
Preface, Table of Contents

User Information

The Organon XDB
User Interface 1

Reference Information

Commands of Organon XDB 2

Organon XDB Error Messages 3

C79000–G7076–C520–01

ProC/C++ for M7-300
and M7–400
Debugging C Programs

User Manual

This manual is part of the documentation package

with the order number:

6ES7812–0CA01–8BA0

SIMATIC

This manual contains notices which you should observe to ensure your own personal safety, as well as
to protect the product and connected equipment. These notices are highlighted in the manual by a
warning triangle and are marked as follows according to the level of danger:

!
Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions
are not taken.

!
Warning

indicates that death, severe personal injury or substantial property damage can result if proper
precautions are not taken.

!
Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a
particular part of the documentation.

The device/system may only be set up and operated in conjunction with this manual.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons
are defined as persons who are authorized to commission, to ground, and to tag circuits, equipment,
and systems in accordance with established safety practices and standards.

Note the following:

!
Warning

This device and its components may only be used for the applications described in the catalog or the
technical description, and only in connection with devices or components from other manufacturers which
have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed correctly,
and operated and maintained as recommended.

SIMATIC� is a registered trademark of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to
trademarks might infringe upon the rights of the trademark owners.

We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be precluded
entirely, we cannot guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary corrections included in
subsequent editions. Suggestions for improvement are welcomed.

Technical data subject to change.
� Siemens AG 1997

�	��
�	��� ��� �	��	
	��Copyright � Siemens AG 1997 All rights reserved

The reproduction, transmission or use of this document or its contents is
not permitted without express written authority. Offenders will be liable for
damages. All rights, including rights created by patent grant or registration
of a utility model or design, are reserved.

Siemens AG
Automation Group
Industrial Automation Systems
Postfach 4848, D-90327 Nürnberg

Siemens Aktiengesellschaft C79000–G7076-C520-01

Safety Guidelines

Qualified Personnel

Correct Usage

Trademarks

iii
Debugging C Programs
C79000–G7076-C520-01

Preface

The information in this manual will enable you to debug programs using the
Organon XDB Debugger.

This user manual describes the Organon XDB Debugger.

The manual provides you with information on the following subjects:

� Organon XDB User Interface

� Organon XDB Commands

� Organon XDB Error Messages

This manual is intended for STEP 7 users wishing to create and debug C and
C++ application programs for SIMATIC M7.

In order to create and debug M7 applications using textual high language
programming in C/C++, the following knowledge is required:

� using STEP 7

A sound knowledge of the STEP 7 standard software is essential for proj-
ect management, symbol editing and transferring new programs from the
programming device to the PLC.

You will find the relevant information in the STEP 7 User Manual.

� the programming languages C and C/C++

Knowledge of the programming languages C and C++ is necessary for
creating applications. You should also be familiar with the integrated de-
velopment environment of Borland C/C++.

You will find the required information in the documentation supplied with
Borland C/C++.

Purpose

Contents

Audience

iv
Debugging C Programs

C79000–G7076-C520-01

The following table contains a list of manuals you will require in addition to
this user manual.

Title Contents

Standard Software for S7 and M7 STEP 7
User Manual

Installing and using STEP 7

M7-300 and M7–400
Program Design,
Programming Manual

Introduction to creating M7 applioca-
tions in C/C++

System Software for M7-300 and M7–400
System and Standard Functions,
Reference Manual

Descriptions of the RMOS system calls,
M7–API library and standard CRUN
library

System Software for M7-300 and M7–400
Installation and Operation
User Manual

Installing, starting up and operating M7
PLCs

Pro C/C++ for M7–300/400
Writing C Programs

Using the optional Package M7–ProC/
C++ and the Symbol Import Editor

Borland C/C++
Documentation on CD ROM

� C/C++ Programming
� Using the integrated development en-
vironment and tools

To enable you to access specific information more easily, this manual con-
tains the following access help:

� At the start of the manual you will find a complete list of contents.

� At the start of each chapter you will find an overview of the chapter.

