and Data Types Permitted
in the Symbol Table 6-8

Addresses Used... 6-79
Addresses without a Symbol........................ 6-17
Addresses without Symbols......................... 6-79
Addressing... 6-1

Absolute.. 6-1, 6-2
external ..A-52
internal ...A-52
memory indirectA-52
Symbolic6-1, 6-2, 6-4

Addressing S5 ModulesA-106
Ambiguity ... 6-9
ANY A-49, A-56, A-57, A-58

Parameters
Despcription and Use...........................A-58

Apply ..8-2
Apply and save...4-6
Applying and Saving Changes4-6
Arranging C7 Complete Systems

(Special Features)5-12
Arranging C7 Control Systems

(Special Features)5-12
Arranging Modules in a Rack5-11
Arranging Stations..5-15
ARRAY............................A-36, A-42, A-43, A-44
Array (Data Type ARRAY)

Number of Nested Levels A-41
Assigning Addresses....................................5-14
Assigning Data Types to Local Data

of Logic Blocks .. A-62
Assigning I/O Addresses5-14
Assigning Parameters5-6

Signal Modules with Hardware Interrupt
Capability..2-20

Assigning Parameters to
Reference Junctions...................................5-9

Assigning Parameters to Signal Modules
with Hardware Interrupt Capability............2-20

Assigning Properties to Modules/Interfaces .5-13
Assigning Symbolic Names......................... A-79
Assignments in the Process Image5-20
Asymmetry ...5-18
Asynchronous Errors..................................11-23

Delayed Processing................................. A-74
Disabling and Enabling............................ A-73
OB81 11-24, 11-25, 11-26

Asynchronous Events...................................2-10
Automation License Manager.........................1-9
Avoiding Errors when Calling Blocks............6-98
AWL (Statement List)1-1
awl File ...8-6

B

B Stack
Data saved in the B Stack A-19
Nested Calls .. A-19

Basic Information
on Data Blocks ...6-71

Basic Procedure ...10-2
Monitoring and Forcing with

Force Tables ..10-2
When Monitoring and Modifying10-2

Basic Procedure
For Creating Logic Blocks6-30

Basic Procedure for Configuring Hardware5-2
Basic Procedure for Determining the

Cause of a STOP11-12
Basic Steps for Configuring a Station.............5-3
BCD... A-33

Index

 Programming with STEP 7 Lite V3.0
Index-2 A5E00293884-01

BCD Format...A-34
Binary Coded DecimalA-33
Bit Memory....................... 6-82, 6-83, A-23, A-24
Blank Rows

Inserting in Variable Declaration Tables .. 6-39
BLKMOV..A-13
Block

Opening from the B Stack List 11-15
Opening from the I Stack List................. 11-15
Setting the Call Environment 10-30

BLOCK
Parameter TypeA-49

Block Calls2-8, 2-9, 6-70
Updating .. 6-70

Block Comment.. 6-47
Block Comments

Entering ... 6-48
Block comparison... 6-28
Block Dependencies 6-86, 6-87
Block Editor.. 6-19
Block Folder Properties

Displaying Block Lengths......................... 6-27
Block for Changing the PointerA-53
Block Instances.. 10-30
Block Lengths

Displaying .. 6-27
Block Properties.................................. 6-24, 6-30

Displaying Block Lengths......................... 6-27
Time Stamp.. 6-24

Block Protection... 6-27
Block Stack .. A-11, A-19
Block Symbols ... 6-10
Block Title .. 6-47
BLOCK_DB..A-49
BLOCK_FB ..A-49
BLOCK_FC..A-49
BLOCK_SDB ...A-49
Blocking Current .. 5-17
Blocking Time .. 5-17
Blocks .. 2-2

comparing .. 6-28
Entering in STL .. 6-46
in the User Program................................... 2-2
Rewiring... 6-49

Blocks (Downloaded)
Saving on Integrated EPROM.................... 9-6

BM 147 .. 5-9
BOOL

Area ...A-26
Boxes

Changing ... 6-61
Positioning 6-51, 6-62
Removing... 6-63

Byte
Area ...A-26

C

C7 Complete Systems
Configuring ...5-12

Call Hierarchy in the User Program................2-8
Calling

Module Information...................................11-7
Calling the Help Functions..............................3-2
CAN_TINT..2-16
Certificate of License...........................1-10, 1-11
CFC Programming Language.......................6-20
Changing

Time for Time-of-Day Interrupt2-15
Changing Column Width of

Declaration Tables....................................6-42
Changing the Behavior and Properties

of Modules... A-108
Changing the Operating Mode7-3
Changing the Window Arrangement...............3-9
Character (CHAR)

Area... A-26
Checking the Consistency of a Station

Configuration ..9-7
Clock ... A-110

Parameter Assignment A-110
Synchronizing.. A-110

Clock Functions... A-110
Clock Memory ... A-111
Closed Parallel Branches

Opening in Ladder Networks6-59
Code Section..6-30
Coils

Positioning..6-51
Cold Restart .. A-1
Column Widths

Setting
in a Declaration Table...........................6-33

Combination Box
Definition ..3-6

Command Library...6-32
Commands

Inserting..6-31
Comment Character10-6
Comment Line ..10-6
Comments

for Blocks..6-47
for Networks ...6-47

Communication Error (OB87)11-35
Communication Error Organization Block...11-35
Communication Load2-10, 2-13
Communication Processes...........................2-10
Compact CPU ... A-22
Compact CPUs...5-13
Compare Configuration

'Online/Offline/Physical Characteristics' ...11-2
Compare Preset and Actual Parameters....... A-4
Complex Data Types.......A-36, A-41, A-42, A-45
Compressing ..9-16

the Memory Contents of an CPU..............9-16
Compressing the User Memory....................9-15

 Index

Programming with STEP 7 Lite V3.0
A5E00293884-01 Index-3

Compressing the User Memory (RAM)
after Multiple Delete or
Reload Operations 9-15

Configurable Modules................................A-108
Configuration table... 5-5
Configuration Table as a Representation

of a Rack.. 5-5
Configuring .. 5-1

Hardware .. 4-8, 5-1
When required? ... 5-1

Configuring Hardware 5-4
Slot Rules .. 5-6

Configuring Hardware (General).................... 4-8
Configuring the ET 200S................................ 5-9
Consistency of a Station Configuration

Checking.. 9-7
Contents .. 12-3
Context-sensitive Help 3-2, 12-3
Continuous Function Chart 6-20
Controlling Scan Cycle Times to Avoid Time

Errors ... 11-16
Copying..4-6, 6-17, 6-41

Project.. 4-6
Selected Areas to the Clipboard 10-15
Symbol Rows to the Clipboard................. 6-17
Variables in Declaration Tables 6-41

Copying a Project... 4-8
Copying/Duplicating Force Tables 10-4
Copying/Duplicating Variable Tables 10-4
Counter

Memory Area
Retentive..A-22

COUNTER ...A-49
Parameter TypeA-49

Counters
Upper Limits for Entering 10-10

Cover Sheet... 12-3
CPU

Loading with a Configuration 9-7
Operating Modes A-1, A-2
Resetting.. 9-12

CPU (Central Processing Unit)
Operating ModesA-1

CPU 31x ..A-22
CPU 31x C... 5-13
CPU 31xC..................................... 8-2, 8-5, A-24
CPU Hardware Fault (OB84) 11-32
CPU Hardware Fault Organization Block... 11-32
CPU Operator Control Panel 3-4
CPU Parameter "Scan Cycle Load from

Communication"....................................... 2-10
CREAT_DB..A-12
Creating ...A-84

a Closed Branch in Ladder Networks
Creating a Closed Branch.................... 6-58

Branches in Ladder Networks.................. 6-60
Connections in FBD Networks 6-66
Data Blocks (DB) 6-28
FB for the MotorA-81, A-82, A-83
FC for the Valves A-85, A-86
New Branches in Ladder Networks.......... 6-57
OB1 for the Sample Industrial Blending

Process..A-87
Parallel Branches in Ladder Networks 6-57

User Programs ...6-30
Variable Table ..10-3

Creating a Document Template with
Current Settings12-10

Creating a New Page Format Template12-10
Creating a New Text Format Template12-10
Creating a Project...4-4
Creating a Sample FB for the

Industrial Blending Process A-81
Creating a Sample FC for the

Industrial Blending Process A-85
Creating and Opening a Force Table10-3
Creating and Opening a Variable Table10-3
Creating Blocks ..6-28
Creating Branches in FBD Networks............6-65
Creating Branches in Ladder Networks........6-60
Creating Connections in FBD Networks6-66
Creating the Project Documentation.............12-3
Creating the Software in the Project

(General) ..4-9
Cross Reference List6-79
Cross-Reference List...........................6-80, 6-81
CRST/WRST... A-4
CTRL_RTM ... A-111
Cutting

Selected Areas to the Clipboard.............10-15
Cycle ..2-3
Cycle Monitoring Time............... 2-10, 2-11, 2-12
Cyclic Interrupt ...2-14
Cyclic Interrupt Organization Blocks

(OB30 to OB38)..2-18
Cyclic Program Execution2-3

D

Data Block
Shared...2-31, 2-32
Structure...2-31

Data Block (DB)
Instance Data Block..................................2-27
Instance Data Blocks................................2-29
Retentive ... A-22

Data Block Register..................................... A-19
Data Blocks

Basic Information......................................6-71
Data View...6-73
Declaration View6-72
Editing Data Values in the Data View.......6-77
Resetting Data Values

to their Initial Values6-78
Data Blocks (DB)..2-2

Creating..6-28
Data exchange

in different operating modes A-9
Data Record

Accessing .. A-107
Reading ... A-107
Writing ... A-107

Data records
Accessing .. A-108

Index

 Programming with STEP 7 Lite
Index-4 A5E00293884-01

V3.0

Data Type .. 6-23
ARRAY ... 6-40, 6-41
DATE AND TIME

Date and TimeA-37
DWORD...A-33
INT ...A-27
REAL

Floating-Point Number A-28, A-29
S5TIME..A-34
STRING ... A-38, A-39
STRUCT 6-39, A-39, A-40
User-Defined.. 6-23
WORD ...A-33

Data Type ARRAY
Entering in the Declaration Table............. 6-40

Data TypesA-25, A-59, A-60
ARRAY ..A-36
BOOL...A-26
BYTE ...A-26
Character (CHAR)....................................A-26
Complex...A-36
Date ...A-26
DATE_AND_TIMEA-36
Description...A-26
DINT

Double Integer (32 Bits)A-27
Double Integer (32 Bits) (DINT)A-26
Double Word (DWORD)...........................A-26
Elementary...A-26
FB

SFB...2-26, A-36
INT

Integer (16 Bit)A-27
Integer (16 Bits) (INT)A-26
Parameter Types

ANY A-58, A-59, A-60, A-61
Real Number (REAL)A-26
S5 TIME...A-26
STRING ...A-36
STRUCT ..A-36
Time (TIME) ...A-26
Time of Day (TIME_OF_DAY)A-26
UDT ...A-36
User-Defined..A-36
Word (WORD)..A-26

