
Preface, Table of Contents

Part 1: User Information

Programming Loadable Drivers
1

Part 2: Reference Information

Function Calls
2

Data Structures and Error Codes
3

Appendix

Index

Edition 1, April 1998

Part of M7-SYS RT V4.0

System Software for M7-300/400
Writing Loadable Drivers

Manual

SIMATIC

Chapter

Index-2
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

!
Danger

indicates that death, severe personal injury or substantial property damage will result if proper precau-
tions are not taken.

!
Warning

indicates that death, severe personal injury or substantial property damage can result if proper precau-
tions are not taken.

!
Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a
particular part of the documentation.

Qualified Personnel
Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys–
tems in accordance with established safety practices and standards.

Correct Usage
Note the following:

!
Warning

This device and its components may only be used for the applications described in the catalog or the
technical description, and only in connection with devices or components from other manufacturers which
have been approved or recommended by Siemens.

This product can only function correctly and safetly if it is transported, stored, set up and installed cor-
rectly, and operated and maintained as recommended.

Trademarks
SIMATIC�, SIMATIC HMI� and SIMATIC NET� are registered trademarks of SIEMENS AG.

Some of the other designations used in these documents are also registered trademarks; the owner’s
rights may be violated if they are used by third parties for their own purposes.

Safety Guidelines
This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

We have checked the contents of this manual for agreement with the hard-
ware and software described. Since deviations cannot be precluded entirely,
we cannot guarantee full agreement. However, the data in this manual are
reviewed regularly and any necessary corrections included in subsequent
editions. Suggestions for improvement are welcomed.

Disclaimer of LiabilityCopyright Siemens AG 1998 All rights reserved

The reproduction, transmission or use of this document or its contents is not
permitted without express written authority. Offenders will be liable for
damages. All rights, including rights created by patent grant or registration of
a utility model or design, are reserved.

Siemens AG
Automation and Drives Group
Industrial Automation Systems
P.O.Box 4848, D- 90327 Nuremberg

� Siemens AG 1998
Technical data subject to change.

Siemens Aktiengesellschaft

i
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

Preface

Purpose of the Manual

This manual supports you in writing your own loadable drivers for the M7-300/400
automation system. It describes the structure and operating principle of loadable
drivers under M7 RMOS32 and the methods used to program them.

The manual is intended both as a user manual and as a reference document for
the necessary function calls and data structures.

Audience

This manual is aimed at system programmers who develop loadable drivers for
hardware components of the M7-300/400 automation system.

You will need to be familiar with the M7-SYS RT system software, the STEP 7
standard software, and the programming language C. You should also be familiar
with the hardware for which you intend to program a driver.

Validity of the Manual

This manual is valid for the M7-SYS RT system software, version V4.0.

Documentation Required

The following manuals contain additional information about the M7-SYS RT system
software and the development of application programs for SIMATIC M7-300/400
automation systems, and are available from your regional Siemens office.

Preface

ii
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

Documentation Package System Software for M7-300/400
Order No. 6ES7802-0FA14-8BA0

Manual General
Contents

Contents Relating to
Loadable Drivers

Installation and
Operation,
User Manual

Installation and operation
of M7–300/400
automation computers

Loading of drivers

Program Design,
Programming Manual

Design and development
of C programs.

Communication with
loadable drivers from the
user program

System and Standard
Functions, Reference
Manual

Detailed information on
programming with
M7–SYS RT

Function calls and data
structures for
communication with
loadable drivers

Manual and Online Help

This manual is only available in electronic format as part of the M7-SYS RT system
software V4.0. The reference section of the manual, which describes the function calls
and data structures, is also available in the online help file M7RLDRVB.HLP in the
S7BIN directory of STEP 7. You can include this file in the search range of the
OpenHelp function of the Borland IDE for context–sensitive support during
programming. The procedure used to include the file is the same as for the other help
files of M7-SYS RT and M7 ProC/C++.

Feedback

We need your help to enable us to provide you and future M7-SYS RT users with
optimum documentation. If you have any questions or comments on this manual or
the online help, please fill in the remarks form at the end of the manual and return it
to the address shown on the form. We would be grateful if you could also take the time
to answer the questions giving your personal opinion of the manual.

Literature References /.../

References to other manuals are shown using the part number of the literature
between slashes /.../. Using these numbers you can find out the exact title of the
manual from the literature list at the end of this manual.

SIMATIC Training Center

Siemens also offers a number of training courses to introduce you to the SIMATIC S7
and M7 automation systems. Please contact your regional training center or the
central training center in Nuremberg, Germany for details:

D-90327 Nuremberg, Tel. (+49) (911) 895 3154.

Preface

iii
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

SIMATIC Customer Support Hotline

Contactable worldwide round the clock:

Johnson City

Nuremberg

Singapore

Simatic Basic Hotline

Nuremberg

SIMATIC BASIC Hotline

Johnson City

SIMATIC BASIC Hotline
Local time: Mo.-Fr. 8:00 to 18:00

Phone: +49 (911) 895-7000

Fax: +49 (911) 895-7002

E-Mail: simatic.support@
nbgm.siemens.de

Local time: Mo.-Fr. 8:00 to 17:00

Phone: +1 423 461-2522

Fax: +1 423 461-2231

E-Mail: simatic.hotline@
sea.siemens.com

SIMATIC Premium Hotline
(Calls billed, only with
SIMATIC Card)

Time: Mo.-Fr. 0:00 to 24:00

Phone: +49 (911) 895-7777

Fax: +49 (911) 895-7001

Singapore

SIMATIC BASIC Hotline
Local time: Mo.-Fr. 8:30 to 17:30

Phone: +65 740-7000

Fax: +65 740-7001

E-Mail: simatic@
singnet.com.sg

Preface

iv
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

SIMATIC Customer Support Online Services

The SIMATIC Customer Support team provides you with comprehensive additional
information on SIMATIC products via its online services:

� You can obtain general current information:

– On the Internet at http://www.ad.siemens.de/simatic

– Using fax polling no. 08765-93 02 77 95 00

� Current Product Information leaflets and downloads which you may find useful
for your product are available:

– On the Internet at http://www.ad.siemens.de/support/html–00/

– Via the Bulletin Board System (BBS) in Nuremberg (SIMATIC Customer
Support Mailbox) at the number +49 (911) 895-7100.

To access the mailbox, use a modem with up to V.34 (28.8 kbps), whose
parameters you should set as follows: 8, N, 1, ANSI, or dial in using ISDN
(x.75, 64 kbps).

Further Support

If you have any further questions about SIMATIC products, please contact your
Siemens partner at your local Siemens representative’s or regional office. You will find
the addresses in our catalogs and in Compuserve (go autforum) .

v
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

Contents

Preface i.

1 Programming Loadable Drivers 1-1.

1.1 General Information About Drivers 1-2.

1.2 Structure of a Loadable Driver 1-5.

1.3 Operating Principle of a Loadable Driver 1-6.

1.4 Programming an Initialization Task 1-8.

1.5 Programming a Device Task 1-10.

1.6 Interrupt Handlers 1-23.

1.7 Timeout Handlers 1-25.

1.8 Starting up a Loadable Driver 1-26.

2 Function Calls 2-1.

3 Data Structures and Error Codes 3-1.

A Literature List A-1.

Index

Contents

vi
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

1-1
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

Programming Loadable Drivers

This chapter describes the structure and operating principle of the loadable drivers
for M7-300/400 and the methods used to program them.

Section Title Page

1.1 General Information About Drivers 1-2

1.2 Structure of a Loadable Driver 1-5

1.3 Operating Principle of a Loadable Driver 1-6

1.4 Programming an Initialization Task 1-8

1.5 Programming a Device Task 1-10

1.6 Interrupt Handlers 1-23

1.7 Timeout Handlers 1-25

1.8 Starting up a Loadable Driver 1-26

1

Programming Loadable Drivers

1-2
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

1.1 General Information About Drivers

Introduction

The operating system provides a range of different device drivers (also referred to
simply as drivers) for controlling hardware components such as I/O devices or
mass storage units. A driver is responsible for activating and deactivating a device;
for passing the correct hardware parameters to the device; for ensuring that data
can be exchanged between the device and the user program; and for handling
device errors.

A second type of driver exists in addition to the drivers which are permanently
installed in the operating system (such as the hard disk driver). These “reloadable”
drivers can be loaded into the work memory on demand. Examples of this type of
driver include the 3964 and ser8250 drivers used to access the serial interface.

With Version 4.0 (or higher) of the M7-SYS RT system software you can write your
own loadable drivers. In addition to the RmIOxxx call interface for the use of
existing loadable drivers, further calls are now also available for initializing drivers,
processing user requests, and handling interrupts and timeouts.

Unlike normal user programs, device drivers are part of the operating system. For
this reason, it is important that they behave “correctly” at all times. Since the kernel
places very few restrictions on their actions, the drivers you write must never
adversely affect the stability of the overall system.

Character Devices and Block Devices

We distinguish between two types of device according to the format of the data
processed:

� Character Device

The data transmitted from the device are unformatted. Data which are read
must be interpreted by the device driver or by the user program itself.

� Block Device

The data transmitted from the device have a defined format and can be
addressed in blocks.

It is also possible to use hybrid character and block devices, however the driver
must provide two separate access modes for hybrid devices.

Programming Loadable Drivers

1-3
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

Devices and Units

The terms device and unit appear repeatedly in the paragraphs below.

The device is the driver for a hardware component (for example SER8250 for
serial interfaces) or for a virtual device (for example a virtual console).

A unit is a device unit (management unit) of the driver and is responsible for one
interface of the driver. In a driver for serial interfaces, for example, one unit is
responsible for the I/O operations of one serial interface (for example COM1).
Another unit is responsible for a further serial interface (for example COM2).

Both the driver (the device) and the unit are resources. They are entered in the
resource catalog whenever the driver is loaded or a unit is generated.