If you have any questions regarding the products described in this manual,
and cannot find the answers here, please contact the Siemens representative
in your area. You can find the address of your local Siemens representative in
the appendix “Siemens Companies and Representatives” in the STEP 7 User
Manual.

If you have any questions or remarks on the manual, please fill out the re-
marks format the end of the manual and return it to the address provided. We
also invite you to enter your personal opinion of the manual in this remarks
form.

We hold training courses to help introduce you to SIMATIC S7 program-
mable controllers. For more information, please contact your regional train-
ing center or the central training center in D–90327 Nuremberg Germany
(Tel. +49 911 895-3154).

Other Manuals

How to Use this
Manual

Additional
Assistance

Preface

v
Debugging C Programs
C79000–G7076-C520-01

You can find up–to–date information on SIMATIC products from the follow-
ing sources:

� On the Internet under http://www.aut.siemens.de/

� Via Fax – Polling number +49–8765–9300–5500

In addition, the SIMATIC Customer Support provides up–to–date information
and download facilities for users of SIMATIC products:

� On the Internet under http://www.aut.siemens.de/simatic–cs

� Via SIMATIC Customer Support Mailbox under the following number:
+49 (911) 895–7100

For dialing into the mailbox use a modem of up to V. 34 (28. 8 Kbps) and set
the following parameters: 8, N, 1, ANSI, or alternatively use ISDN (x. 75, 64
Kbps).

The telephone and fax numbers of the SIMATIC Customer Support service
are:
Tel: +49 (911) 895–7000
Fax: +49 (911) 895–7002

You may also ask questions directly using E–mail on the Internet or via the
above mentioned mailbox.

Up–To–Date
Information

Preface

vi
Debugging C Programs

C79000–G7076-C520-01

Preface

vii
Debugging C Programs
C79000–G7076-C520-01

Contents

1 Organon XDB User Interface

1.1 Starting Organon XDB 1–3
1.1.1 Start–up Dialog 1–3
1.1.2 Starting problems 1–7

1.2 Description of the Main Window 1–8
1.2.1 Menu Panel 1–9
1.2.1.1 File 1–10
1.2.1.2 Display 1–19
1.2.1.3 Run 1–21
1.2.1.4 Debug 1–25
1.2.1.5 Language 1–35
1.2.1.6 Options 1–36
1.2.1.7 Windows 1–44
1.2.1.8 Help 1–45
1.2.2 Browsers 1–46
1.2.2.1 The Windows File Browser 1–46
1.2.2.2 The XDB Symbol Browser 1–47
1.2.3 Buttons 1–49
1.2.3.1 Load 1–49
1.2.3.2 Search 1–50
1.2.3.3 Step 1–51
1.2.3.4 Next 1–51
1.2.3.5 Run 1–51
1.2.3.6 Recapture 1–52
1.2.3.7 Set Scope up 1–52
1.2.3.8 Set Scope down 1–52
1.2.3.9 Set Scope here 1–53
1.2.3.10 Display/Hide Source Window 1–53
1.2.3.11 Display/Hide Assembler Window 1–53
1.2.3.12 Display/Hide Register Window 1–53
1.2.3.13 Display/Hide Task Window 1–54
1.2.3.14 Display/Hide Remote System Window 1–54
1.2.3.15 Evaluate 1–54
1.2.3.16 Create Memory Window 1–55
1.2.3.17 Display Callstack 1–56
1.2.3.18 Break 1–56

1.3 Description of the Subwindows 1–57
1.3.1 Command Window 1–57
1.3.1.1 Command Window Editor 1–58
1.3.2 Source Window 1–59
1.3.3 Assembler Window 1–62
1.3.4 Register Window 1–64

viii
Debugging C Programs

C79000–G7076-C520-01

1.3.5 Task Window 1–65
1.3.6 Remote System Window 1–66
1.3.7 Evaluation Windows 1–66
1.3.8 Memory Windows 1–69
1.3.8.1 Memory Window Context Menu 1–70
1.3.9 Trace Windows 1–74
1.3.10 Copy and Paste 1–75