Data Types (Elementary)
Entering in the

Variable Declaration Table................... 6-39
Data Values

Editing in the Data View of Data Blocks... 6-77
Resetting to their Initial Values................. 6-78

Data View ... 6-73, 6-77
Data Blocks.. 6-73

Date ... 7-3
Setting.. 7-3

DATE_AND_TIMEA-36
Area ...A-37

DATE_AND_TIME
Format ...A-37

DB.. 2-32
DB Register ... 6-100
Deactivating ... 10-32

Test using Program Status 10-32
Time-of-Day Interrupt............................... 2-15

Debug
Setting the Mode10-31

Debugging
Overview ..10-1

Declaration Table ...6-41
Copying Variables6-41
Deleting Variables6-42
Entering a Multiple Instance6-44
Entering Data Type ARRAY6-40
Entering Elementary Data Types..............6-39
Setting Column Widths.............................6-33
Varying Column Width..............................6-42

Declaration Type
Changing ..6-36

Declaration View ..6-72
Data View...6-72

Declaring Local Variables............................ A-87
OB for the Sample Industrial Blending

Process ... A-87
Declaring Parameters.................................. A-85

FC for the Sample
Industrial Blending Process A-85

Default Settings for the LAD/FBD/STL6-31
Defective

CPU Operating Mode A-1
Defining ..6-12

Individual Symbols....................................6-14
Modifying Mode10-19
Symbols when Programming....................6-12

Defining and Using Templates12-10
Defining Logic Blocks A-78
Delay Interrupt

Priority ..2-17
Rules ..2-17
Starting ...2-17

Delay Interrupt Organization Blocks
(OB20 to OB23)..2-17

Delay Interrupts ..2-17
Delayed Processing of Interrupts and

Asynchronous Errors A-74
Example .. A-74

Deleting
a Force Job ..10-25
Objects ...3-12
Symbol Rows ...6-15
Variables in Declaration Tables................6-42

Deleting a language8-13
Deleting a Project ...4-9
Deleting and Renaming a Project...................4-9
Deleting Individual Blocks on the CPU9-13
Deleting the Memory Card in the CPU9-14
Detectable Errors11-23
Detecting Faulty Modules.............................11-5
Detecting Plant Status Using Motor Current

Values ..5-17
Determining the cause of a STOP..............11-12
Diagnostic Buffer A-20, A-21, A-22

Contents11-1, A-20, A-22
Definition ... A-20
Displaying.. A-22
Evaluating.. A-20
Reading ..11-17

Diagnostic Data ..11-1
Diagnostic Data on Modules.......................11-19

 Index

Programming with STEP 7 Lite V3.0
A5E00293884-01 Index-5

Diagnostic Event.................................11-1, A-20
Diagnostic Functions.................................... 11-1
Diagnostic Interrupt.................................... 11-11
Diagnostic Interrupt (OB82) 11-31
Diagnostic Interrupt Organization Block.... 11-31,

... 11-32
Diagnostic Message

Sending to Nodes 11-20
Writing Your Own................................... 11-20

Diagnostic Status Data 11-19
Diagnostics .. 11-7
Diagnostics for modules

Module diagnostics 11-7
Diagnotics .. 11-6

Hardware ... 11-6
Dialog

Module Information 11-7
Dialog Boxes.. 3-6
Differences Between Forcing and Modifying

Variables.. 10-25
Differences Between Saving and

Downloading Blocks................................... 9-3
Digital Simulation Module

(SIM 374 IN/OUT 16) 5-8
DIN EN 6.1131-3.. 1-4
DINT

Data Type ..A-27
Direct Help ... 3-2
Disabling Interrupts and

Asynchronous ErrorsA-73
Example...A-73

Display
Block Length .. 6-27

Display Format
Selecting .. 10-15

Display Symbol Information 12-7
Display Symbols .. 12-7
Displaying .. 10-24

Block Lengths .. 6-27
Cross-References for Addresses with

Overlapping Address Areas 6-92
Data Structure of Data Blocks Referencing

an (Instance DBs) 6-74
Forced values .. 10-24
Overlapping Access 6-92
Shared or Local Symbols........................... 6-4

Displaying Comments 12-7
Displaying the Address Overview 6-80
Displaying the Module Status 11-2
Displaying the Operating Mode...................... 7-3
Displaying the Version of the CPU Operating

System in the Module List........................ 5-12
Displays

Module Status.. 11-2
Document Template..................................... 12-1
Document Templates................................. 12-10
Documentation.................................... 4-9, 12-13

Printing a Complete Project 12-13
Printing from Project Parts 12-13

Documentation on the STEP 7 Lite Software
Product .. 1-9

Double Integer (32 Bit)
Format ...A-27

Double Integer (32 Bits) (DINT)

Area... A-26
Double Word (DWORD)

Area... A-26
Download Methods Dependent on the Load

Memory ..9-4
Downloaded Blocks

Saving on Integrated EPROM9-6
Downloading.. A-13

Prerequisites ..9-1
User Program .. A-12
User Programs ...9-3

Downloading a Configuration to a
Programmable Logic Controller..................9-7

Downloading to a PG9-10
Downloading to the CPU9-2
Dummy Module (DM 370 Dummy)5-8
DWORD .. A-33

E

Editing ..6-12
Addresses or Parameters in

Ladder Elements6-54
Data Values in the Data View of

Data Blocks ..6-77
Project ..4-6
the Symbol Table6-12

Editing a Downloaded Hardware Configuration
in a Programming Device/PC9-10

Editing Uploaded Blocks in the PG/PC.........9-10
Editor..6-19

Settings for STL..6-31
Elementary Data Types............................... A-26
Elements in Dialog Boxes...............................3-6
EM 300...5-9
Emergency Start...5-19
Enabling Interrupts and

Asynchronous Errors A-73
Example .. A-73

Ensuring Program Consistency6-93
Entering...6-11, 6-74

Addresses ..10-8
Addresses or Parameters in

Ladder Elements6-54
Addresses or Symbols in a Force Table...10-7
Block Comments and

Network Comments..............................6-48
Data Elements of the Data Type STRUCT

in the Variable Declaration Table6-39
Data Structure of Data Blocks Referencing

an FB (Instance DBs)6-74
Data Structure of User-Defined Data Types

(UDT)..6-76
Elementary Data Types in the Variable

Declaration Table6-39
FBD Elements ..6-63
Shared Symbols in a Program..................6-47
Single Shared Symbols in a Dialog Box ...6-12
Symbols..6-11

Entering a Multiple Instance in the Variable
Declaration Table6-44

Entering Addresses or Parameters in FBD
Elements ..6-64

Index

 Programming with STEP 7 Lite V3.0
Index-6 A5E00293884-01

Entering and Displaying the
Data Structure of Data Blocks Referencing
an FB (Instance DBs)............................... 6-74

Entering and Displaying the Structure of
Data Blocks Referencing a UDT 6-76

Entering and Editing Addresses
in Ladder Elements 6-54

Entering Comments in STL Statements....... 6-69
Entering Data Elements of the Data Type

ARRAY .. 6-40
Entering Data Elements of the Data Type

STRUCT .. 6-39
Entering Ladder Elements 6-54
Entering Multiple Shared Symbols

in the Symbol Table 6-13
Entering Shared Symbols 6-10
Entering STL Statements............................. 6-68
Entering Symbols... 6-13
Entering the Data Structure of

Shared Data Blocks 6-74
Entry .. 3-6

in Dialog Boxes .. 3-6
EPROM....................................... 9-6, A-22, A-23
EPROM Area ...A-12
Erasing... 9-12

Load/Work Memory.................................. 9-12
Erasing the Load/Work Memory and

Resetting the CPU 9-12
Error Control .. 11-2
Error Detection

OB Types
OB81.. 11-23

Sample Programs
Substitute Values............................... 11-26

Error Handling Organization Blocks
(OB80 to OB87 / OB121 to OB122) 2-24

Error OB.. 11-23, 11-24
Error OBs.. 2-24, 2-25

Reaction to errors 2-24
Error OBs as a Reaction to

Detected Errors...................................... 11-23
Error Search

in Blocks .. 6-48
Establishing

Online Connections.................................... 7-1
ET 200S... 5-9
ET 200X Power Module 5-9
Evaluating

Output Parameter RET_VAL 11-22
Evaluating the Diagnostic Buffer..................A-20
Events.. 2-10

Asynchronous .. 2-10
Example

Data Type STRING..................................A-38
Entering a Contiguous Address Area..... 10-12
Entering Modify/Force Values................ 10-13
Floating-Point Number Format.................A-28
for Disabling and Enabling Interrupts and

Asynchronous Errors
(SFC39 and SFC40)A-73

for Masking and Unmasking
Synchronous ErrorsA-69

for the Delayed Processing of Interrupts
and Asynchronous Errors
(SFC41 and SFC42)............................ A-74

Example of Working with
Address Locations....................................6-90

Examples for Entering Addresses
in Force Tables.......................................10-11

Examples for Entering Addresses in Variable
Tables...10-11

Exceeding the L Stack................................. A-17
Exchanging Modules5-15, 13-1
Exchanging Project Data Between

STEP 7 Lite and STEP 78-6
Export file ..8-10, 8-11
Exporting ..8-1
Exporting Multilingual Text8-12
Exporting Symbol Table8-8

F

F1 ...3-2
FB.....................................2-26, 2-27, 2-28, A-36
FBD ..6-22

Rules ..6-61
FBD (Function Block Diagram).......................1-4
FBD Elements ..6-61

Entering ..6-63
Entering Addresses or Parameters6-64
Overwriting ...6-64
Representation ...6-61
Rules for Entering.....................................6-61

FBD Layout ..6-61
FBD Networks

Creating Branches....................................6-65
Creating Connections...............................6-66
Selecting in...6-65
Splitting and Joining Connections6-66

FC ..2-26
FC12.. A-95
FEPROM... A-22
File Format for Importing/Exporting

a Symbol Table ..8-8
Filtering...6-16

Symbol Table ...6-16
Filtering Symbols..6-13
Finding Address Locations in the

Program Quickly.......................................6-89
Finding and Replacing Terms.......................3-10
Floating-Point Number

Basic Elements.. A-28
Component Fields A-28
Example A-28, A-29, A-30
Parameters.. A-28

Floating-Point Numbers
Format A-28, A-29, A-30

Flow
of Diagnostic Information........................11-17

Font ..12-8
Font Size ...12-1, 12-7
Font Style ..12-1, 12-7
Font Type ..12-1, 12-7
Footer...12-1, 12-9
For STEP7..8-6

 Index

Programming with STEP 7 Lite V3.0
A5E00293884-01 Index-7

Force job
Setting up... 10-24

Force Job... 10-23
Force Table... 10-7, 10-8
Force table-Basic Procedure When Monitoring

and Forcing with the Force Table............. 10-2
Force Values.. 10-23

Examples of Entering............................. 10-13
Forcing.. 10-2, 10-25
Forcing Values... 10-2
Forcing Variables....................................... 10-23