Maximum Number of Drivers and Units

The resource management system in M7 RMOS32 supports the use of up to 256
drivers. The identifiers are allocated as follows:

� 0 to 63 for permanently loaded drivers

� 64 to 255 for reloadable drivers

Up to 256 units can be generated per driver, hardware permitting.

Example Programs

You will find example programs for loadable drivers on the programming device/PC
in STEP 7 in the directories

� \m7sys4.00\EXAMPLES\DRV8250 – sample driver DRV8250 for the serial
interface

� \m7sys4.00\EXAMPLES\DMYDRV – dummy driver DMYDRV

What You Need to Know About the Hardware

If you are writing a loadable driver for a hardware component, you will need to be
familiar with the hardware specification. In particular, you will need the following
information:

� Interrupts

� I/O addresses

� Memory allocation for memory-mapped I/O or dual–port RAM.

You will find this information in the hardware documentation.

Programming Loadable Drivers

1-4
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

Features of System Tasks

The tasks of a device driver run as “system tasks”. This applies to initialization and
device tasks as well as interrupt and timeout handlers. System tasks can only be
generated by other system tasks and the tasks they generate themselves are also
system tasks.

System tasks differ from user tasks in respect of the following features:

� Memory Protection

Unlike user tasks, which run at user level, system tasks have system–level
permissions, which means that they are not governed by memory protection
features (see also /280/ Chapter 4.).

� Priorities

System tasks can run with higher priority than user tasks. In addition to
priorities 0 to 255, which can also be set for user tasks, a system task can also
be assigned the higher priority RM_HIGHPRI(511). However, this is only
possible with the RMOS-API calls RmCreateDeviceUnit(..) and
RmCreateDevice(..) . Values other than 0 to 255 or RM_HIGHPRI(511) are
illegal.

� Scheduler Disables

System tasks are not governed by the scheduler disables issued by user tasks.
If RmDisableScheduler(..) is called by a user task, the schedule disable only
acts on user tasks. System tasks continue to be managed by the scheduler.

If RmDisableScheduler(..) is called by another system task, however, only this
task remains active, while all other tasks (user and system tasks) are excluded
from scheduling.

In all other respects, the scheduling behavior is the same as for user tasks, that
is, the task with the highest priority which is ready to run is active. Where two or
more tasks have the same priority, the processor time is allocated equally
among the tasks in time slices.

Note

RM_HIGHPRI(511) is the highest possible priority for system tasks. A device task
which runs with this priority takes precedence over all other system tasks,
including the system server. If you program a task with RM_HIGHPRI(511) you
must make sure that it does not impair the function of the scheduler or the system
server.

Plan the priorities of the individual tasks carefully and exercise caution when using
scheduler disables, in order to prevent a malfunction in your multitasking program
from being caused by an incorrect priority allocation. (Please see
/280/ Section 4.5. for more information)

Programming Loadable Drivers

1-5
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

1.2 Structure of a Loadable Driver

Important Components of a Loadable Driver

Loadable drivers have the same basic structure as normal loadable M7 RMOS32
applications and consist of the following main components:

� An initialization task.

This initializes the driver once it has been loaded and started.

� One or more units

A unit consists of the following components:

– Device task with message queue for processing the I/O requests

– (If necessary) one or more interrupt handlers

– (If necessary) one or more timeout handlers

We distinguish between a parallel and serial driver structure, according to the way
in which the I/O requests are processed.

Parallel Structure

Unit n

Message Queue n
Device Task n ...

Unit 2

Message Queue 2
Device Task 2 ...

Unit 1
Interrupt Handler

Message Queue 1
Device Task 1

Initialization Task

Timeout Handler

... ...

Figure 1-1 Driver with Parallel Structure

A device task is generally assigned to a unit, that is, the units can be operated in
parallel. Figure 1-1 shows the structure of a parallel driver.

Programming Loadable Drivers

1-6
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

Serial Structure

Unit n

Interrupt-Handler Timeout Handler

Unit 2

Interrupt-Handler Timeout Handler

Message Queue

Device Task

...

Unit 1

Interrupt Handler

Initialization Task

Timeout Handler

...

Figure 1-2 Driver with Serial Structure

If the device does not support parallel operation, it is alternatively possible to
structure drivers “serially” with only one device task for all units. Serial drivers are
used for devices in which only one I/O request can be processed at a time (more
units can exist but only one of them can be active). Figure 1-2 shows the structure
of a serial driver.

1.3 Operating Principle of a Loadable Driver

This section describes the interaction between a loadable driver and the user. The
user can address the driver either via the user program or using the DEVICE
command (in the CLI or in the RMOS.INI file).

In the following section you will learn:

� How to load a loadable driver and what happens when it is loaded

� How to issue requests to a loadable driver

Programming Loadable Drivers

1-7
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

Loading the Driver

The user decides when and how the driver is loaded. The driver can be loaded in
various ways:

� On system startup via a DEVICE entry in the configuration file RMOS.INI

� In the CLI command interpreter with the DEVICE command from the command
line or via an entry in the file CLISTART.BAT

� In the user program with the call RmLoadDevice(..) .

When the driver is loaded, the operating system starts the initialization task. It
registers the driver with the operating system, causing an entry to be made in the
resource catalog. One or more units are generated, as required, during the
initialization phase.

With parallel drivers, a separate device task is started and a message queue is set
up for each unit. With serial drivers, a shared device task is started and a message
queue is set up for all units. The device task initializes the unit(s) and generates
interrupt and timeout handlers as required.

Requests to the Driver

The device task receives the I/O and control requests from the user tasks via the
message queue. The requests can be issued in the user program using the
following calls:

� RMOS-API calls: RmIOOpen(..) , RmIOClose(..) , RmIORead(..) ,
RmIOWrite(..) and RmIOControl(..)

� Functions of the C runtime library: open() , close() , ioctl() , read() , write() ,
lseek() . Other ANSI-C I/O functions, such as fopen() , fclose() , fread() ,
fwrite() , fgets() , fputs() , fgetc() , fputc() etc., can also be used on units of
loadable drivers.

These calls are mapped internally onto the RMOS-API calls listed above, and
are therefore not referenced again in this manual. For example, in cases where
the manual describes the procedure for opening a unit, we refer exclusively to
RmIOOpen(..) although it would be equally possible to issue the request with
open() or fopen() .

The device task must provide dedicated routines for processing the I/O requests
and must acknowledge the processing of requests.

Programming Loadable Drivers

1-8
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

1.4 Programming an Initialization Task

Functions of the Initialization Task

The initialization task is the main entry point of the driver. It is started by the
operating system when the driver is loaded for the first time. The initialization task
must usually do the following:

1. Register the driver with the operating system

The driver is entered in the resource catalog under a user–definable name, and
a driver–specific data structure is created.

2. Generate the unit(s)

One or more units are generated as required. The unit–specific data structures
are created and the device task(s) started.

3. Terminate the initialization task

The flow of data between the initialization task, user task and operating system is
illustrated in Figure 1-3.

Operating System

Initialization Task

Device Task

Unit 0

User Task Load Driver

Register Driver

Generate Unit (optional)

Figure 1-3 Initialization Task

Registering the Driver with the Operating System

Use the following call to register the driver with the operating system:

RmCreateDevice(*pDeviceName, TaskEntry, Priority, StackSize, ...) ;

You must pass parameters for the device task to this call: TaskEntry is the entry
address, Priority is the priority of the device task and StackSize is the stack size
of the device task. The device task is not generated until a unit is generated.
RmCreateDevice(..) enters the driver in the resource catalog with the name
specified in pDeviceName and creates a device structure of the type
RmDeviceStruct .

Programming Loadable Drivers

1-9
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

Generating a Unit

Use the following call to generate a unit for the driver:

RmCreateDeviceUnit(*pDeviceName, *pUnitName, Priority,..)

You must specify the name of the driver in pDeviceName , as in the
RmCreateDevice(..) call. You can define a new priority for the device task in
Priority or assign Priority= DEVPRI to retain the priority you defined with the
RmCreateDevice(..) call.

The unit is entered in the resource catalog with the name specified in pUnitName
and a unit structure of the type RmUnitStruct is created.

The device task is also started. With serial drivers (RmCreateDevice called with
Type RM_IO_TYPE_SERIAL), a device task is only generated and started when
the first unit is generated. All other units use the same device task.

RmCreateDeviceUnit(..) can be called several times in succession in order to
generate further units.

In the example drivers DMYDRV and DRV8250, the corresponding section is
enclosed in #if _CREATE_FIRST_UNIT_ / #endif and can be activated, if
necessary, by changing #define _CREATE_FIRST_UNIT_ to a value not equal
to 0.

The user can generate further units for a registered driver at any subsequent time
by issuing the DEVICE command in the CLI or by calling RmLoadDevice(..) in the
user program.

Terminating the Initialization Task

The initialization task must be terminated with RmEndTask(..) after successful
initialization of the driver or by RmDeleteTask(RM_OWN_TASK) in the event of an
error. When an initialization task is terminated by
RmDeleteTask(RM_OWN_TASK) the driver is removed from the system again. In
the other situation, the driver remains in the system and is now ready for operation.
If several units have already been generated (that is, if device tasks were
generated and/or interrupt or timeout handlers were installed), the initialization
tasks must always be terminated with RmEndTask(..) .

Programming Loadable Drivers

1-10
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

1.5 Programming a Device Task

A “device task”, responsible for processing the I/O requests of a unit, exists for
each device unit of a driver. This device task is generated and started when the
unit is generated. In the case of serial drivers (RmCreateDevice(..) with Mode
RM_IO_TYPE_SERIAL), a shared device task exists for all units of the driver.

Functions of the Device Task

The device task usually does the following:

1. Initialize the unit

2. Monitor the message queue

3. Process I/O and control requests

The flow of data between the device task, user task and operating system is
illustrated in Figure 1-4.

Operating System

Device-Task

AnwendertaskUser Task

Data from/to
Device

Interrupt

Timeout

Device

I/O Requests

Data from/to
User Task

Messages with
Requests

RMOS/M7-
API Calls

Figure 1-4 Device Task

Initializing a Unit

After a unit has been generated, a message of the type RM_IO_MSG_INIT is sent
to the device task of this unit. When the message is received, the device task must
perform the necessary unit initialization, for example initialization of the hardware.
If necessary, interrupt and timeout handlers are installed during the initialization
phase (see Sections 1.6 and 1.7).

No unit initialization is required in the example driver DMYDRV, which is why the
corresponding section in the execute_request() function is blank. Example driver
DRV8250 performs the unit initialization in the execute_request() function when it
receives RM_IO_MSG_INIT.

Programming Loadable Drivers

1-11
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

Monitoring the Message Queue

A message queue is automatically generated for the device tasks. The operating
system sends a message to this queue for each I/O request (read, write, etc.). The
device task has to retrieve the messages with the RMOS-API call
RmReadMessage(..) and process them accordingly.

In addition to the message queue, the device task can use two further queues to
process the I/O requests:

� Busy queue if interrupts require processing and if I/O requests can be
interrupted with CANCEL

� Exclusive queue if the unit can also be reserved by a task

The driver must manage these queues independently. Pointers for linking I/O
requests in the busy and exclusive queues are contained in the unit structure type
RmUnitHeadStruct .

For less complex drivers which do not have to process interrupts and which
support neither RM_IOCTL_CANCEL nor –_RESERVE and –_RELEASE,
sequential processing of the requests from the message queue is totally adequate.

Programming Loadable Drivers

1-12
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

Busy Queue

The busy queue usually contains references to I/O requests which occur while
another I/O request is currently being processed by the unit.

Figure 1-5 shows a possible sequence in the driver with a message queue and
busy queue. In this case, the device task waits for messages with
RmReadMessage(..) .

Fetch message with
RmReadMessage(..)

Is an I/O request
being processed?

Is an I/O request in
busy queue?

Fetch I/O request
from busy queue

Process I/O request
Acknowledge processing

Link I/O request into
busy queue

yes

no

yesno

Figure 1-5 I/O Request Processing When the Unit is Not Reserved

If a message is received with the control function RM_IOCTL_CANCEL, the
request which is currently being processed must be canceled.

Exclusive Queue

The exclusive queue is only required if the system allows tasks to reserve units
with the IOCTL control function RM_IOCTL_RESERVE. In this case, only the I/O
requests of the task which has reserved the unit are processed. Requests from
other tasks must wait until the unit is released again with the IOCTL control
function RM_IOCTL_RELEASE.

In this case, I/O requests which belong to the task which has reserved the unit and
which arrive while another I/O request is currently being processed by the unit are
linked into the busy queue.

The I/O requests of all other units are linked into the exclusive queue. These
requests are not processed until the unit is released.

A possible solution with message queue, busy queue and exclusive queue is
contained in example driver DRV8250.

Programming Loadable Drivers

1-13
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

Structure of the Messages for Device Tasks

Each message contains the information required in order to execute the I/O
request. A message to the device task consists of a message ID and a parameter
block. The message ID identifies the type of request; a pointer to the I/O request
block type RmIORStruct is passed in the associated parameter block.

The macros for the message ID are stored in RMAPI.H. The values for the
message ID and their meaning are defined as follows:

Message
ID

Macro for Message ID Meaning
“Sent If...”

0 RM_IO_MSG_INIT ... the unit is generated with
RmCreateDeviceUnit (..)

1 RM_IO_MSG_OPEN*) ... the unit is to be opened with the call
RmIOOpen(..)

2 RM_IO_MSG_CLOSE*) ... the unit is to be closed with the call
RmIOClose(..)

3 RM_IO_MSG_READ ... data are to be read from the unit with
RmIORead(..)

4 RM_IO_MSG_WRITE ... data are to be written to the unit with
RmIOWrite(..)

5 RM_IO_MSG_CONTROL ... a control function is to be executed for
the unit with RmIOControl(..)

6 Reserved for future enhancements

7 RM_IO_MSG_TIMEOUT**) ... the specified timeout has expired**)

8 RM_IO_MSG_FINISH**) ... an I/O request is finished

9 ... 31 Reserved for future enhancements

32 ... 1023 User–defined

1024 ... Reserved for future enhancements

*) With RmIOOpen(..) and RmIOClose(..) , messages are only appended to the message
queue of the associated device task if the driver requests this by calling
RmCreateDevice(..) with RM_IO_TYPE_OPENMSG.

**) Messages with the IDs RM_IO_MSG_TIMEOUT or RM_IO_MSG_FINISH are not sent to
loadable drivers by the operating system. However, they can, if necessary, be sent by a unit
(device task, interrupt or timeout handler) to its own device task.

Programming Loadable Drivers

1-14
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

Processing I/O and Control Requests

The device must provide routines for processing the following I/O requests:

� Open unit

� Close unit

� Read data from unit

� Write data to unit

� IOCTL control functions

The processing of messages sent from the operating system to the driver must be
acknowledged with the RMOS-API call RmQuitRequest(..) .

In order to execute an I/O request, a device task can call any of the functions
which are available to a user task. Special RMOS-API calls, which are only
available to device tasks, exist in addition:

Function Description

RmGetUnitData Get address of unit structure

RmQuitRequest Terminate I/O request

RmSetISUnitHandler Install interrupt handler for driver unit

RmUnitTimeout Install timeout handler for driver unit

RmUnitTimeoutCancel Cancel timeout

Note

If calls of the M7-API are used by the device task, you must make sure that the
system servers are initialized before the device task is started.

A driver of this type must not be loaded using the DEVICE command in the file
RMOS.INI. It can be loaded either from the CLI with the DEVICE command or
from a user program with the call RmLoadDevice(..) .

Opening and Closing the Unit

The routines for opening and closing a unit only need to be available if this is
explicitly requested in the RmCreateDevice(..) call by specifying the
RM_IO_TYPE_OPENMSG parameter. If no additional operations need to be
performed during the open and close routines, the driver has the operating system
execute these I/O requests without sending a message to the unit.

Programming Loadable Drivers

1-15
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

Reading and Writing Data

The routines used to read and write data must initiate the following basic sequence
of tasks:

1. Fetch the parameters for the task from the I/O request structure type
RmIORStruct .

2. Start processing and, if necessary, set the processing status in the *io_status
field of the I/O request structure to RM_IO_IN_PROGRESS.

We recommend you to set the processing status in the *io_status field. This
enables the user program to determine the processing status if the parameter
wait= RM_CONTINUE (do not wait) was set when RmIORead(..) or
RmIOWrite(..) was called.

You can only write to *io_status if io_status != 0.

3. Process the request, that is:

– Fetch the read data from the device and write the data into the read buffer or

– Fetch the write data from the write buffer and write the data to the device

The read or write buffer can be found in the *buffer field of the I/O request
structure.

4. Enter the quantity of data read or written into the *io_count field of the I/O
request structure. The number of characters (bytes) is returned for a character
device; the number of blocks is returned for a block device.

You can only write to *io_count if io_count != 0.

5. Terminate the request by calling RmQuitRequest(... Status) . The execution
status of the I/O request must be passed in Status .

Programming Loadable Drivers

1-16
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

IOCTL Control Functions

The control functions which can be executed for the unit of a block or character
device using the RmIOControl(..) call are classified into the following categories:

� Required control functions

These control functions are mandatory for all drivers and their units. They must
be supported, because they are used by the operating system (for example by
the DEVICE command).

If a function is (intentionally) not supported by a driver for a particular reason,
the driver must still report the RM_OK status with the RmQuitRequest(..) call.
This is only permitted, however, in the case of control functions which do not
return data to the caller, for example RM_IOCTL_RESERVE and
RM_IOCTL_RELEASE.

� Optional control functions

Optional control functions can be supported where this is appropriate for the
driver. If one of these functions is not supported, the error
RM_EIO_INVALID_CONTROL can be reported or, where appropriate, RM_OK
(as a dummy function).

The purpose of the optional control functions is to allow different drivers to use
identical control functions with identical syntax for identical tasks.

� Driver–specific control functions

These control functions can be implemented on demand. If a function is not
supported, the error RM_EIO_INVALID_CONTROL must be reported. The
following codes can be used for driver–specific control functions:
RM_IOCTL_USER ... RM_IOCTL_USER � 4095.

The pBuffer mentioned below is the parameter of the RmIOControl(..) call in
which the parameter block is passed. The reference to pBuffer is stored in the
buffer field of the I/O request structure.

Programming Loadable Drivers

1-17
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

Control Functions Required for Character Device and Block Device Drivers

RM_IOCTL_RESERVE
Reserve unit for calling task. I/O requests of other tasks are accepted, but are not
executed until the unit is released. pBuffer is ignored.

RM_IOCTL_RELEASE
Release the unit. I/O requests which were blocked while the unit was reserved are
now executed. pBuffer is ignored.

RM_IOCTL_INIT
Configure unit with new values. pBuffer points to buffer with a driver-specific
structure, which is used to pass the configuration data.

RM_IOCTL_INIT_GET
Read in the current configuration of the unit. pBuffer points to a buffer with a
driver-specific structure, which is used to pass the configuration data (same
structure as with RM_IOCTL_INIT).

RM_IOCTL_INIT_ASCII
Configure unit with new values. The new configuration values are passed in the
form of ASCII strings. pBuffer points to a driver-specific array of strings which
contaun the configuration parameters. The last element of the array must be a
NULL pointer.

RM_IOCTL_CANCEL
Cancel current I/O request. pBuffer is ignored.

RM_IOCTL_GET_PROPERTIES
Determine the function scope of the driver. pBuffer points to a structure of the type
RmIOCTLPropertiesStruc t.

RM_IOCTL_GET_VERSION
Find out version of the driver. pBuffer points to a structure of the type
RmIOCTLVersionStruct .