Introduction .. 10-23
Safety Measures.................................... 10-24

Formal Address see Formal Parameters 2-26
Formal parameters.A-63, A-64, A-65, A-66, A-67
Formal Parameters 6-70

Application ... 2-27
Format ...A-27

BLOCK...A-50
COUNTER ...A-50
Data Type DATE_AND_TIME..................A-38
Data Type DINT (32-Bit Integers)A-27
Data Type INT (16-Bit Integers)A-27
Data Type REAL

(Floating-Point Number).......................A-28
Data Type STRING..................................A-39
Data Type STRUCT....................... A-39, A-40
Data TypeS5TIME (Time Duration)..........A-34
Parameter Type POINTERA-51
Parameter Types BLOCK

COUNTER
and TIMER.......................................A-50

TIMER..A-50
Format of the Data Type DWORDA-32
Format of the Data Type INT

(16-Bit Integers)A-27
Format of the Data Type TIMEA-35
Format of the Data Type WORD..................A-32
Format of the Data Types WORD

and DWORD in Binary Coded
Decimal NumbersA-33

Format of the Parameter Type ANY.............A-56
Format Template for Page Layout .. 12-12, 12-13
Function (FC)...A-85
Function Block (FB)A-81
Function Block Diagram............................... 6-22
Function Block Diagram Programming

Language (FBD) 6-22
Function Block Diagram(FBD) 6-20
Function Blocks (FB)...................................... 2-2
Function Blocks (FBs)

Actual Parameters 2-27, 2-28
Functions (FC) 2-2, 2-26

Application ... 2-26

G

Gaps in the User Memory (RAM)................. 9-15
Group Warning .. 5-19
Guidelines

Handling License Keys 1-12
Guidelines for Handling License Keys 1-12

H

Handling Complex Stations5-15
Handling Errors ..11-21
Hardware................................... 11-4, 11-6, 11-7

compare ...11-4
Configuring ..4-8, 5-1
diagnose...11-6
Diagnosis..11-2
diagnostics ...11-7
Diagnostics...11-7

Hardware Catalog ..5-2
Hardware Diagnostics11-2
Hardware Interrupt2-14

Priority ..2-20
Rules ..2-20

Hardware Interrupt Organization Blocks
(OB 40 to OB 47)......................................2-20

Header..12-1, 12-9
HiGraph..6-20
HOLD .. A-10

CPU Operating Mode A-1
Operating mode....................................... A-10

Hot Restart .. A-5
Abort.. A-4
Automatic .. A-5
Manual... A-5

How to
Open the Block for a

Diagnostic Buffer Entry.......................11-14
How To

Display and Set the Time and Date............7-3
How to Upload Objects from the CPU

to the PG/PC ..9-10
HW Configuration ...5-4

I
I Stack

Description .. A-18
I/O Access Error (OB122)...........................11-37
I/O Access Error (PZF) during Update

of the Process Image............................... A-16
I/O Access Error Organization Block11-37
I/O Addresses...5-14
I/O Data... A-106
Icon for System Data Blocks5-21
Icons...3-5
Icons (see Symbols).......................................1-1
Illegal Logic Operations in Ladder6-53
Importing 8-1, 8-6, 8-7, 8-13

External Source File4-4
Multilingual Text8-13

Incomplete and Ambiguous Symbols
in the Symbol Table....................................6-9

Incomplete Symbols6-9
Indirect Parameter Assignment A-108
Industrial Blending Process...... A-81, A-85, A-87
Information Functions.................................11-11
Information on Modules................................11-7
Initial Value................................ 6-36, 6-37, 6-78
Inputs..6-83

Process Image .. A-16

Index

 Programming with STEP 7 Lite V3.0
Index-8 A5E00293884-01

Insert Menu.. 12-9
Inserting ... 6-15

Additional Ladder Networks 6-56
Addresses or Symbols in a

Variable Table...................................... 10-6
Blank Rows in

Variable Declaration Tables................. 6-39
Program ... 4-5
Substitute Values for Error Detection..... 11-26
Symbol Rows... 6-15

Inserting a Contiguous Address Range
in a Force Table....................................... 10-9

Inserting a Contiguous Address Range
in a Variable Table 10-8

Inserting Additional FBD Networks 6-65
Inserting Additional STL Networks............... 6-69
Installing STEP 7 Lite................................... 1-13
Installing the Automation License Manager . 1-11
Instance2-29, 2-30, 2-31
Instance Data Block

Creating Several Instances for a FB 2-26
Retentive..A-22

Instance Data Blocks 2-29
Time Stamps.. 6-96

Instance DB2-29, 2-30, 2-31
Instructions from the Command Libraries 6-31
INT...A-27

Data Type ..A-27
Integer (16 Bit) ...A-27

Format ...A-27
Integer (16 Bits) (INT)

Area ...A-26
Interface Modules and Interfaces

(Representation in
Hardware Configuration).......................... 5-11

Interference Control 11-2
Interrupt OBs

Assigning Parameters.............................. 2-15
Parameter Assignment 2-15
Using.. 2-14

Interrupt Stack A-11, A-18
Interrupt-Driven Program Execution............... 2-3
Interruption Time..A-4
Interrupts.. A-73, A-74

Delayed ProcessingA-74
Disabling and EnablingA-73

Introduction ..A-25
Introduction to Configuring Hardware 5-1
Introduction to Data Types and Parameter Types

...A-25
Introduction to Forcing Variables 10-23

J

Jumping ... 6-92
from the Cross-Reference List to

a Location in the Program.................... 6-92
from the Program Structure

to the Part of the Program.................... 6-92
Junction in Ladder Networks

Splitting .. 6-59

K

k7e ..8-2, 8-5
k7p ..8-2, 8-5
Key Combinations

for Moving the Mouse Pointer...................3-15
Keyboard Control ...3-13
Keyswitch .. A-9

L

L Stack
Assigning Memory to Local Variables...... A-17
Overwriting .. A-17
Saving Temporary Variables2-26

LAD (Ladder Logic) ..1-4
Ladder Elements

Entering ..6-54
Entering and Editing Addresses6-54
Entering and Editing Parameters..............6-54
Overwriting ...6-55
Overwriting Addresses6-55
Overwriting Parameters............................6-55
Representation ...6-50

Ladder Layout ..6-50
Ladder Logic...6-21

Guidelines ..6-51
Ladder Logic (LAD)6-20
Ladder Logic Programming Language

(LAD) ..6-21
Ladder Networks ..6-56

Creating Branches....................................6-60
Creating New Branches............................6-57
Creating Parallel Branches.......................6-57
Opening Closed Parallel Branches...........6-59
Selecting in...6-56
Splitting a Junction6-59

Landscape..12-1
Language Change..8-13

Texts Managed in More
Than One Language.............................8-13

Language Editors
Starting ...6-20

Language Elements6-31
Layout...6-61
Layout of the 'Hardware Comparison' View..11-4
Layout of the ''Hardware

Configuration'' View....................................5-4
Layout of the 'Hardware Diagnostics' View...11-6
Libraries... 3-3, 3-4, 4-5
License Key................................. 1-9, 1-10, 1-11
License Keys ..1-12
License Manager...................................1-9, 1-10
Linear Programming.......................................2-3
List Box...3-6
Lite ...A-108, A-109
Lizense...1-9
Lizense Types ..1-9

Enterprise License......................................1-9
Floating License1-11
Rental License..1-9
Trial License ...1-11
Upgrade License1-11

Load Feeders ...5-9

 Index

Programming with STEP 7 Lite V3.0
A5E00293884-01 Index-9

Load Memory.......................9-3, 9-4, A-11, A-12
Load Memory and Work Memory.................A-12
Load Memory and Work Memory in the CPU 9-3
Local Data Requirments 6-84
Local Data Stack................................ A-11, A-17
Local Manual Mode...................................... 5-19
Logic Blocks...A-78

in the Block Editor 6-30
Structure .. 6-30
Time Stamps.. 6-95

M

Managing Multilingual Text 8-8
Masking ... 2-25

Start Events ... 2-25
Masking Synchronous Errors.......................A-69

Example...A-69
Maximum Cycle Time 2-10
Maximum Scan Cycle Time 2-10
Memory Area

Retentive...............................A-22, A-23, A-24
Memory Areas ...A-11

Address Areas ...A-14
Load Memory...A-11
Retentive Memory....................................A-22
Special Features with S7-300A-12
Special Features with S7-400A-12
System Memory.......................................A-11
Work Memory...A-11

Memory Card ..9-6, A-13
Memory Reset ...A-4
Menu Bar ... 3-3
Micro Memory Card (MMC) 8-2, 8-5, A-24
Microsoft Windows....................................... 1-13
Minimum Cycle Time 2-11, 2-12
Minimum Scan Cycle Time 2-10
MMC ..8-2, 8-4, 8-5
Mnemonics .. 3-9

Setting.. 6-67
Mode Selector..A-10
Mode Transitions A-2, A-3
Modify

Initialize CPU in STOP Mode
with Its Own Values 10-22

Modify Values
Examples of Entering............................. 10-13

Modifying .. 10-19, 10-25
Basic Procedure....................................... 10-2
Peripheral Outputs when the CPU

is in STOP Mode................................ 10-22
Modifying Mode............................... 10-19, 10-20
Modifying Variables.................................... 10-21

Immediately.. 10-21
in Program Status 10-32
Introduction .. 10-19

Module Diagnostics Tab 11-7
Module Exchange .. 5-11
Module Exists/Type Monitoring

Startup OBs ... 2-21

Module Information
Updating ...11-10

'Module Information'
calling ...11-7

M

Module Information dialog11-7
Module Information Functions11-9
Module ParametersA-108, A-109

Transferring with SFCs.......................... A-108
Transferring with STEP 7 Lite................ A-108

Module Status11-6, 11-11
Information Functions...............................11-9

Modules..5-11
Arranging in a Rack..................................5-11
Configuring .. A-108
Exchanging...5-15
Moving..5-15
Setting Properties.......................................5-5
Specifying...9-10

Monitoring...10-2
Basic Procedure10-2

Monitoring Mode...10-16
Monitoring Times..2-22
Monitoring Variables

Introduction...10-16
Once and Immediately............................10-18
With a Defined Trigger............................10-17

Motor RIGHT / Motor LEFT5-19
Motor Starters...5-9
Moving

Objects ...3-12
Moving Modules ...5-15
Moving Print Objects12-3
MPI Interface ..1-13
MSK_FLT ...2-24
Multiple Instance ..2-26

Entering in the Variable Declaration
Table ..6-44

Multiple Instances...2-30
Rules ..6-44
Using ..6-43

N

Nested Calls of Logic Blocks....................... A-19
Effects on the B Stack and L Stack A-19

Nesting .. A-19
Nesting Depth...2-8
Network ..6-56

Inserting..6-56
Network Comment..6-47
Network Comments

Entering ..6-48
Network Title ..6-47
Networks ..6-22

Ladder Logic...6-51
Non-Proportional Font12-7
Non-Unique Symbols6-9
Non-Volatile RAM.. A-22
Notes on Changing the Contents

of Registers ..6-100

Index

 Programming with STEP 7 Lite V3.0
Index-10 A5E00293884-01

Number Notation..A-25
Date and Time (DATE_AND_TIME)A-37
Double Integer (32 Bits)A-27
Floating-Point NumbersA-28, A-29, A-30
S5TIME..A-34

Number Representation...............................A-27
Integer (16 Bit) ...A-27

NVRAM.. A-22, A-23

O

OB...2-3, 2-4, 2-5, 2-6
OB 81... 11-30
OB 86... 11-34
OB1............................... A-87, A-88, A-89, A-103
OB1 and OB80 ..A-99
OB1 Scan Cycle Time.................................. 2-10
OB10.. A-97, A-98
OB100..A-4
OB101..A-4
OB102..A-4
OB20..A-102
OB80.. 11-29
OB82.. 11-31
OB84.. 11-32
OB85...11-33, A-17
OB87.. 11-35
Object

Deleting.. 3-12
Moving ... 3-12

Off
CPU Operating Mode.................................A-1

Online Connections
Establishing.. 7-1

Online Help
Calling.. 3-2
Topics .. 3-2

Opening .. 4-6, 11-15
Block from the B Stack List 11-15
Block from the I Stack List 11-15
Closed Parallel Branches in

Ladder Networks.................................. 6-59
Project.. 4-6
Symbol Table.................................. 6-13, 6-14
the Block for a Diagnostic Buffer Entry .. 11-14
Variable Table.. 10-3

Opening Logic Blocks in 12-7
Opening the Block for a

Diagnostic Buffer Entry 11-14
Operating Mode A-2, A-3

Displaying and Changing 7-3
HOLD................................ A-1, A-2, A-3, A-10
RUN A-1, A-2, A-3, A-9
STARTUP ..A-4
STARTUPA-1, A-2, A-3
STOP A-1, A-2, A-3, A-4

Stack Contents................................... 11-13
Operating Mode of the CPU

Changing When Downloading.................... 9-7
Operating Mode Transistions.........................A-1
Operating Mode Transitions...........................A-1

Operating Modes
Of the CPU.. A-1
Priority ... A-3

Operating Modes and Mode Transitions........ A-1
Operating Modes of the CPU A-1
Operating System...1-13

Tasks..2-1
Operating System of the CPU2-10
Optimizing the Source for Translation8-14
Optimizing the Translation Process..............8-15
Optional Package3-18, 10-1
Options...12-7
Options Determining the Font Type

and Page Layout12-7
Organization Block (OB)

Background OB (OB90)..............................2-3
Organization Block for Cyclic Program

Processing (OB1)2-10
Organization Blocks

Creating an OB for the Sample Industrial
Blending Process A-87

Definition ..2-3
Error Detection

OB122
Substitute Values............................11-26

Priority Classes 2-3, 2-4, 2-5
Organization Blocks (OB)...............................2-2
Organization Blocks and Program Structure ..2-3
Organization Blocks for Interrupt-Driven

Program Processing.................................2-14
Output Parameter

Evaluating RET_VAL..............................11-22
Outputs...6-83

Process Image .. A-16
Overview ..6-79

Debugging Modes10-1
Libraries..6-29
of the Available References......................6-79
Possible Motor Starter Actions5-19
Standard Libraries6-29

Overview of STEP 7 Lite1-1
Overwrite Mode 6-49, 6-55, 6-64
Overwriting

Addresses or Parameters in
Ladder Elements6-55

FBD Elements ..6-64
Ladder Elements6-55

P

Packing (ET 200S) ...5-9
Packing Address Spaces (ET 200S)5-9
Page Layout ..12-8, 12-9
Page Layout Format Template12-1
Parameter Assignment.............................. A-110

Clock ... A-110
Parameter Assignment in User Program........5-5

 Index

Programming with STEP 7 Lite V3.0
A5E00293884-01 Index-11

Parameter Type
ANY ...A-49
BLOCK_DB..A-49
BLOCK_FB ..A-49
BLOCK_FC..A-49
BLOCK_SDB ...A-49
COUNTER ...A-49
POINTER...A-49
TIMER..A-49

Parameter Types A-49, A-58
ANY ...A-58

ParametersA-58, A-59, A-60
Entering and Editing in Ladder Elements. 6-54
Overwriting in Ladder Elements 6-55

PARM_MOD A-106, A-109
Part Process Image

(Process Image Partition)A-16
System Update ..A-16
Updating with SFCsA-16

Password ... 7-2
Password Protected PLC Access 7-2
Password Protection for Access to

Programmable Controllers 7-2
Pasting

Areas from the Clipboard
into the Variable Table 10-15

Areas from the Clipboard into the
Variable Table or Force Table............ 10-15

Peripheral Data..A-106
Permitted Block Properties for

Each Block Type 6-27
Permitted Data Types when Transferring

Parameters ..A-63
Phase Offset .. 2-18
Pictograms (see Symbols) 1-1
Pin Needle ... 3-6
Pneumatic Interface Module 5-9
POINTER........................ A-49, A-51, A-52, A-53

Parameter TypeA-49
Pointer Format A-49, A-51
Portrait ... 12-1
Positioning

Boxes.. 6-62, 6-63
Power Failure...A-4
Power Flow .. 6-53
Power Supply Error (OB 81) 11-30
Power Supply Error OB.............................. 11-30
Prerequisites.. 9-1

for Downloading... 9-1
Preventing Personal Injury......................... 10-23
Preventing Property Damage..................... 10-23
Print List.. 12-3, 12-7
Print Object12-1, 12-7, 12-8, 12-9
Print Objects12-3, 12-5, 12-6
Printing

Blocks .. 12-13
Configuration Table................................ 12-13
Diagnostic Buffer Content 12-13
Project Documentation........................... 12-13
Project Parts .. 12-13
Reference Data...................................... 12-13
Shared Data Table................................. 12-13
Symbol Table... 12-13
Variable Table.. 12-13

Printing Out
For Project Documentation.....................12-13

Printing Project Documentation12-13
Printing Project Parts..................................12-13
Priority

Delay Interrupt..2-17
Hardware Interrupt....................................2-20
Time-of-Day Interrupt2-15

Procedure
for Entering Statements............................6-46

Procedure for Configuring and Assigning
Parameters to a Station............................5-10

Procedure for Creating an
Automation Solution1-1

Process Image 2-10, 2-11, A-16
Inputs/Outputs ... A-16
Updating ...2-11

Process Mode ..2-10
Process Monitoring.......................................10-2
PROFIBUS Address.....................................5-14
Program..1-3

Inserting..4-4
Program Execution

Cyclic... 2-3, 2-5, 2-6
Interrupt-Driven ..2-3

Program Execution Error (OB85)11-33
Program Execution Error

Organization Block11-33
Program Measures for Handling Errors......11-21
Program Processing

Interrupt-Driven ..2-14
Program Status

Activating and Deactivating the Test10-32
Modifying Variables10-32
Setting the Display..................................10-29

Program Status Display..............................10-27
Program Status of Data Blocks10-28
Program Structure 6-79, 6-84, 6-85
Programming

Transferring Parameters...........................2-26
Using Data Blocks2-26

Programming Error (OB121)11-36
Programming Error Organization Block......11-36
Programming Language

Selecting...6-20
Programming Languages1-3, 1-4

Function Block Diagram (FBD).................6-22
Ladder Logic (LAD)6-21

Programs in a CPU ..2-1
Project

Copying ...4-6, 4-8
Creating..4-4
Creating the Software (General).................4-9
Deleting ..4-6
Opening..4-6

Project Documentation4-9
Project Documentation Overview12-1
Project View ...4-1
Project Window 3-3, 3-4, 4-1, 4-2, 4-3
Project Window and Views in STEP 7 Lite1-5
Projects

Order of Execution......................................4-4

Index

 Programming with STEP 7 Lite V3.0
Index-12 A5E00293884-01

Properties6-24, 6-26, 6-27
Proportional Font ... 12-7
PZF (I/O Access Error)A-16

Q

QRY_TINT ... 2-16
Querying

Time-of-Day Interrupt............................... 2-15
Question Marks.. 6-88

R

Rack Failure (OB86) 11-34
Rack Failure Organization Block................ 11-34
Racks

Automatic Arrangement 5-15
RAM... A-11, A-22
RAM Area ..A-12
RDSYSST..............................11-17, 11-18, A-22
READ_CLK..A-110
READ_RTM ...A-111
Real

Data Type ..A-28
Real Number

Area ...A-26
Data Type ..A-26

Recovery Time... 5-18
Recursion in Block Dependencies

(Appearance) ... 6-84
Reference Data..........................6-16, 6-17, 6-79

Application ... 6-79
Reference Junction.. 5-9
Register Contents 6-100
Relationship between

Operating Modes of the CPU.....................A-1
Relationship between the Variable Declaration

Table and the Statement Section............. 6-36
Reloading Blocks in the CPU......................... 9-5
Remaining Cycle..A-7
Renaming

Objects... 3-12
Renaming a Project 4-9
Representation

FBD Elements.. 6-61
Ladder Elements...................................... 6-50
STL .. 6-67

Representation of Interfaces and Interface
Modules ... 5-11

Requirements for Installation 1-13
Resetting

Data Values to their Initial Values 6-78
the CPU ... 9-12

Restoring
Window Layout .. 3-9

Retentive Memory
on S7-300-CPUs......................................A-22

Retentive Memory Areas on S7-300 CPUs..A-22
Retentivity

on Power Failure..A-4
Rewiring

Addresses.. 6-49
Blocks .. 6-49

Ring Buffer (Diagnostic Buffer).................... A-20
RPL_VAL..11-26
RTD Module Addresses

Packing (ET 200S)5-9
Rules

Configuring Hardware.................................5-6
Delay Interrupt..2-17
FBD ..6-61
for Declaring Multiple Instances6-44
Harware Interrupt2-20
Ladder Logic...6-51
Statement List ..6-67
Time-of Day-Interrupt2-15, 2-18

Rules for Arranging Modules (ET 200X).........5-9
Rules for Arranging Modules (SIMATIC 300) .5-7
Rules for Configuring an ET 200S..................5-9
Rules for Entering FBD Elements.................6-61
Rules for Entering Ladder Logic Elements ...6-51
Rules for Entering STL Statements6-67
Rules for the Digital Simulation Module

(SIM 374 IN/OUT 16)..................................5-8
RUN ...A-9, A-10

CPU Activities.. A-4
CPU Operating Mode A-1
Operating mode....................................... A-10

RUN Mode... A-9
RUN-P... A-10
Runtime Meter... A-111

S

S5 TIME
Area... A-26

S5TIME
Data Type.. A-34
Format ... A-34
Time Base ... A-34

S7 Memory Card ..9-6
S7-31xC ...8-1
S7-GRAPH...6-20
S7Lite Export File8-2, 8-5
S7-PLCSIM ..10-1
Safety Measures When Forcing Variables .10-24
Safety Notes