Control Functions Required for Character Device Drivers

RM_IOCTL_MODE
Configure unit with new values for communication (e.g. baud rate). pBuffer points
to a structure containing the configuration data in a driver-specific form. For
example the drivers for serial interfaces require a structure type
RmIOCTLModeSerialStruct . (see “Control functions for SER8250.DRV” or
“Control functions for 3964.DRV” in the description of RmIOControl in the
Reference Manual /281/)

Control Functions Required for Block Device Drivers

RM_IOCTL_FORMAT
Format the unit. pBuffer is ignored.

Programming Loadable Drivers

1-18
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

Optional Control Functions for Character Device and Block Device Drivers

RM_IOCTL_LOCK
Lock the unit, i.e. disable access of all tasks. All subsequent requests to access
the unit return the RM_EIO_LOCKED error code. Access to the unit is enabled
again using the RM_IOCTL_UNLOCK control function. pBuffer is ignored.

RM_IOCTL_UNLOCK
Unlock, i.e. re-enable access to the unit. pBuffer is ignored.

RM_IOCTL_GET_STATUS
Get unit status. The status data are written in a driver-specific format to the
address pointed to by pBuffer.

RM_IOCTL_VERIFY_ON
Activate the data verification. pBuffer is ignored.

RM_IOCTL_VERIFY_OFF
Deactivate the data verification. pBuffer is ignored.

RM_IOCTL_BUFFER_SETSIZE
Set the size of the background buffer. Data already stored in the background buffer
are deleted. In the event of an error (e.g. not enough free memory), the
background buffer remains unchanged. pBuffer points to a ulong which specifies
the new buffer size in number of characters.

RM_IOCTL_BUFFER_GETSIZE
Find out the size of the background buffer. The buffer size in number of characters
is written to a ulong , to which pBuffer points.

RM_IOCTL_BUFFER_FLUSH
Flush background buffer. pBuffer is ignored.

RM_IOCTL_BUFFER_USED
Determine the number of characters in the background buffer. The number is
stored in a ulong to which pBuffer points.

RM_IOCTL_READ_MODE
Select the mode of RmIORead . pBuffer points to a ulong in which either RM_WAIT
or RM_CONTINUE is specified. When RM_WAIT is specified, a read request is not
completed until the end condition (number of characters, stop character, time–out,
...) has been attained or an error occurs. When RM_CONTINUE is specified, the
read request is terminated with RM_IO_NO_DATA when no data (including the end
condition) are stored in the background buffer.

RM_IOCTL_READ_MODE_GET
Get the mode of RmIORead . pBuffer points to a ulong into which the current read
mode (either RM_WAIT or RM_CONTINUE) is written (see also
RM_IOCTL_READ_MODE).

Programming Loadable Drivers

1-19
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

Optional Control Functions for Character Device Drivers

RM_IOCTL_LINEMODE_ON
Activate line-oriented reading (end of read request at CR). pBuffer is ignored.

RM_IOCTL_LINEMODE_OFF
Deactivate line-oriented reading (end of read request at CR). pBuffer is ignored.

RM_IOCTL_READTERM_ON
Define a terminator character that ends a read request. pBuffer must point to a
unchar which contains the character (e.g. CTRL-Z).

RM_IOCTL_READTERM_OFF
Deactivate the terminator character for reading. pBuffer is ignored.

RM_IOCTL_WRITETERM_ON
Define a terminator character that ends a write request. pBuffer must point to a
unchar which contains the character (e.g. 0).

RM_IOCTL_WRITETERM_OFF
Deactivate the terminator character for writing. pBuffer is ignored.

RM_IOCTL_READSTOP
Define which end condition is used for read requests. The stop character(s) is (are)
not written to the user buffer. The end condition is defined by the char to which
pBuffer points. The following values are permitted:

0 Do not use any end condition

1 Use stop character 1

3 Use stop characters 1 and 2, that is cancel when the 1st character
is followed by the 2nd stop character.

4 Terminate read request when the number of characters defined by
RM_IOCTL_READLEN have been read in.

Two or more conditions can be combined using OR logic.

RM_IOCTL_READSTOP1
Define stop character 1 that terminates the read request. Only valid when activated
by RM_IOCTL_READSTOP. pBuffer must point to a char which contains the stop
character.

RM_IOCTL_READSTOP2
Define stop character 2 that terminates the read request. Only valid when activated
by RM_IOCTL_READSTOP. pBuffer must point to a char which contains the stop
character.

RM_IOCTL_READSTOP_GET
Read in the end condition activated by RM_IOCTL_READSTOP and the entered
stop character. pBuffer must point to an array with 3 char in which the current
values of RM_IOCTL_READSTOP, RM_IOCTL_READSTOP1 and
RM_IOCTL_READSTOP2 are entered.

Programming Loadable Drivers

1-20
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

RM_IOCTL_READLEN
Define the number of characters after which read requests are terminated
automatically (only valid when activated by RM_IOCTL_READSTOP). pBuffer
must point to a ulong which contains the number of characters.

RM_IOCTL_READLEN_GET
Read in the number of characters defined by RM_IOCTL_READLEN. The number
of characters is written to the ulong to which pBuffer points.

RM_IOCTL_READTIMEOUT
Define a time span (in ms) specifying the maximum pause between two characters
during read requests. If the pause is longer, the read request is terminated.
Specifying RM_CONTINUE deactivates the time–out. pBuffer must point to a
ulong which specifies the time span.

RM_IOCTL_READTIMEOUT_GET
Read in the time span specified by RM_IOCTL_READTIMEOUT. The time span is
written to the ulong to which pBuffer points.

RM_IOCTL_WRITESTOP
Define which end condition is used for write requests. The stop character(s) is
(are) transferred in addition to the data sent by the user. The end condition is
defined by the char to which pBuffer points. The following values are permitted:

0 Do not use any end condition

1 Use stop character 1

3 Use stop character 1 followed by stop character 2

Two or more conditions can be combined using OR logic.

RM_IOCTL_WRITESTOP1
Define stop character 1 for write requests. Only valid when activated by
RM_IOCTL_WRITESTOP. pBuffer must point to a char which contains the stop
character.

RM_IOCTL_WRITESTOP2
Define stop character 2 for write requests. Only valid when activated by
RM_IOCTL_WRITESTOP. pBuffer must point to a char which contains the stop
character.

RM_IOCTL_WRITESTOP_GET
Read in the end condition activated by RM_IOCTL_WRITESTOP and the entered
stop character. pBuffer must point to an array with 3 char in which the current
values of RM_IOCTL_WRITESTOP, RM_IOCTL_WRITESTOP1 and
RM_IOCTL_WRITESTOP2 are entered.

RM_IOCTL_WRITEDELAY
Define a time span (in ms) specifying the minimum pause observed after
transmission of the last character during write requests by the driver, before the
request is terminated and a new request is processed. Specifying RM_CONTINUE
deactivates the time–out. pBuffer must point to a ulong in which the time span is
specified.

Programming Loadable Drivers

1-21
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

RM_IOCTL_WRITEDELAY_GET
Read in the time span specified by RM_IOCTL_WRITEDELAY. The time span is
written to the ulong to which pBuffer points.

RM_IOCTL_ECHO_ON
Activate the echo of inputs for read requests. pBuffer is ignored.

RM_IOCTL_ECHO_OFF
Deactivate the echo of inputs for read requests. pBuffer is ignored.

RM_IOCTL_LINE_FEED
Execute a line feed. pBuffer is ignored.

RM_IOCTL_FORM_FEED
Execute a form feed (clear screen). pBuffer is ignored.

RM_IOCTL_ABORTCHAR_ON
Define abort character (e.g. CTRL-C) and enable checking. pBuffer must point to a
uchar which contains the abort character.

RM_IOCTL_ABORTCHAR_OFF
Disable checking of abort character. pBuffer is ignored.

RM_IOCTL_ABORTCHAR_TEST
Find out wether the unit received an abort character since the last call of an
RmIOxxx function. pBuffer must point to a uchar into which one of the following is
written: 0xFF, if the abort character has been received at least once or 0, if no
abort character has been received.

RM_IOCTL_ABORTCHAR_BYTE
Define the address of a uchar that is set to 0xFF when an abort character is
received. pBuffer is the address of the uchar .pBuffer=NULL deactivates this
function.

RM_IOCTL_ABORTCHAR_CALL
Define the address of a function to be invoked when an abort character is
received. pBuffer is the address of the function. pBuffer=NULL deactivates this
function. The function must have the following interface:

RM_IOCTL_TERMINAL_ON
Enable terminal mode (disable transparent mode).

The following characters are evaluated in terminal mode:

� Read terminator character (RM_IOCTL_READABORT_ON)

� Write terminator character (RM_IOCTL_WRITEABORT_ON)

� Abort character (RM_IOCTL_ABORTCHAR_ON)

pBuffer is ignored.

Programming Loadable Drivers

1-22
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

RM_IOCTL_TERMINAL_OFF
Disable terminal mode (enable transparent mode).

The following characters are ignored:

� Read terminator character (RM_IOCTL_READABORT_ON)

� Write terminator character (RM_IOCTL_WRITEABORT_ON)

� Abort character (RM_IOCTL_ABORTCHAR_ON)

pBuffer is ignored.

Optional Control Functions for Block Device Drivers

RM_IOCTL_FORMAT_TRACK
Format track of the unit. pBuffer must point to a an area containing first a ulong
which references the desired track. The ulong must be followed by data needed
by the driver in order to format the unit.

Restarting the Device Task

The device task is restarted by the operating system by calling RmIOControl(..)
with the control function RM_IOCTL_RESET. In order to restart a device task you
must first terminate all I/O requests currently in progress with the error message
RM_EIO_UNIT_RESET. If necessary, the unit can be initialized again and any I/O
requests which are in the driver’s queue can be terminated with the error message
RM_EIO_UNIT_RESET.

All units of the driver must be handled where a serial driver is involved.

Note

With the I/O control function RM_IOCTL_RESET, no message is sent to the
device task (neither RM_IO_MSG_INIT nor RM_IO_MSG_CONTROL).