Exceeding the L Stack............................. A-17
Sample ProgramA-69, A-73, A-74, A-78,

.......................... A-79, A-83, A-85, A-87, A-88
Sample Program for an Industrial Blending

Process ... A-75
Sample Programs...............................A-68, A-81

FB for the Industrial Blending Process A-81
FC for an Industrial Blending Process A-85
Industrial Blending Process A-75
Inserting Substitute Values.....................11-26
OB for the Sample Industrial Blending

Process ... A-87
Reaction to Battery Error11-23
Substitute Values11-26

Sample ProjectsA-68, A-69
Sample Text ...12-8
Save ...8-2
Save and apply...4-6
Save As... 8-1, 8-2, 8-5

 Index

Programming with STEP 7 Lite V3.0
A5E00293884-01 Index-13

Saving.. 6-17
Downloaded Blocks on

Integrated EPROM................................. 9-6
Downloaded Blocks on S7 Memory Card

in the CPU ... 9-6
Symbol Table... 6-17
Variable Table.. 10-5
Variable Tables and Force Tables 10-1
Window Layout .. 3-9

Saving a Configuration................................. 5-21
Saving a Force Table................................... 10-5
Saving Project Data to a Micro Memory Card

(MMC).. 8-5
Saving Projects on Disks 8-2
Scan Cycle... 2-10
Scan Cycle Load from Communication........ 2-10
Scan Cycle Monitoring Time 2-10
Scan Cycle Time.. 2-11
Scan Cycle Times to Avoid Time Errors

Controlling.. 11-16
SCL.. 6-20
Scope of the Module Type-Dependent

Information... 11-11
SDB (System Data)....................................A-106
sdf8-2, 8-4, 8-5, 8-6, 8-7
SDF.. 8-8
Search Function for Errors in the Statement

Section... 6-48
Selected Areas

Copying to the Clipboard 10-15
Cutting to the Clipboard 10-15

Selecting
Display Format....................................... 10-15
in Ladder Networks 6-56
Programming Language 6-20
Symbol Rows... 6-17

Selecting a Station Type 5-10
Selecting in FBD Networks 6-65
Selecting Rows in the Configuration Table

(Configuring HW) 5-15
Selecting Text Areas in STL Statements 6-68
Selecting the Language 8-13
Sending

Your Own Diagnostic Messages............ 11-20
Service case .. 13-2
Session Memory .. 3-9
SET_CLK..2-15, A-110
SET_RTM ..A-111
SET_TINT... 2-15, 2-16
Setting

Address Priority................................... 6-4, 6-5
Operating BehaviorA-108
Size of a Window for Display 6-18
Sort Mode in the Symbol Table................ 6-17
the Call Environment for a Block............ 10-30
Time and Date ... 7-3

Setting Block Protection............................... 6-26
Setting Column Widths

in a Declaration Table 6-33
Setting Debug Mode 10-31
Setting the Address Priority

(absolute/symbolic) 6-4
Setting the Call Environment for a Block.... 10-30
Setting the Display for Program Status...... 10-29

Setting the Mnemonics.................................6-67
Setting the Operating Behavior A-108
Setting the Properties of Components............5-5
Setting the Window Split...............................6-33
Setting up

Force job ..10-24
Settings

for Function Block Diagram
Programming..6-61

STL Editor ..6-31
Settings for Ladder Logic Programming6-50
Settings for Statement List Programming.....6-67
SFB .. 2-32, A-36
SFB20 STOP..2-10
SFC ..2-33

Using ... A-16
SFC 0 SET_CLK A-110
SFC 1 READ_CLK A-110
SFC 2 SET_RTM A-110
SFC 3 CTRL_RTM A-110
SFC 4 READ_RTM A-110
SFC 48 SNC_RTCB................................. A-110
SFC 26 UPDAT_PI.......................................2-10
SFC 27 UPDAT_PO.....................................2-10
SFC 44 RPL_VAL11-26
SFC 46 STP ...2-10
SFC 51 RDSYSST11-17, 11-18
SFC 52 WR_USMSG11-20
SFC 55 WR_PARM................................... A-106
SFC 56 WR_DPARMA-106, A-108
SFC 57 PARM_MODA-106, A-108
SFC0 SET_CLK ...2-15
SFC20 BLKMOV ... A-12
SFC22 CREAT_DB A-12
SFC26 UPDAT_PI....................................... A-16
SFC27 UPDAT_PO..................................... A-16
SFC28 SET_TINT ..2-15
SFC29 CAN_TINT..2-15
SFC30 ACT_TINT ..2-15
SFC31 QRY_TINT2-15
SFC32 SRT_DINT..2-17
SFC36 MSK_FLT ...2-25

Example in LAD....................................... A-69
Example in STL A-69

SFC37 DMSK_FLT
Example in LAD....................................... A-69
Example in STL A-69

SFC38 READ_ERR
Example in LAD....................................... A-69
Example in STL A-69

SFC39 DIS_IRT ...2-25
Example in STL A-73

SFC40 EN_IRT
Example in STL A-73

SFC41 DIS_AIRT
Example in STL A-74

SFC42 EN_AIRT ..2-25
Example in STL A-74

SFC51 RDSYSST A-20
SFC55 WR_PARM.........................A-107, A-109
SFC56 WR_DPARM A-107
SFC57 PARM_MOD A-107
Shared and Local Symbols.............................6-3
Shared Data Blocks......................................6-74

Index

 Programming with STEP 7 Lite V3.0
Index-14 A5E00293884-01

Entering the Data Structure 6-74
Time Stamps.. 6-96

Shared Data Blocks (DB)............................. 2-31
Shared Symbols

Entering in a Program.............................. 6-47
Shift+F1 ... 3-2
Short Circuit

Ladder Logic
Illegal Logic Operations 6-53

Shortcut keys
for Access to Online Help 3-17
for Marking Text 3-17

Shortcut Keys
for Menu Commands 3-14

Shut-off With Restart (Auto Reset)............... 5-19
SIM 374 IN/OUT 16 5-8
Simulation Module (SIM 374 IN/OUT 16)....... 5-8
Slot Rules .. 5-6
Slot rules (S7-300)... 5-7
SNC_RTCB ...A-110
Sorting ... 6-17

Symbol Table... 6-17
Sorting in the Cross Reference List 6-80
Sorting Print Objects 12-3
Sorting Symbols... 6-13
Source Files

External.. 4-4
Sources.. 8-7
Special Rules for the Dummy Module

(DM 370 Dummy)....................................... 5-8
Specifying Modules...................................... 9-10
Splitting .. 6-66

a Junction in Ladder Networks................. 6-59
Splitting and Joining Connections in FBD

Networks.. 6-66
Splitting the Memory Areas..........................A-11
SRT_DINT ... 2-17
SSL.. 11-18
Stack Contents in STOP Mode 11-13
Standard Libraries

Overview.. 6-29
Standard Library .. 4-4
Start Events ... 2-24

Startup OBs ... 2-21
Starting

Delay Interrupt ... 2-17
Hardware Interrupt 2-20
Time-of-Day Interrupt.............2-15, 2-16, 2-18

Starting STEP 7 Lite 3-1
STARTUPA-4, A-6, A-7, A-8, A-9

Abort ..A-4
CPU Activities ..A-4
CPU Operating Mode.................................A-1

Startup OB......................................A-4, A-7, A-9
Startup OBs ... 2-21

Module Exists/Type Monitoring................ 2-22
Start Events ... 2-21

Startup Organization Blocks
(OB100/OB102) 2-21

Startup Program... 2-21
Statement List 6-22, 6-67

Representation... 6-67
Rules.. 6-67

Statement List (STL) 6-20

Statement List Programming Language
(STL) ..6-22

Statement Part
in Ladder Logic (LAD)...............................6-35

Statement Section
Editing ..6-45
Search Function for Errors6-48
Structure...6-45

Statements
Entering

Procedure...6-46
Station Configuration

Downloading to a Progammable Logic
Controller..9-7

Station Type ...5-10
Selecting...5-10

Status Bar..3-4, 6-18
STEP 7 ...8-1
STEP 7 Lite (Project Overview)......................1-5

STEP 7 Lite 1-1, 1-3, 1-4, 2-24

STEP7..8-6
STL...6-22

Entering Blocks ..6-46
STL Statements

Entering ..6-68
Entering Comments..................................6-69
Selecting Text Areas6-68

STOP
CPU Operating Mode A-1

STOP Mode... A-4
Storing Project Data on a

Micro Memory Card (MMC)8-2
STRING..A-36, A-38
STRUCT..........................A-36, A-39, A-40, A-45
Structure..6-23, 8-10

Cross-Reference List.......................6-80, 6-81
Load MemoryA-12, A-13
of the Export File8-11
of the Statement Section6-45
of the User Program

"Time-of-Day Interrupts" A-93
UDT..6-23
User-Defined Data Type (UDT)6-23
Variable Declaration Table6-36, 6-37

Structure and Components of the
Symbol Table ...6-6

Structure Data Type (STRUCT)
Number of Nested Levels A-41

Structure of the User Interface3-3
Structure of the User Program "Time-Delay

Interrupts" .. A-100
Structured Data Types........................A-36, A-41

Array
Nesting Structures and Arrays............. A-41

Structure
Nesting Structures and Arrays............. A-41

Structured Program ..2-2
Structured Programming2-7
Substitute Value

Using SFC44 (RPL_VAL)11-26
Supported Hardware1-1
Switching Programming Languages.............6-34
Switching the Programming Language.........6-34

 Index

Programming with STEP 7 Lite V3.0
A5E00293884-01 Index-15

Symbol Conflicts in Block Dependencies
(Appearance) ... 6-84

Symbol Rows
Deleting.. 6-15
Inserting ... 6-15
Selecting .. 6-17

Symbol Table............................6-4, 8-6, 8-7, 8-8
File Format for Importing/Exporting............ 8-8
Filtering .. 6-16
for Shared Symbols 6-6
Opening .. 6-13, 6-14
Permitted Addresses.................................. 6-8
Permitted Data Types 6-8
Sorting ... 6-17
Structure and Components 6-6

Symbolic Addressing 6-4
Sample Program......................................A-79

Symbolic Names..A-79
Assigning ...A-79

Symbols 1-3, 3-5, 6-1, 6-2, 6-4, 6-9, 6-47,
.. 10-8, 11-4
Defining.. 6-14
Defining when Programming.................... 6-12
Entering ... 6-13
equal .. 11-4
Filtering .. 6-13
in Project Window 1-1
in the Program Structure................ 6-85, 6-86,

.. 6-87, 6-88
Incomplete ... 6-9
Inserting in a Variable Table 10-6
Local .. 6-3
Non-Unique.. 6-9
Shared ... 6-3
Sorting ... 6-13
unequal .. 11-4

Symbols (Icons) ... 3-5
Symbols in the Project Window 3-5
Synchronization status................................. 11-4
Synchronizing ..A-110