If the unit has to be initialized again when the device task is restarted, it is
necessary to reset the unit structure. You can use the RmGetUnitData(..) call to
determine the address of the unit structure which has to be reset.

Example:

Example drivers DMYDRV and DRV8250 call the function reset_unit_structure()
when the device task is restarted. In DMYDRV, this function merely terminates the
current request with an error message but does not initialize the unit. In DRV8250,
the function terminates all requests being processed by the driver or stored in a
queue with an error message; the unit is not initialized again.

Programming Loadable Drivers

1-23
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

1.6 Interrupt Handlers

Introduction

If the hardware controlled by the driver triggers interrupts, you must install one or
more interrupt handlers for a unit of the loadable driver by calling
RmSetISUnitHandler(..) .

Important features of interrupt handlers for loadable drivers are:

� RmSetISUnitHandler(..) can only be used to install handlers for hardware
interrupts. If necessary, you can install handlers for software interrupts with the
RMOS-API calls RmSetIntDIHandler(..) and RmSetISHandler(..) for user
tasks.

� Installation of the interrupt handlers is unit–specific. You therefore have access
to the data structure of the unit. Interrupt handlers installed with
RmSetIntDIHandler(..) or RmSetIntISHandler(..) have no unit assignment.

� An interrupt handler of a loadable driver consists of two components:

– An I handler, which runs in interrupt (I) mode

– An S handler, which runs in system (S) mode.

Where to Find Information About Interrupt Handlers

You will find information about interrupt handlers, for example operating states,
processing sequences and RMOS-API functions in Sections 4.18 and 4.19 of
/280/.

Installing an Interrupt Handler

The interrupt handler must be installed by the device task.

To install an interrupt handler, use the RMOS-API call

RmSetISUnitHandler(IntNum, DeviceID, UnitID, IHandlerEntry, SHandlerEntry)

The parameters passed to the function are the interrupt number IntNum , the
identifiers of the driver and the unit and the entry addresses for the two handlers.
The identifiers DeviceID and UnitID are the output parameters of the calls
RmCreateDevice(..) and RmCreateDeviceUnit(..) .

Both handlers must always be installed. If you do not require one of them, you
must install a dummy handler (with an empty function).

While a new handler is being installed, an interrupt must not be triggered for this
handler. The DRV8250 example uses the functions disable_8250(..) and
enable_8250(..) for this purpose.

During the initialization phase, the device task of a unit can install none, one or
several interrupt handlers – depending on the hardware.

Programming Loadable Drivers

1-24
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

Calling and Running the Interrupt Handler

When a hardware interrupt is triggered, the specified I handler is invoked by the
operating system. The return value of the I handler must be an “int” type. The S
handler is called only when the return value of the I handler is not equal to 0.
Otherwise, if the return value of the I handler is equal to 0 it is not called. The S
handler is not allowed to have a return value. Processing routines within the I
handler must be kept as short as possible to avoid compromising the real–time
properties of the operating system. Longer processing routines should be
implemented in the S handler.

Both handlers must have a Pascal interface. The address of the associated unit
structure is passed as a parameter to both interrupt handlers.

While it is running, the I or S handler can, if necessary, send a message of type
RM_IO_MSG_FINISH to the device task using the RmSendMessage(..) call.

An end-of-interrupt routine is not required for the interrupt controller; it is performed
automatically by the operating system. The driver must run an EOI handling
routine for the hardware if this is required by the hardware.

Note

No memory protection exists within an interrupt handler!

Example

Since example driver DMYDRV does not require an interrupt, no interrupt handler
is installed in this driver. However, the RmSetISUnitHandler() call is included as a
comment in the source code. Example driver DRV8250 uses an interrupt handler
to transfer data via the serial interface.

Programming Loadable Drivers

1-25
System Software for M7-300/400Writing Loadable Drivers
Part of M7-SYS RT V4.0

1.7 Timeout Handlers

Introduction

A timeout handler is used to initiate certain actions after a specified length time
elapses (for example to cancel an I/O request if the hardware does not respond to
a command within the specified time).

Installing a Timeout Handler

The timeout handler must be installed by the device task.

To install a timeout handler, use the RMOS-API call RmUnitTimeout(TimeValue,
HandlerEntry, pParameter, *pID)

The parameters passed to the function are the length of time TimeValue after
which the timeout handler is to be called, and the entry address HandlerEntry of
the handler. The output parameter is an identifier stored in *pID. You need this
identifier to deinstall the timeout handler prematurely (see below).

During the initialization phase, the device task of a unit can install none, one or
several timeout handlers as required.

Calling and Running the Timeout Handler

The specified handler is invoked by the operating system when the specified length
of time expires. The handler is deinstalled automatically.

Timeout handlers must have a Pascal interface. When a timeout handler is invoked
by the operating system, the value pParameter , which was specified when the
handler was installed, is passed as a parameter.

While it is running, the timeout handler can send a message of the type
RM_IO_MSG_TIMEOUT to the device task using the RmSendMessage(..) call.

Note

No memory protection exists within a timeout handler!

Premature Deinstallation of a Timeout Handler

Premature deinstallation of the handler is possible with the RMOS-API call
RmUnitTimeoutCancel(ID) . ID is the output parameter of the RmUnitTimeout(..)
call used to install the handler.

Programming Loadable Drivers

1-26
System Software for M7-300/400Writing Loadable Drivers

Part of M7-SYS RT V4.0

1.8 Starting up a Loadable Driver

A loadable driver has the same structure as a normal user program, that is, it
consists of an executable program file which can be written with Borland C++. The
driver program must be downloaded onto the M7-300/400 and started there.

Preconditions

In order to start up a loadable driver which you have programmed, you must
ensure that the following conditions have been met:

� The driver program must be stored in the program folder of the
SIMATIC M7-300/400 station.

� The hardware components which are to be controlled by the driver must be
installed in the SIMATIC M7-300/400 and entered in the hardware configuration
of the project and in the BIOS setup.

Procedure

To start a loadable driver on the M7-300/400, proceed as follows:

1. In the SIMATIC Manager activate the menu item PLC > Manage M7 System .

1. In the “Programs” tab, download the driver program and all its components onto
the M7-300/400. You will find information about this procedure in Section 4.3 of
the User Manual or in the online help of the SIMATIC Manager.

2. If you want to use an entry in a configuration file to load the driver, follow the
instructions below (if not, continue with step 5.):

In the “Configure Op. System” tab, load the file onto the programming device on
which the driver is to be loaded and make the appropriate entry (see also
Section 3.10 in /282/):

– The DEVICE command in the file RMOS.INI or CLISTART.BAT or

– The path name of the user program in the file INITTAB

3. Load the modified file onto the M7-300/400.

4. Perform one of the following actions, depending on which configuration file you
have modified:

– If you have modified the file RMOS.INI or INITTAB, start the M7-300/400
again. The driver is loaded on system startup.

– If you have modified the file CLISTART.BAT, start the CLI. The driver is
loaded.

5. Start the CLI and enter the DEVICE command. The driver is loaded
immediately.

6. If necessary, generate further units with the DEVICE command.

7. Start the user programs which use the loadable driver.

2-1
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

Function Calls

Overview

The RMOS API provides the following function calls for writing loadable drivers:

Function Description Page

RmCreateDevice Register a driver with the operating system 2-2

RmCreateDeviceUnit Generate a driver unit 2-4

RmGetUnitData Get the address of the unit structure 2-6

RmQuitRequest Terminate an I/O request 2-7

RmSetISUnitHandler Install an interrupt handler for a driver unit 2-8

RmUnitTimeout Install a timeout handler for a driver unit 2-11

RmUnitTimeoutCancel Cancel a timeout 2-13

2

2-2
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

RmCreateDevice

Function

Register a driver with the operating system

Syntax
#include <rmapi.h>
int RmCreateDevice (

const char *pDeviceName,
uint Type,
rmfarproc TaskEntry,
uint Priority,
ulong StackSize,
uint *pDeviceID);

Parameter Name Meaning

pDeviceName Name of the driver, up to 15 characters

Type Type of the driver. The following values are permitted:

Either RM_IO_TYPE_CHAR or RM_IO_TYPE_BLOCK must be
specified.

RM_IO_TYPE_SERIAL and RM_IO_TYPE_OPENMSG can also
be added optionally using OR logic

TaskEntry Start address for the device task of the driver

Priority Priority for the device task; 0 to 255 or RM_HIGHPRI(511)

StackSize Stack size of the device task in 32–bit words

pDeviceID Output parameter: returns the ID of the registered driver

Description

RmCreateDevice registers a driver with the operating system. A device structure
of the type RmDeviceStruct is created.

pDeviceName specifies the name by which the driver is entered in the resource
catalog. This name is used to identify the driver when generating a unit.

Type specifies the type of driver. Either RM_IO_TYPE_CHAR (character device
driver) or RM_IO_TYPE_BLOCK (block device driver) must be specified. If you
want to inform a driver unit by generating a message on RmIOOpen and
RmIOClose , you can also specify RM_IO_TYPE_OPENMSG here using a logical
OR operation.

Function CallsRmCreateDevice

2-3
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

A “device task” is normally generated for each unit. This behavior is the same as a
parallel driver, since requests to different units are handled concurrently by the
different device tasks. The additional specification of RM_IO_TYPE_SERIAL
(using OR logic) causes the generation of a serial driver which has only one device
task for all units. When a serial driver is used, all requests, even those issued to
different units, are handled successively.

TaskEntry is the entry address of the device task used for
RmCreateDeviceUnit .

Priority specifies the priority for the device task. Values from 0 to 255 and
RM_HIGHPRI(511) are permitted. The latter is a macro, the only permissible
argument for which is 511. It sets the priority of the device task to a value which is
higher than the possible priority of any user task.

The device task is allocated a stack of size StackSize in 32–bit words.

Up to 256 drivers can be registered under M7 RMOS32, of which 192 are
reloadable.

Return Values

Code Meaning

RM_OK Function successfully executed

RM_INVALID_ID The priority specified in Priority is invalid

RM_INVALID_POINTER Invalid pointer

RM_INVALID_STRING The length of pDeviceName is illegal.

It is either 0 or greater than 15

RM_INVALID_TYPE Type is invalid

RM_IS_ALREADY_CAT-
ALOGED

The driver cannot be cataloged, because pDeviceName
is already in use

RM_MAX_DE-
VICES_REACHED

The maximum number of loadable drivers has already
been reached; no more drivers could be generated

RM_OUT_OF_MEMORY Insufficient free memory is available in the heap in order
to generate the driver

See Also

RmCreateDeviceUnit, RmGetUnitData, RmDeviceStruct

Function Calls RmCreateDevice

2-4
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

RmCreateDeviceUnit

Function

Generate a driver unit

Syntax
#include <rmapi.h>
int RmCreateDeviceUnit (

const char *pDeviceName,
const char *pUnitName,
uint Priority,
uint *pUnitID);

Parameter Name Meaning

pDeviceName Name of the driver, up to 15 characters

pUnitName Name of the unit, up to 15 characters

Priority Priority of the device task; The following values are permitted:

� 0 to 255 or RM_HIGHPRI(511) or

� RM_DEVPRI = take priority from RmCreateDevice

pUnitID Output parameter: returns the ID of the new unit

Description

A unit with the name pUnitName is created for the driver pDeviceName. The
device task is generated with the entry address specified for RmCreateDevice in
TaskEntry. The priority of the device task is allocated according to Priority. Values
from 0 to 255, RM_HIGHPRI(511) and RM_DEVPRI are permitted.
RM_HIGHPRI(511) sets the priority of the device task to a value which is higher
than the possible priority of any user task; RM_DEVPRI accepts the priority
specified in the RmCreateDevice call.

When serial drivers are used (RmCreateDevice called with Type
RM_IO_TYPE_SERIAL), a device task is created and started only when the first
unit is generated. All further units use the same device task.

The address of the device structure for the driver is passed to the device task
when it is started. An initialization message (RM_IO_MSG_INIT) is then sent to it.

RmCreateDeviceUnit generates a unit structure of the type RmUnitStruct .

Up to 256 units can be generated per driver.

Function CallsRmCreateDeviceUnit

2-5
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

Return Values

Code Meaning

RM_OK Function successfully executed

RM_INVALID_DEVICE The driver specified by pDeviceName is not a loadable
driver

RM_INVALID_ID The priority specified in Priority is invalid

RM_INVALID_POINTER Invalid pointer

RM_INVALID_STRING The length of pDeviceName or pUnitName is illegal. It is
either zero or greater than 15

RM_INVALID_TASK_ENTRY RmCreateDeviceUnit was called not by a system task,
but by a user task

RM_IS_ALREADY_
CATALOGED

The unit cannot be cataloged, because pUnitName is
already in use

RM_IS_NOT_CATALOGED The driver is not cataloged with pDeviceName

RM_MAX_UNITS_REACHED The maximum number of units has already been reached;
no more units could be generated

RM_OUT_OF_MEMORY Insufficient free memory is available in the heap in order
to generate the unit

Note

RmCreateDeviceUnit cannot be called by user tasks, but only by system tasks
(e.g. an initialization task or the device task of a loadable driver).

See Also

RmCreateDevice, RmGetUnitData, RmUnitHeadStruct, RmUnitStruct,
RmLoadDevice (in /281/)

Function Calls RmCreateDeviceUnit

2-6
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

RmGetUnitData

Function

Get the address of the unit structure

Syntax
#include <rmapi.h>
int RmGetUnitData (

uint TaskID,
void *pUnitData);

Parameter Name Meaning

TaskID ID of the device task (RM_OWN_TASK = calling task) for which the
associated unit structure is to be determined

pUnitData Address of a pointer into which the address of the unit structure is
to be written

Description

RmGetUnitData determines the address of the unit structure of the type
RmUnitStruct of the device task specified by TaskID (RM_OWN_TASK = calling
task). The address is written into the pointer to which pUnitData points.

When serial drivers are used (RM_IO_TYPE_SERIAL specified with
RmCreateDevice), a shared device task exists for all units. In this case, the
function determines the address of the structure of the first unit.

It is only permissible to call RmGetUnitData from system tasks.

Return Values

Code Meaning

RM_OK Function successfully executed

RM_INVALID_ID Invalid task ID or not the ID of a device task

RM_INVALID_POINTER Invalid pointer

RM_INVALID_TASK_PL The call was initiated not by a system task, but by a user
task

See Also

RmCreateDeviceUnit, RmUnitHeadStruct, RmUnitStruct

Function CallsRmGetUnitData

2-7
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

RmQuitRequest

Function

Terminate an I/O request

Syntax
#include <rmapi.h>
int RmQuitRequest (

RmIORStruct *pIOR,
int Status);

Parameter Name Meaning

pIOR Pointer to RmIORStruct
Status Status of the I/O request (RM_OK, RM_IO_xxx, RM_EIO_xxx)

Description

RmQuitRequest terminates the I/O request (received by RmReadMessage)
specified by pIOR with the status specified by Status. The device task can then
handle the next request.

Return Values

Code Meaning

RM_OK Function successfully executed

RM_INVALID_POINTER Invalid pointer

See Also

RmIORStruct, RmReadMessage (in /281/)

Function Calls RmQuitRequest

2-8
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

RmSetISUnitHandler

Function

Install an interrupt handler for a driver unit

Syntax
#include <rmapi.h>
int RmSetISUnitHandler (

uint IntNum,
uint DeviceID,
uint UnitID,
rmfarproc IHandlerEntry,
rmfarproc SHandlerEntry);

Parameter Name Meaning

IntNum Interrupt number

The following hardware interrupts are permitted:

IRQx (x=0 to 63) or

IRQ(n) (n=0 to 63)

The hardware interrupts on the M7-300/400 are 0 to 15.
DeviceID ID of the driver for whose unit the interrupt handlers are to be

installed
UnitID ID of the unit for which the interrupt handlers are to be installed
IHandlerEntry Entry address of the I interrupt handler.
SHandlerEntry Entry address of the S interrupt handler.

Description

RmSetISUnitHandler installs an I and S interrupt handler (entries IHandlerEntry
and SHandlerEntry) for the interrupt specified by IntNum. Only one hardware
interrupt can be specified for IntNum. DeviceID and UnitID specify the unit for
which the interrupt handlers are to be installed.

Both handlers must be installed. If one of the two handlers is not required, a
dummy handler (with no function) must be installed.

The I handler must have a return value of type int. The S handler is called only
when the return value of the I handler is not equal to 0. Otherwise, if the return
value of the I handler is equal to 0 it is not called. The S handler must not have a
return value. Both handlers must have a Pascal interface. The address of the
associated unit structure is passed as a parameter to both interrupt handlers.

Function CallsRmSetISUnitHandler

2-9
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

Example

int _FIXED i_handler (RmUnitStruct *Unit)

{

....

}

void _FIXED s_handler (RmUnitStruct *Unit)

{

....

}

Note

Processing within the I handler must be as short as possible to avoid
compromising the real–time properties of the operating system. The S handler
should be used for longer handling routines.

An interrupt must not occur for a new interrupt handler while it is being enabled.

An end of interrupt (EOI) routine is not required for the interrupt controller. This is
handled automatically by the operating system. However, the driver must perform
an EOI routine for the hardware it is controlling.

RmSetISUnitHandler must only be called by the device task of the specified
unit.

No memory protection exists within the interrupt handler!

Return Values

Code Meaning

RM_OK Function successfully executed

RM_INVALID_ACCESS RmSetISUnitHandler was not called by the device task
of the unit specified by DeviceID and UnitID

RM_INVALID_DEVICE DeviceID is invalid or is not the ID of a loadable driver

RM_INVALID_IRQ_NUMBER The specified interrupt number is invalid (e.g. not the
number of a hardware interrupt)

RM_INVALID_POINTER Invalid pointer

RM_INVALID_UNIT UnitID is invalid

RM_OUT_OF_MEMORY Insufficient free memory available in the heap

Function Calls RmSetISUnitHandler

2-10
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

See Also

RmCreateDevice, RmCreateDeviceUnit, RmGetUnitData

Function CallsRmSetISUnitHandler

2-11
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

RmUnitTimeout

Function

Install a timeout handler for a driver unit

Syntax
#include <rmapi.h>
int RmUnitTimeout (

ulong TimeValue,
rmfarproc HandlerEntry,
void *pParameter,
uint *pID);

Parameter Name Meaning

TimeValue Time span in ms after which the handler is called
HandlerEntry Entry address of the timeout handler
pParameter Parameter to be passed to the timeout handler
pID Output parameter: returns an identifier which allows the timeout to

be canceled

Description

RmUnitTimeout installs a timeout handler (entry HandlerEntry) which is called
after the time span specified by TimeValue. The handler is called in the S state.

After execution, *pID contains an ID identifying the timeout. The timeout can be
canceled prematurely by calling RmUnitTimeoutCancel with this ID.

The timeout handler must have a Pascal interface. The value specified in
pParameter is passed as a parameter when RmUnitTimeout is called.

Exampl e

void _FIXED t_handler (void *pParameter)

{

....

}

Function Calls RmUnitTimeout

2-12
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

Note

RmUnitTimeout must only be called by system tasks (e.g. by the device task of
a loadable driver).

No memory protection exists within a timeout handler!

Return Values

Code Meaning

RM_OK Function successfully executed

RM_INVALID_POINTER Invalid pointer

RM_INVALID_TASK_PL Function called not by a system task, but by a user task

RM_OUT_OF_MEMORY Insufficient free memory available in the heap

See Also

RmUnitTimeoutCancel

Function CallsRmUnitTimeout

2-13
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

RmUnitTimeoutCancel

Function

Cancel a timeout

Syntax
#include <rmapi.h>
int RmUnitTimeoutCancel (uint ID);

Parameter Name Meaning

ID ID of a timeout which was started previously and which is to be
canceled.