Clock..A-110
Synchronous ErrorsA-69

Masking and Unmasking..........................A-69
System Architecture..................................... 2-10

CPU Operating Modes...............................A-1
Scan Cycle...................................... 2-11, 2-12

System Data .. 11-19
System Data Block (SDB)

Icon for... 5-21
System Diagnostics

Extending... 11-20
System Error.. 11-1
System Function Blocks............................... 2-32
System Function Blocks (SFB) 2-2
System Function Blocks (SFB) and System

Functions (SFC)....................................... 2-32
System Functions 2-32, 2-33
System Functions (SFC)................................ 2-2
System Memory................................. A-11, A-14
System Status List11-11, 11-18, 11-19

Contents .. 11-18
Reading ... 11-18

SZL .. 11-11

T

Tabs ...3-7
Tabs in Dialog Boxes3-6
TC Module..5-9
TeleService ..3-18
Template 12-10, 12-11, 12-12, 12-13
Test

Activating and Deactivating using
Program Status10-32

Testing
Using Program Status10-26

Testing with the Variable Table13-1
Text Format Template12-10
Thermal Motor Model5-18
Thermocouple ..5-9
Time

Changing ..2-16
Reading ... A-110
Setting .. 7-3, A-110

Time base for S5TIME................................. A-34
Time Error (OB80)......................................11-29
Time Error Organization Block11-29
Time Format .. A-110
Time of Day (TIME_OF_DAY)

Area... A-26
Time Stamp

in UDTs and Data Blocks Derived
from UDTs ..6-97

Time Stamp Conflicts 6-93, 6-94, 6-95,
..6-96, 6-97

Time Stamp Conflicts in Block Dependencies
(Appearance)..6-84

Time Stamps6-94, 6-96
in Instance Data Blocks............................6-96
in Logic Blocks ...6-95
in Shared Data Blocks..............................6-96

Time-Delay Interrupt.....................................2-14
Time-of-Day Interrupt2-14

Changing the Time2-16
Deactivating..2-16
Priority ..2-16
Querying...2-16
Rules ...2-15, 2-18
Starting ..2-15, 2-18

Time-of-Day Interrupt Organization Blocks
(OB10 to OB17)..2-15

Time-of-Day Interrupts..................................2-15
SET_CLK ...2-16
Structure.. A-93

TIMER ... A-49
Parameter Type....................................... A-49

Timers
Upper Limits for Entering..........................10-9

Times... A-111
Times (T)

Memory Area
Retentive ... A-22

Tips and Tricks ...13-1
Tips for Editing Station Configurations5-15
Title Bar ..3-3
Titles

for Blocks..6-47
for Networks ...6-47

Index

 Programming with STEP 7 Lite V3.0
Index-16 A5E00293884-01

Toggling the Status Bar On/Off 6-18
Toggling the Toolbar On/Off 6-18
Toolbar...3-3, 3-4, 6-18
Tooltip .. 3-2
Transferring Parameters

Parameter TypesA-49
Saving Transferred Values 2-26

Transferring to In_Out Parameters
of a Function BlockA-68

Transitions
Operating Mode Transitions.......................A-1

Translating ... 8-12
Multilingual Text 8-12

Trigger Conditions for Recording the
Program Status...................................... 10-30

Trigger Frequency...................................... 10-16
Trigger Point

Setting.. 10-16
Troubleshooting ... 11-2

Sample Programs 11-23
Turn Off Final Position-Rotating Right /

Turn Off Final Position-Rotating Left........ 5-19
Turn Off Without Restart 5-19
Types of Interrupt... 2-3
Types of Multilingual Text 8-10

U

UDT6-23, A-36, A-47, A-48
Uninstalling .. 1-17
Uninstalling the User Authorization.............. 1-12
Unmasking... 2-24

Start Events ... 2-24
Unmasking Synchronous ErrorsA-69

Example... A-69, A-70
Unused Symbols................................. 6-16, 6-79
UPDAT_PI ..2-10, A-16
UPDAT_PO ..2-10, A-16
Updating

Process Image...................... 2-10, A-16, A-17
Updating Block Calls.................................... 6-70
Uploaded Blocks

Editing in the PG/PC................................ 9-10
Uploading Blocks to the

Programming Device 9-10
Uploading from the CPU to the

Programming Device (PG)/PC................... 9-8
Uploading the Hardware Configuration

to the Programming Device 9-10
Uploading the Program to the

Programming Device 9-10
Uploading the User Program to the

Programming Device 9-10
Upper Limits for Entering Counters............ 10-10
Upper Limits for Entering Timers 10-9
Used

Addresses.. 6-82
Bits and Bytes.. 6-82
Counters .. 6-83
Timers.. 6-83

User Data...A-106
User Interface .. 3-3
User Memory ... 9-15

Compressing ..9-15
User Program.. A-12

Downloading.. A-12
Elements ..2-2
in the CPU Memory A-12
Tasks..2-1

User Programs
Downloading...9-3

User Rights Through the
Automation License Manager.....................1-9

User-Defined Data Types............................ A-48
User-Defined Data Types (UDT)6-23

Entering the Structure...............................6-76
Using

Complex Data Types A-41
Parameter Type POINTER...................... A-52
SFC ... A-16

Using
Parameter Type ANY A-58

Using Arrays to Access Data....................... A-42
Using Clock Memory and Timers A-111
Using Document Templates12-10
Using Format Templates for Page Layout ..12-13
Using Multiple Instances...............................6-43
Using Structures to Access Data................. A-45
Using TeleService ..3-18
Using Text Format Templates12-10
Using the Clock Functions......................... A-110
Using the Parameter Type POINTER.......... A-52
Using the System Memory Areas A-14
Using the Variable Declaration in

Logic Blocks ...6-35
Using User-Defined Data Types to

 Access Data ... A-47

V

Variable Declaration Table 6-30, 6-35, 6-39,
..6-41, 11-25
Copying Variables6-41
Entering a Multiple Instance6-44
Entering Data Type ARRAY6-40
Entering Elementary Data Types..............6-39
FC for the Sample Industrial

Blending Process A-85
for OB81...11-23
Inserting Blank Rows................................6-39
OB for the Sample Industrial Blending

Process ... A-87
Statement Section6-36
Structure...6-36
Task..6-35
Varying Column Width..............................6-42

Variable Declaration Tables
Deleting Variables6-42

Variable Table ..10-4
Copying ..10-4
Creating and Opening10-3
Editing ..10-6
Example ...10-6
Inserting a Contiguous Address Range....10-8
Inserting Addresses or Symbols...............10-6
Maximum Size..10-7

 Index

Programming with STEP 7 Lite V3.0
A5E00293884-01 Index-17

Pasting Areas from the Clipboard 10-15
Syntax Check... 10-7

Variable Tables and Force Tables
Using.. 10-1

Variables.........................6-41, 10-7, 10-8, 10-17
Copying in Variable Declaration Tables ... 6-41
Deleting in Declaration Tables 6-42
Modifying ... 10-19
Monitoring 10-16, 10-17

Varying
Column Width of

Variable Declaration Tables................. 6-42
View

Zooming... 6-33
Zooming In... 6-33
Zooming Out .. 6-33

W

Warm Restart.......................... A-1, A-4, A-5, A-7
Abort ..A-4
Automatic...A-4
Automatic without a Backup BatteryA-4
Manual ...A-4

Warning ... 5-19
Exceeding the L StackA-17

What Can Be Uploaded When?..................... 9-9
What is a STEP 7 Lite Project........................ 4-1
What Is Downloaded When? 9-2
Window

Setting the Size.. 6-18
View

Zooming... 6-33

Zooming In ...6-33
Zooming Out...6-33

Window "Hardware Catalog"
Handling ...5-15

Window Arrangement.....................................3-9
Changing ..3-9

Window Contents ...3-9
Window Layout...3-9

Restoring ..3-9
Saving ..3-9

Window Split...6-33
Setting ..6-33

Windows..1-13, 3-17
WORD... A-33
Word (WORD)

Area... A-26
Work Memory9-3, 9-4, A-11, A-12, A-13
Working without an original project on the

programming device/PC...........................13-2
Workspace ..3-4, 5-2

for Configuring..5-2
WR_DPARMA-106, A-109
WR_PARM.....................................A-106, A-108
WR_USMSG ..11-20

Z

Zooming
View..6-33

Zooming In ...6-33
View..6-33

Zooming Out...6-33
View..6-33

Index

 Programming with STEP 7 Lite V3.0
Index-18 A5E00293884-01

	Title
	Preface
	Contents
	1 Introducing the Product and Installing the Software
	1.1 Overview STEP 7 Lite
	1.2 Project Window and Views in STEP 7 Lite
	1.3 Help and Documentation on STEP 7 Lite
	1.4 Installation
	1.4.1 Automation License Manager
	1.4.1.1 User Rights Through the Automation License Manager
	1.4.1.2 Installing the Automation License Manager
	1.4.1.3 Guidelines for Handling License Keys

	1.4.2 Installing STEP 7 Lite
	1.4.2.1 Installation Procedure
	1.4.2.2 Setting the PG/PC Interface

	1.4.3 Uninstalling STEP 7 Lite

	2 Basics of Designing a Program
	2.1 Programs in a CPU
	2.2 Blocks in the User Program
	2.2.1 Organization Blocks and Program Structure
	2.2.2 Call Hierarchy in the User Program
	2.2.3 Cyclic Program Processing and CPU Settings
	2.2.3.1 Organization Block for Cyclic Program Processing (OB1)
	2.2.3.2 Communication Load

	2.2.4 Interrupt-Driven Program Processing
	2.2.4.1 Organization Blocks for Interrupt-Driven Program Processing
	2.2.4.2 Time-of-Day Interrupt Organization Blocks (OB10 to OB17)
	2.2.4.3 Delay Interrupt Organization Blocks (OB20 to OB23)
	2.2.4.4 Cyclic Interrupt Organization Blocks (OB30 to OB38)
	2.2.4.5 Hardware Interrupt Organization Blocks (OB40 to OB47)
	2.2.4.6 Startup Organization Blocks (OB100 / OB102)
	2.2.4.7 Background Organization Block (OB90)
	2.2.4.8 Error Handling Organization Blocks (OB80 to OB87 / OB121 to OB122)

	2.2.5 Block Types for Structured Programming
	2.2.5.1 Functions (FC)
	2.2.5.2 Function Blocks (FB)
	2.2.5.3 Instance Data Blocks

	2.2.6 Shared Data Blocks (DB)
	2.2.6.1 System Function Blocks (SFB) and System Functions (SFC)

	3 Startup and Operation
	3.1 Starting STEP 7 Lite
	3.2 Calling the Help Functions
	3.3 User Interface and Operation
	3.3.1 Structure of the User Interface
	3.3.2 Symbols in the Project Window
	3.3.3 Elements in Windows and Dialog Boxes
	3.3.4 Session Memory
	3.3.5 Changing the Window Arrangement
	3.3.6 Saving and Restoring the Window Layout
	3.3.7 Finding and Replacing Terms
	3.3.8 How to Manage Objects
	3.3.8.1 Renaming Objects
	3.3.8.2 Moving Objects
	3.3.8.3 Deleting Objects