Description

RmUnitTimeoutCancel cancels a timeout started with RmUnitTimeout . ID
(output parameter of RmUnitTimeout) is used to specify which timeout is to be
canceled.

RmUnitTimeoutCancel must only be called by system tasks (e.g. by the device
task of a loadable driver).

Return Values

Code Meaning

RM_OK Function successfully executed

RM_INVALID_ID ID is invalid

RM_INVALID_TASK_PL Function called not by a system task, but by a user task

See Also

RmUnitTimeout

Function Calls RmUnitTimeoutCancel

2-14
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

Function CallsRmUnitTimeoutCancel

3-1
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

Data Structures and Error Codes

Overview

Subject Description Page

RmDeviceStruct Device structure for driver management 3-2

RmIORStruct I/O request structure for input/output requests 3-4

RmUnitHeadStruct Driver-independent part of unit structure 3-8

RmUnitStruct Unit structure for unit management 3-10

Error Codes Error codes for loadable drivers 3-11

3

3-2
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

RmDeviceStruct

Syntax
#include <rmapi.h>
typedef struct _RmDeviceStruct
{
 RmDevice Struct *f_link;
 RmDevice Struct *b_link;

uint id;
 uint type;
 uint nuc_flags;

rmfarproc task_entry;
uint task_priority;
ulong stack_size;
uint status;
uint unit_count;
RmUnitStruct *first_unit;
RmUnitStruct *last_unit;
RmTCBStruct *init_task;
uint device_task;
uint user[6];
uint reserved[6];

} RmDeviceStruct;

Description

Device structure RmDeviceStruct is used to manage a loadable driver. The
internal format of the structure is identical for all loadable drivers. The device
structure is generated by the operating system when RmCreateDevice is called.

The meaning of the structure elements is as follows:

Field Type Meaning

f_link RmDeviceStruct* Pointer for linking device structures.

b_link RmDeviceStruct* Pointer for linking device structures.

id uint Driver identification (= device ID).

type uint Type of driver which was specified with
RmCreateDevice .

nuc_flags uint Flags for driver management.

task_entry rmfarproc Start address of device task.

task_priority uint Default priority for device task.

stack_size ulong Stack size for device task.

status uint Global status of driver.

unit_count uint Number of units generated for this driver.

Data Structures and Error CodesRmDeviceStruct

3-3
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

Field MeaningType

first_unit RmUnitStruct* Address of structure RmUnitStruct for the first unit
of this driver.

last_unit RmUnitStruct* Address of structure RmUnitStruct for the last unit
of this driver.

init_task RmTCBStruct* Address of the management structure for the initializa-
tion task of the driver.

device_task uint Identifies the device task of the driver (only for serial
drivers). Only valid when the first unit has been gener-
ated.

user array of 6 uints Available for use by the driver.

reserved array of 6 uints Reserved for future enhancements.

Note

All fields with the exception of status and user are reserved for use by the
operating system and must not be modified.

See Also

RmCreateDevice, RmCreateDeviceUnit, RmUnitHeadStruct, RmUnitStruct

Data Structures and Error Codes RmDeviceStruct

3-4
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

RmIORStruct

Syntax
#include <rmapi.h>
typedef struct _RmIORStruct
{

RmIORStruct *f_link;
 RmIORStruct *b_link;
 RmTCBStruct *tcb;
 uint task_id;
 RmUnitStruct *unit;
 uint nuc_flags;
 uint reserved[6];
 uint user[6];
 ushort priority;
 ushort function;
 uint control;
 uint mode;
 uint flagmask;
 RmIOHandle handle;
 ulong length;
 void *buffer;
 ulong block_addr;
 ulong *io_count;
 int *io_status;
}RmIORStruct;

Description

The I/O request to be executed is passed to the device task of a driver via a
pointer to a request structure RmIORStruct . The request structure contains all the
information which was passed when the I/O function (RmIORead, RmIOWrite ,
RmIOControl , RmIOOpen or RmIOClose) was called.

I/O requests must be terminated with RmQuitRequest when they have been
completed.

Messages with the IDs RM_IO_MSG_TIMEOUT or RM_IO_MSG_FINISH are not
sent by the operating system to loadable drivers, however, if necessary, they can
be sent by a unit to its own device task.

Data Structures and Error CodesRmIORStruct

3-5
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

The meaning of the structure elements for RM_IO_MSG_TIMEOUT (message
from timeout handler to device task: timeout expired) and RM_IO_MSG_FINISH
(message from interrupt handler to device task: request processing finished) is
driver–dependent.

The meaning of the structure elements is as follows:

Field Type Meaning

f_link RmIORStruct* Pointer for linking requests which are not executed
immediately by the driver.

The operating system initializes f_link to 0

b_link RmIORStruct* Pointer for linking requests which are not executed
immediately by the driver.

The operating system initializes b_link to 0

tcb RmTCBStruct* Address of the management structure of the calling
task.

Reserved for the operating system; must not be
changed!

task_id uint Identifier of the calling task

Must not be changed!

unit RmUnitStruct* Address of the unit structure RmUnitStruct of the unit
which was passed to this request.

Must not be changed!

nuc_flags uint Flags for unit management.

Reserved for the operating system;

must not be changed!

reserved array of 6 uints Reserved for future enhancements

user array of 6 uints Available for use by the driver

priority ushort Priority of the request

function ushort Code of the I/O request, identical to the message ID
(see below). Must not be changed!

control uint Depends on I/O request function (see below)

mode uint Depends on I/O request function (see below)

flagmask uint Depends on I/O request function (see below)

handle RmIOHandle Depends on I/O request function (see below)

length ulong Depends on I/O request function (see below)

buffer void* Depends on I/O request function (see below)

block_addr ulong Depends on I/O request function (see below)

io_count ulong* Depends on I/O request function (see below)

io_status int* Depends on I/O request function (see below)

The function field is identical with the message ID. It can contain one of the
following values (code of the I/O request) and must not be changed.

Data Structures and Error Codes RmIORStruct

3-6
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

Code I/O Request Message ID

0 Unit initialization (RM_IO_MSG_INIT)

1 RmIOOpen (RM_IO_MSG_OPEN)

2 RmIOClose (RM_IO_MSG_CLOSE)

3 RmIORead (RM_IO_MSG_READ)

4 RmIOWrite (RM_IO_MSG_WRITE)

5 RmIOControl (RM_IO_MSG_CONTROL)

6 Reserved for future enhancements

7 Timeout (RM_IO_MSG_TIMEOUT)

8 Request processing finished (RM_IO_MSG_FINISH)

9 ... 31 Reserved for future enhancements

32 ... 1023 User–defined

1024 ... Reserved for future enhancements

The meaning of the following structure elements depends on the I/O request
(function field). These elements must not be changed:

Function

Field 0 Init 1 Open 2 Close 3 Read 4 Write 5 Control

control reserved reserved reserved reserved reserved Control
parameter of
RmIOControl

mode reserved Mode
parameter of
RmIOOpen

reserved Wait
parameter of
RmIORead

Wait
parameter of
RmIOWrite

Wait
parameter of
RmIOControl

flagmask reserved reserved reserved FlagMask
parameter of
RmIORead

FlagMask
parameter of
RmIOWrite

FlagMask
parameter of
RmIOControl

handle reserved Descriptor
passed from
RmIOOpen to
the user

Handle
parameter
of RmIO-
Close

Handle
parameter of
RmIORead

Handle
parameter of
RmIOWrite

Handle
parameter of
RmIOControl

length reserved reserved reserved Length
parameter of
RmIORead

Length
parameter of
RmIOWrite

reserved

buffer reserved pUnitName
parameter of
RmIOOpen

reserved pBuffer
parameter of
RmIORead

pBuffer
parameter of
RmIOWrite

pBuffer
parameter of
RmIOControl

block_
addr

reserved reserved reserved BlockAddress
parameter of
RmIORead

BlockAddress
parameter of
RmIOWrite

reserved

io_count reserved reserved reserved No. of bytes*) No. of bytes*) reserved

*) Pointer to a ulong into which the unit must write the number of transferred bytes (character device) or blocks
(block device) when the I/O request has finished.

Data Structures and Error CodesRmIORStruct

3-7
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

Field 5 Control4 Write3 Read2 Close1 Open0 Init

io_status reserved reserved reserved pIOStatus
parameter of
RmIORead

pIOStatus
parameter of
RmIOWrite

pIOStatus
parameter of
RmIOControl

*) Pointer to a ulong into which the unit must write the number of transferred bytes (character device) or blocks
(block device) when the I/O request has finished.

See Also

RmQuitRequest, RmDeviceStruct, RmUnitHeadStruct, RmUnitStruct

Data Structures and Error Codes RmIORStruct

3-8
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

RmUnitHeadStruct

Syntax
#include <rmapi.h>
typedef struct _RmUnitHeadStruct
{
 RmUnitStruct *f_link;
 RmUnitStruct *b_link;
 RmDeviceStruct *device;
 uint nuc_flags;
 uint id;
 uint device_task;
 RmIORStruct *cur_request;
 RmIORStruct *read_request;
 RmIORStruct *write_request;
 RmIORStruct *busy_queue;
 uint exclusive_task;
 RmIORStruct *exclusive_queue;
 uint reserved[6];
} RmUnitHeadStruct;

Description

RmUnitHeadStruct is part of the unit structure RmUnitStruct which is identical
for all units (independent of the driver) and which is used to manage the unit of a
driver.

The meaning of the structure elements is as follows:

Field Type Meaning

f_link RmUnitStruct* Pointer for linking unit structures.

Reserved for the operating system; must not be
changed!

b_link RmUnitStruct* Pointer for linking unit structures.

Reserved for the operating system; must not be
changed!

device RmDeviceStruct* Pointer to device structure RmDeviceStruct of the
driver.

Must not be changed!

nuc_flags uint Flags for unit management.

Reserved for the operating system; must not be
changed!

id uint Identifier of this unit.

Must not be changed!

device_task uint Identifier for device task of unit.

Must not be changed!

Data Structures and Error CodesRmUnitHeadStruct

3-9
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

Field MeaningType

cur_request RmIORStruct* Pointer to request structure RmIORStruct of the I/O
request which is currently being processed.

cur_request is initialized to 0 by the operating system
when the unit is generated

read_re-
quest

RmIORStruct* Pointer to request structure RmIORStruct of the cur-
rent read request (in cases where read and write re-
quests are processed concurrently).

read_request is initialized to 0 by the operating system
when the unit is generated

write_re-
quest

RmIORStruct* Pointer to request structure RmIORStruct of the cur-
rent write request (in cases where read and write re-
quests are processed concurrently).

write_request is initialized to 0 by the operating system
when the unit is generated

busy_
queue

RmIORStruct* Pointer for linking I/O requests (RmIORStruct) which
have been fetched from the message queue of the
device task by the RMOS API call RmReadMessage,
but which have not yet been executed because an I/O
request is still being processed.

busy_queue is initialized to 0 by the operating system
when the unit is generated

exclu-
sive_task

uint Identifier of the task for which the associated unit is
currently reserved by RM_IOCTL_RESERVE.

exclusive_task is initialized to –1 by the operating sys-
tem when the unit is generated.

The driver must store the identifier of the calling task in
exclusive_task when the RM_IOCTL_RESERVE op-
eration is executed. When the unit is released by
RM_IOCTL_RELEASE, exclusive_task must be reset
to -1

exclu-
sive_queue

RmIORStruct* Pointer for linking I/O requests (RmIORStruct) which
could not be executed immediately because the unit
was reserved.

exclusive_queue is initialized to 0 by the operating
system when the unit is generated

reserved array of 6 uints Reserved for future enhancements

See Also

RmCreateDevice, RmCreateDeviceUnit, RmGetUnitData, RmDeviceStruct,
RmUnitStruct

Data Structures and Error Codes RmUnitHeadStruct

3-10
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

RmUnitStruct

Syntax
#include <rmapi.h>
typedef struct _RmUnitStruct
{
 RmUnitHeadStruct head;
 uchar data[256];
} RmUnitStruct;

Description

Unit structure RmUnitStruct is used by the driver and the operating system for
unit management. The structure consists of the header RmUnitHeadStruct , the
internal format of which is identical for all units (independent of the driver), and a
256–byte array of unit–specific data. The unit structure is generated by the
operating system when the unit is created.

The meaning of the structure elements is as follows:

Field Type Meaning

head RmUnit-
HeadStruct

Header of the unit structure with standard format.

The meaning of the elements is described under
RmUnitHeadStruct

data array of 256
uchars

Unit-specific data. The driver can use this field to store differ-
ent data for the various units (e.g. I/O addresses)

See Also

RmCreateDevice, RmCreateDeviceUnit, RmGetUnitData, RmDeviceStruct,
RmUnitHeadStruct

Data Structures and Error CodesRmUnitStruct

3-11
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

Error Codes

This section describes the error codes which can be returned by the calls for
loadable drivers. The corresponding numeric value and a brief explanation is
provided in addition to definition.

The following error codes can occur with all loadable drivers

Error Code Value Explanation

RM_EIO_PARAMETER 0×0401 Parameter error

RM_EIO_INVALID_CONTROL 0×0402 The specified control function is not sup-
ported

RM_EIO_INVALID_ACCESS 0×0403 Descriptor is not open for type of access
used (Read/Write)

RM_EIO_UNIT_RESERVED 0×0404 Unit is already reserved or unit was not re-
served by the calling task

RM_EIO_CANCEL 0×0405 Request was canceled by RM_IOCTL_CAN-
CEL

RM_EIO_LOCKED 0×0406 The unit has been locked by
RM_IOCTL_LOCK

RM_EIO_IO_ERROR 0×0407 Request canceled due to I/O error

RM_EIO_PARITY_ERROR 0×0408 Request canceled due to parity error

RM_EIO_OVERRUN_ERROR 0×0409 Request canceled due to overrun error

RM_EIO_TIMEOUT 0×040A Request canceled with timeout

RM_EIO_INVALID_STATE 0×040B An error has occurred during status check of
the controller (e.g. parity)

RM_EIO_NO_HARDWARE 0×040C Hardware does not exist or is defective

RM_EIO_INIT_FAILED 0×040D Initialization of the unit was not possible

RM_EIO_UNIT_RESET 0×040E Request canceled by RM_IOCTL_RESET

Error codes 0x040F to 0x047F are reserved for further enhancements.

Driver-Specific Error Codes

Error codes 0x0480 to 0x04FF can be given driver-specific assignments, e.g. for
the 3964(R) driver.

Data Structures and Error Codes Error Codes

3-12
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

Messages

The following messages can occur as return values

Define Value Explanation

RM_IO_QUEUED –1024 Request was appended to queue

RM_IO_IN_PROGRESS –1025 Request is currently being processed

RM_IO_NO_DATA –1026 No data exist

Data Structures and Error Codes

A-1
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

Literature List

/70/ Manual: S7-300 Programmable Controller,
Hardware and Installation

/71/ Reference Manual: S7-300 and M7-300 Programmable Controllers,
Module Specifications

/77/ Manual: Application Module FM 356,
Hardware and Installation

/80/ Manual: M7-300 Programmable Controller,
Hardware and Installation

/100/ Manual: S7-400/M7-400 Programmable Controllers,
Hardware and Installation

/101/ Reference Manual: S7-400/M7-400 Programmable Controllers,
Module Specifications

/106/ Manual: Application Module FM 456,
Hardware and Installation

/231/ User Manual: Standard Software for S7 and M7,
STEP 7

/234/ Programming Manual: System Software for S7-300 and S7-400,
Program Design

/235/ Reference Manual: System Software for S7-300 and S7-400,
System and Standard Functions

/254/ Manual: CFC Continuous Function Charts,
Volume 1

/280/ Programming Manual: System Software for M7-300 and M7-400,
Program Design

/281/ Reference Manual: System Software for M7-300 and M7-400,
System and Standard Functions

/282/ User Manual: System Software for M7-300 and M7-400,
Installation and Operation

/290/ User Manual: ProC/C++ for M7-300 and M7-400,
Writing C Programs

/291/ User Manual: ProC/C++ for M7-300 and M7-400,
Debugging C Programs

A

Literature List

A-2
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

Index-1
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0

Index

B
Block device, 1-2
Busy queue, 1-11

C
Character device, 1-2

D
Device, 1-3
Device task, 1-10

busy queue, 1-11
exclusive queue, 1-11
initializing a unit, 1-10
message queue, 1-11
messages, 1-13
reading and writing data, 1-15
restarting, 1-22

E
Exclusive queue, 1-11

G
Generating a unit, 1-9

I
I/O request, processing, 1-14
Initialization task, 1-8

generating a unit, 1-9
registering the driver, 1-8
terminating, 1-9

Initializing a unit, 1-10
Interrupt handler, 1-23

installing, 1-23
running, 1-24

IOCTL control functions, 1-16

L
Loading, 1-7

M
Memory protection, 1-4
Message queue, 1-11

P
Priority, 1-4

RM_HIGHPRI(511), 1-4

R
Requests to the driver, 1-7
RM_HIGHPRI(511), 1-4
RmCreateDevice, 1-8
RmCreateDeviceUnit, 1-9
RmDeviceStruct, 1-8
RmGetUnitData, 1-14
RmIORStruct, 1-13
RmQuitRequest, 1-14, 1-15
RmSetISUnitHandler, 1-23
RmUnitTimeout, 1-25
RmUnitTimeoutCancel, 1-25

S
Scheduler disable, 1-4
Startup, 1-26
Structure of the driver

parallel, 1-5
serial, 1-6

System task, 1-4

Index

Index-2
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

T
Timeout handler, 1-25

deinstalling, 1-25
installing, 1-25
running, 1-25

U
Unit, 1-3
User task, 1-4

1
System Software for M7-300/400Writing Loadable Drivers
Part of the System Software M7-SYS RT V4.0�

Please check any industry that applies to you:

� Automotive

� Chemical

� Electrical Machinery

� Food

� Instrument and Control

� Nonelectrical Machinery

� Petrochemical

� Pharmaceutical

� Plastic

� Pulp and Paper

� Textiles

� Transportation

� Other _ _ _ _ _ _ _ _ _ _ _

Siemens AG

A&D ASE 48

Postfach 4848

D-90327 Nürnberg

Federal Republic of Germany

From:

Your Name: _

Your Title: _

Company Name: _

Street: _

City, Zip Code _

Country: _

Phone: _

2
System Software for M7-300/400Writing Loadable Drivers

Part of the System Software M7-SYS RT V4.0

Additional comments:

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our
publications. Please take the first available opportunity to fill out this questionnaire and return it
to Siemens.

Please give each of the following questions your own personal mark within the range from 1 (very
good) to 5 (poor).

1. Do the contents meet your requirements?

2. Is the information you need easy to find?

3. Is the text easy to understand?

4. Does the level of technical detail meet your requirements?

5. Please rate the quality of the graphics/tables:

6.

7.

8.

	Title
	Preface
	Contents
	1 Programming Loadable Drivers
	1.1 General Information About Drivers
	1.2 Structure of a Loadable Driver
	1.3 Operating Principle of a Loadable Driver
	1.4 Programming an Initialization Task
	1.5 Programming a Device Task
	1.6 Interrupt Handlers
	1.7 Timeout Handlers
	1.8 Starting up a Loadable Driver

	2 Function Calls
	RmCreateDevice
	RmCreateDeviceUnit
	RmGetUnitData
	RmQuitRequest
	RmSetISUnitHandler
	RmUnitTimeout
	RmUnitTimeoutCancel

	3 Data Structures and Error Codes
	RmDeviceStruct
	RmIORStruct
	RmUnitHeadStruct
	RmUnitStruct
	Error Codes

	Literature List
	Index