	3.4 Keyboard Control
	3.4.1 Shortcut Keys for Menu Commands
	3.4.2 Key Combinations for Moving the Cursor
	3.4.3 Shortcut Keys for Marking Text
	3.4.4 Shortcut Keys for Access to the Online Help
	3.4.5 Shortcut Keys for Switching Windows

	3.5 Using TeleService

	4 Setting Up and Editing the Project
	4.1 What is a STEP 7 Lite Project
	4.2 Setting Up a Project
	4.2.1 Creating a Project
	4.2.2 Inserting a Program

	4.3 Editing a Project
	4.3.1 Applying and Saving Changes
	4.3.2 How to Edit Projects
	4.3.2.1 Copying a Project
	4.3.2.2 Copying Part of a Project
	4.3.2.3 Configuring Hardware (General)
	4.3.2.4 Creating the Software in the Project (General)

	4.4 Deleting and Renaming a Project

	5 Configuring the Hardware
	5.1 Basics of Configuring Hardware with STEP 7 Lite
	5.1.1 Introduction to Configuring Hardware
	5.1.2 Basic Procedure for Configuring Hardware
	5.1.2.1 Basic Steps for Configuring a Station
	5.1.2.2 Layout of the 'Hardware Configuration' View
	5.1.2.3 Configuration Table as a Representation of a Rack
	5.1.2.4 Setting the Properties of Components
	5.1.2.5 What You Should Know About Slot Rules and Other Rules

	5.2 Configuring Modules
	5.2.1 Rules for Arranging Modules (SIMATIC 300)
	5.2.1.1 Special Rules for the Dummy Module (DM 370 Dummy)
	5.2.1.2 Special Rules for the Digital Simulation Module (SIM 374 IN/ OUT 16)

	5.2.2 Rules for Arranging Modules (ET 200S and ET 200X)
	5.2.2.1 Rules for Arranging Modules with ET 200S
	5.2.2.2 Rules for Arranging Modules with ET 200X

	5.2.3 How to Configure Modules
	5.2.3.1 Overview: Procedure for Configuring and Assigning Parameters to a Station
	5.2.3.2 Selecting a Station Type
	5.2.3.3 Arranging Modules in a Rack
	5.2.3.4 Displaying the Version of the CPU Operating System in the Module List
	5.2.3.5 Arranging C7 Control Systems (Special Features)
	5.2.3.6 Assigning Properties to Modules/Interfaces
	5.2.3.7 Assigning Addresses
	5.2.3.8 Assigning I/O Addresses
	5.2.3.9 Tips for Editing Station Configurations

	5.2.4 What You Should Know About ET 200S Motor Starters (High Feature)
	5.2.4.1 Detecting Plant Status Using Motor Current Values
	5.2.4.2 Blocking Current
	5.2.4.3 Blocking Time
	5.2.4.4 Response to No Current Detection
	5.2.4.5 Asymmetry
	5.2.4.6 Thermal Motor Model
	5.2.4.7 Recovery Time
	5.2.4.8 Overview: Possible Motor Starter Actions
	5.2.4.9 Motor Starter Assignments in the Process Image

	5.3 Saving a Configuration and Consistency Check

	6 Programming Blocks
	6.1 Defining Symbols
	6.1.1 Absolute and Symbolic Addressing
	6.1.2 Shared and Local Symbols
	6.1.3 Displaying Shared or Local Symbols
	6.1.4 Setting the Address Priority (absolute/symbolic)
	6.1.5 Symbol Table for Shared Symbols
	6.1.5.1 Structure and Components of the Symbol Table
	6.1.5.2 Addresses and Data Types Permitted in the Symbol Table
	6.1.5.3 Incomplete and Ambiguous Symbols in the Symbol Table

	6.1.6 Entering Shared Symbols
	6.1.6.1 General Tips on Entering Symbols
	6.1.6.2 Entering Single Shared Symbols in a Dialog Box
	6.1.6.3 Entering Multiple Shared Symbols in the Symbol Table
	6.1.6.4 Exporting and Importing Symbol Tables

	6.1.7 How to Edit the Symbol Table
	6.1.7.1 Opening a Symbol Table
	6.1.7.2 Defining Individual Symbols
	6.1.7.3 Inserting Symbol Rows
	6.1.7.4 Deleting Symbol Rows
	6.1.7.5 Filtering the Symbol Table
	6.1.7.6 Unused Symbols
	6.1.7.7 Addresses without a Symbol
	6.1.7.8 Sorting the Symbol Table
	6.1.7.9 Selecting Symbol Rows
	6.1.7.10 Copying Symbol Rows to the Clipboard
	6.1.7.11 Saving a Symbol Table

	6.1.8 How to Change the Window Settings
	6.1.8.1 Toggling the Toolbar On/Off
	6.1.8.2 Toggling the Status Bar On/Off
	6.1.8.3 Positioning the Toolbar
	6.1.8.4 Setting the Size of a Window for Display

	6.2 Working with Blocks
	6.2.1 Block Editor
	6.2.2 Selecting the Programming Language
	6.2.2.1 Programming Languages of the Block Editor
	6.2.2.2 Ladder Logic Programming Language (LAD)
	6.2.2.3 Function Block Diagram Programming Language (FBD)
	6.2.2.4 Statement List Programming Language (STL)

	6.2.3 Creating Blocks
	6.2.3.1 User-Defined Data Types (UDT)
	6.2.3.2 Block Properties
	6.2.3.3 Setting Block Protection
	6.2.3.4 Permitted Block Properties for Each Block Type
	6.2.3.5 Displaying Block Lengths
	6.2.3.6 Comparing Blocks

	6.2.4 Working with Libraries
	6.2.4.1 Overview of Block Libraries

	6.3 Creating Logic Blocks
	6.3.1 Basics of Creating Logic Blocks
	6.3.1.1 Basic Procedure for Creating Logic Blocks
	6.3.1.2 Default Settings for the LAD/STL/FBD Block Editor
	6.3.1.3 Instructions from the Command Libraries
	6.3.1.4 Defining the Block Editor View

	6.3.2 Editing the Variable Declaration Table
	6.3.2.1 Using the Variable Declaration in Logic Blocks
	6.3.2.2 Relationship between the Variable Declaration Table and the Statement Section
	6.3.2.3 Structure of the Variable Declaration Table
	6.3.2.4 General Notes on Variable Declaration Tables
	6.3.2.5 How to Work with the Variable Declaration Table

	6.3.3 Multiple Instances in the Variable Declaration Table
	6.3.3.1 Using Multiple Instances
	6.3.3.2 Rules for Declaring Multiple Instances
	6.3.3.3 Entering a Multiple Instance in the Variable Declaration Table

	6.3.4 General Notes on Entering Statements and Comments
	6.3.4.1 Structure of the Statement Section
	6.3.4.2 Procedure for Entering Statements
	6.3.4.3 Entering Shared Symbols in a Program
	6.3.4.4 Title and Comments for Blocks and Networks
	6.3.4.5 Entering Block Comments and Network Comments
	6.3.4.6 Search Function for Errors in the Statement Section
	6.3.4.7 Rewiring

	6.3.5 Editing LAD Elements in the Code Section
	6.3.5.1 Settings for Ladder Logic Programming
	6.3.5.2 Rules for Entering Ladder Logic Elements
	6.3.5.3 Illegal Logic Operations in Ladder
	6.3.5.4 How to Enter Ladder Elements

	6.3.6 Editing FBD Elements in the Code Section
	6.3.6.1 Settings for Function Block Diagram Programming
	6.3.6.2 Rules for Entering FBD Elements
	6.3.6.3 How to Enter FBD Elements

	6.3.7 Editing STL Statements in the Code Section
	6.3.7.1 Settings for Statement List Programming
	6.3.7.2 Rules for Entering STL Statements
	6.3.7.3 How to Enter STL Statements

	6.3.8 Updating Block Calls

	6.4 Creating Data Blocks
	6.4.1 Basic Information on Creating Data Blocks
	6.4.2 Declaration View of Data Blocks
	6.4.3 Data View of Data Blocks
	6.4.4 Editing and Saving Data Blocks
	6.4.4.1 Entering the Data Structure of Shared Data Blocks
	6.4.4.2 Entering and Displaying the Data Structure of Data Blocks Referencing an FB (Instance DBs)
	6.4.4.3 Entering the Data Structure of User-Defined Data Types (UDT)
	6.4.4.4 Entering and Displaying the Structure of Data Blocks Referencing a UDT
	6.4.4.5 Editing Data Values in the Data View
	6.4.4.6 Resetting Data Values to their Initial Values

	6.5 Displaying References
	6.5.1 Overview of the Available References
	6.5.2 Address Overview
	6.5.3 Cross-Reference List
	6.5.4 Addresses Used
	6.5.5 Program Structure
	6.5.6 Working with Reference Data
	6.5.6.1 Finding Address Locations in the Program Quickly
	6.5.6.2 Example of Working with Address Locations
	6.5.6.3 How to Work with Reference Data

	6.6 Ensuring Program Consistency and Time Stamps as a Block Property
	6.6.1 Ensuring Program Consistency
	6.6.2 Time Stamps and Time Stamp Conflicts
	6.6.3 Time Stamps in Logic Blocks
	6.6.4 Time Stamps in Shared Data Blocks
	6.6.5 Time Stamps in Instance Data Blocks
	6.6.6 Time Stamps in UDTs and Data Blocks Derived from UDTs
	6.6.7 Avoiding Errors when Calling Blocks
	6.6.8 Notes on Changing the Contents of Registers

	7 Establishing an Online Connection and Making CPU Settings
	7.1 Establishing Online Connections
	7.1.1 Password Protection for Access to Programmable Controllers

	7.2 Displaying and Changing the Operating Mode
	7.3 Displaying and Setting the Time and Date

	8 Import, Export, Save As
	8.1 Import, Export, Save As
	8.2 Saving Projects on Disks
	8.3 Storing Project Data on a Micro Memory Card (MMC)
	8.4 Using a Micro Memory Card
	8.5 Exchanging Project Data Between STEP 7 Lite and STEP 7
	8.6 Exporting Project Data for External Editors
	8.6.1 Data Format for Importing/Exporting a Symbol Table
	8.6.2 Managing Multilingual Text
	8.6.2.1 Types of Multilingual Text
	8.6.2.2 Structure of the Export File
	8.6.2.3 How to Manage Multilingual Text
	8.6.2.4 Tips for Translation

	9 Downloading to the CPU and Uploading to the PG
	9.1 Downloading from the PG/PC to the CPU
	9.1.1 Prerequisites for Downloading
	9.1.2 What Is Downloaded When?
	9.1.3 Differences Between Saving and Downloading Blocks
	9.1.4 Load Memory and Work Memory in the CPU
	9.1.5 Download Methods Dependent on the Load Memory
	9.1.6 Downloading Blocks and a Configuration to the CPU and Saving to Memory Card
	9.1.6.1 Reloading Blocks in the CPU
	9.1.6.2 Saving Downloaded Blocks on Integrated EPROM or on S7 Memory Card in the CPU
	9.1.6.3 Downloading a Configuration to a Programmable Logic Controller

	9.2 Uploading from the CPU to the PG/PC
	9.2.1 What Can Be Uploaded When?
	9.2.2 How to Upload Objects from the CPU to the PG/PC
	9.2.3 Editing Uploaded Blocks in the PG/PC
	9.2.4 Editing a Downloaded Hardware Configuration in a Programming Device/ PC

	9.3 Deleting on the CPU
	9.3.1 Erasing the Load/Work Memory and Resetting the CPU
	9.3.2 Deleting Individual Blocks on the CPU
	9.3.3 Deleting the Memory Card in the CPU

	9.4 Compressing the User Memory (RAM)
	9.4.1 Gaps in the User Memory (RAM)
	9.4.2 Compressing the Memory Contents of a CPU

	10 Debugging
	10.1 Overview of the Different Debugging Modes
	10.2 Testing with the Variable Tables and Force Tables
	10.2.1 Introduction to Testing with Variable Tables and Force Tables
	10.2.2 Basic Procedure When Monitoring and Modifying with the Variable Table
	10.2.3 Basic Procedure When Monitoring and Forcing with the Force Table
	10.2.4 Editing and Saving Variable Tables and Force Tables
	10.2.4.1 Creating and Opening a Variable Table
	10.2.4.2 Creating and Opening a Force Table
	10.2.4.3 Copying/Duplicating Variable Tables
	10.2.4.4 Copying/Duplicating Force Tables
	10.2.4.5 Saving a Variable Table
	10.2.4.6 Saving a Force Table

	10.2.5 Entering Variables in Variable Tables and Force Tables
	10.2.5.1 Entering Addresses or Symbols in a Variable Table
	10.2.5.2 Entering Addresses or Symbols in a Force Table
	10.2.5.3 Inserting a Contiguous Address Range in a Variable Table
	10.2.5.4 Inserting a Contiguous Address Range in a Force Table
	10.2.5.5 Upper Limits for Entering Timers
	10.2.5.6 Upper Limits for Entering Counters
	10.2.5.7 Examples

	10.2.6 Editing Variables in Variable Tables and Force Tables
	10.2.6.1 Selecting the Display Format
	10.2.6.2 Cutting Selected Areas to the Clipboard
	10.2.6.3 Pasting Areas from the Clipboard into the Variable Table or Force Table
	10.2.6.4 Copying Selected Areas to the Clipboard

	10.2.7 Monitoring Variables
	10.2.7.1 Introduction to Monitoring of Variables
	10.2.7.2 Defining the Monitoring Mode
	10.2.7.3 Monitoring Variables
	10.2.7.4 Monitoring Variables Once and Immediately

	10.2.8 Modifying Variables
	10.2.8.1 Introduction to Modifying Variables
	10.2.8.2 Defining the Modifying Mode
	10.2.8.3 Modifying Variables
	10.2.8.4 Modifying Variables Immediately
	10.2.8.5 Modify: Initialize CPU in STOP Mode with Its Own Values
	10.2.8.6 Modifying the Peripheral Outputs When the CPU is in STOP Mode

	10.2.9 Forcing Variables
	10.2.9.1 Introduction to Forcing Variables
	10.2.9.2 Safety Measures When Forcing Variables
	10.2.9.3 Displaying Values Forced by the CPU
	10.2.9.4 Forcing Values
	10.2.9.5 Deleting a Force Job
	10.2.9.6 Differences Between Forcing and Modifying Variables

	10.3 Testing Using Program Status
	10.3.1 Testing Using Program Status
	10.3.2 Program Status Display
	10.3.3 Program Status of Data Blocks
	10.3.4 How to Test in Program Status
	10.3.4.1 Setting the Display for Program Status
	10.3.4.2 Setting the Call Environment for a Block
	10.3.4.3 Setting Debug Mode
	10.3.4.4 Modifying Variables in Program Status
	10.3.4.5 Activating and Deactivating the Test using Program Status

	11 Diagnostics
	11.1 Diagnostic Functions
	11.2 Diagnosing Hardware and Troubleshooting
	11.3 Comparing the 'Online/Offline/Physics' Configuration
	11.4 Layout of the 'Hardware Comparison' View
	11.5 Detecting Faulty Modules
	11.6 Layout of the 'Hardware Diagnostics' View
	11.7 Module Information
	11.7.1 Calling the Module Information
	11.7.2 Module Information Functions
	11.7.3 Scope of the Module Type-Dependent Information

	11.8 Diagnosing in STOP Mode
	11.8.1 Basic Procedure for Determining the Cause of a STOP
	11.8.2 Stack Contents in STOP Mode
	11.8.3 Opening the Block for a Diagnostic Buffer or Stack Entry
	11.8.3.1 Opening the Block for a Diagnostic Buffer Entry
	11.8.3.2 Opening the Block from the B Stack List
	11.8.3.3 Opening the Block from the I Stack List

	11.9 Controlling Scan Cycle Times to Avoid Time Errors
	11.10 Flow of Diagnostic Information
	11.10.1 Flow of Diagnostic Informatio
	11.10.2 System Status List SSL
	11.10.3 Sending Your Own Diagnostic Messages

	11.11 Program Measures for Handling Errors
	11.11.1 Evaluating the Output Parameter RET_VAL
	11.11.2 Error OBs as a Reaction to Detected Errors
	11.11.3 Inserting Substitute Values for Error Detection
	11.11.4 Time Error (OB80)
	11.11.5 Power Supply Error (OB81)
	11.11.6 Diagnostic Interrupt (OB82)
	11.11.7 CPU Hardware Fault (OB84)
	11.11.8 Program Execution Error (OB85)
	11.11.9 Rack Failure (OB86)
	11.11.10 Communication Error (OB87)
	11.11.11 Programming Error (OB121)
	11.11.12 I/O Access Error (OB122)

	12 Printing Project Documentation
	12.1 Project Documentation Overview
	12.2 Creating the Project Documentation
	12.3 Print Objects
	12.4 Options, Determining the Font Type and Page Layout
	12.5 Defining and Using Templates
	12.6 Printing Project Documentation

	13 Tips and Tricks
	13.1 Exchanging Modules in the Hardware Configuration
	13.2 Testing with the Variable Table
	13.3 Working Without Original Project on the Programming Device/ PC

	A Appendix
	A. 1 Operating Modes
	A. 1.1 Operating Modes and Mode Transitions
	A. 1.2 STOP Mode
	A. 1.3 STARTUP Mode
	A. 1.4 RUN Mode
	A. 1.5 HOLD Mode

	A. 2 Memory Areas of S7 CPUs
	A. 2.1 Splitting the Memory Areas
	A. 2.2 Load Memory and Work Memory
	A. 2.3 System Memory
	A. 2.3.1 Using the System Memory Areas
	A. 2.3.2 Process-Image Input/Output Tables
	A. 2.3.3 Local Data Stack
	A. 2.3.4 Interrupt Stack
	A. 2.3.5 Block Stack
	A. 2.3.6 Diagnostic Buffer
	A. 2.3.7 Evaluating the Diagnostic Buffer
	A. 2.3.8 Retentive Memory Areas on S7-300 CPUs

	A. 3 Data Types and Parameter Types
	A. 3.1 Introduction to Data Types and Parameter Types
	A. 3.2 Elementary Data Types
	A. 3.2.1 Format of the Data Type INT (16-Bit Integers)
	A. 3.2.2 Format of the Data Type DINT (32-Bit Integers)
	A. 3.2.3 Format of the Data Type REAL (Floating-Point Numbers)
	A. 3.2.4 Format of the Data Type WORD
	A. 3.2.5 Format of the Data Type DWORD
	A. 3.2.6 Format of the Data Types WORD and DWORD in Binary Coded Decimal Numbers
	A. 3.2.7 Format of the Data Type S5TIME (Time Duration)
	A. 3.2.8 Format of the Data Type TIME

	A. 3.3 Complex Data Types
	A. 3.3.1 Format of the Data Type DATE_ AND_TIME
	A. 3.3.2 Format of the Data Type STRING
	A. 3.3.3 Format of the Data Type ARRAY
	A. 3.3.4 Format of the Data Type STRUCT
	A. 3.3.5 Using Complex Data Types
	A. 3.3.6 Using Arrays to Access Data
	A. 3.3.7 Using Structures to Access Data
	A. 3.3.8 Using User-Defined Data Types to Access Data

	A. 3.4 Parameter Types
	A. 3.4.1 Format of the Parameter Types BLOCK, COUNTER, and TIMER
	A. 3.4.2 Format of the Parameter Type POINTER
	A. 3.4.3 Using the Parameter Type POINTER
	A. 3.4.4 Block for Changing the Pointer
	A. 3.4.5 Format of the Parameter Type ANY
	A. 3.4.6 Using the Parameter Type ANY
	A. 3.4.7 Assigning Data Types to Local Data of Logic Blocks
	A. 3.4.8 Permitted Data Types when Transferring Parameters
	A. 3.4.9 Transferring to In_Out Parameters of a Function Block

	A. 4 Sample Programs
	A. 4.1 Sample Projects and Sample Programs
	A. 4.2 Example of Masking and Unmasking Synchronous Errors
	A. 4.3 Example of Disabling and Enabling Interrupts and Asynchronous Errors (SFC39 and SFC40)
	A. 4.4 Example of the Delayed Processing of Interrupts and Asynchronous Errors (SFC41 and SFC42)
	A. 4.5 Sample Program for an Industrial Blending Process
	A. 4.5.1 Sample Program for an Industrial Blending Process
	A. 4.5.2 Defining Logic Blocks
	A. 4.5.3 Assigning Symbolic Names
	A. 4.5.4 Creating the FB for the Motor
	A. 4.5.5 Creating the FC for the Valves
	A. 4.5.6 Creating OB1

	A. 4.6 Example of Handling Time-of-Day Interrupts
	A. 4.6.1 Structure of the User Program "Time-of-Day Interrupts"
	A. 4.6.2 FC12
	A. 4.6.3 OB10
	A. 4.6.4 OB1 and OB80

	A. 4.7 Example of Handling Time-Delay Interrupts
	A. 4.7.1 Structure of the User Program "Time-Delay Interrupts"
	A. 4.7.2 OB20
	A. 4.7.3 OB1

	A. 5 Accessing Process and I/O Data Areas
	A. 5.1 Accessing the Process Data Area
	A. 5.2 Accessing the Peripheral Data Area

	A. 6 Setting the Operating Behavior
	A. 6.1 Setting the Operating Behavior
	A. 6.2 Changing the Behavior and Properties of Modules
	A. 6.3 Using the CPU Clock Functions
	A. 6.4 Using Clock Memory and Timers

	Index
	*
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