1.4 Descriptor and Register Tables 1–78
1.4.1 Descriptor Tables 1–78
1.4.1.1 Modify 1–80
1.4.1.2 Reload Table 1–82
1.4.1.3 Set Range 1–82
1.4.2 Control Register 1–82
1.4.2.1 Modify 1–83
1.2.2 Update 1–85
1.4.3 Register Window 1–85
1.4.3.1 General Register 1–85
1.4.3.2 Segment Register 1–86

2 Organon XDB Command Set

2.1 BATCH 2–6

2.2 BREAK 2–8

2.3 CLOSE 2–9

2.4 CONTINUE 2–10

2.5 DEFINE Commands 2–11

2.6 DEFINE Button 2–12

2.7 DEFINE KEY 2–13

2.8 DEFINE MACRO 2–15

2.9 DEFINE SYMBOL 2–17

2.10 DELETE Commands 2–18

2.11 DELETE BREAKPOINT 2–19

2.12 DELETE BUTTON 2–20

2.13 DELETE DEBUG 2–21

2.14 DELETE DIRECTORY 2–22

2.15 DELETE EVALUATE 2–23

2.16 DELETE KEY 2–24

2.17 DELETE MACRO 2–25

2.18 DELETE MODULE 2–26

2.19 DELETE TRACEPOINT 2–27

2.20 DELETE WATCHPOINT 2–28

2.21 DISABLE Commands 2–29

2.22 DISABLE BREAKPOINT 2–30

2.23 DISABLE EVALUATE 2–32

2.24 DISABLE TRACEPOINT 2–33

2.25 DISABLE WATCHPOINT 2–35

Contents

ix
Debugging C Programs
C79000–G7076-C520-01

2.26 DISPLAY 2–37

2.27 DISPLAY Descriptor Table 2–39

2.28 DISPLAY SYSREG 2–40

2.29 ENABLE Commands 2–41

2.30 ENABLE BREAKPOINT 2–42

2.31 ENABLE EVALUATE 2–43

2.32 ENABLE TRACEPOINT 2–44

2.33 ENABLE WATCHPOINT 2–45

2.34 ERASE 2–46

2.35 ERASE SYSREG 2–47

2.36 EVALUATE 2–48

2.37 EXIT 2–51

2.38 GOTO 2–52

2.39 HELP 2–53

2.40 IF 2–54

2.41 Label 2–56

2.42 LINE 2–57

2.43 LOAD 2–59

2.44 MESSAGE 2–62

2.45 NEXT 2–63

2.46 PAGE 2–64

2.47 PRINT 2–66

2.48 REMOTE 2–67

2.49 RUN 2–68

2.50 SCAN 2–70

2.51 SEARCH 2–71

2.52 SET Commands 2–72

2.53 SET BREAKPOINT 2–73

2.54 SET DEBUG 2–76

2.55 SET DESCRIPTOR 2–78

2.56 SET DIRECTORY 2–80

2.57 SET ESCAPE 2–81

2.58 SET EVALUATE 2–82

2.59 SET INTERFACE 2–85

2.60 SET LANGUAGE 2–86

2.61 SET LOGFILE 2–87

2.62 SET MODULE 2–88

2.63 SET OPTION 2–89

2.64 SET PROTFILE 2–92

2.65 SET REGISTER 2–94

2.66 SET SCOPE 2–99

2.67 SET SCROLL 3–94

Contents

x
Debugging C Programs

C79000–G7076-C520-01

2.68 SET TASK 2–100

2.69 SET TRACEPOINT 2–102

2.70 SET VALUE 2–104

2.71 SET WATCHPOINT 2–109

2.72 SHOW Commands 2–112

2.73 SHOW ACTIVE 2–113

2.74 SHOW BREAKPOINT 2–114

2.75 SHOW BUTTON 2–115

2.76 SHOW CALLS 2–116

2.77 SHOW DBVAR 2–118

2.78 SHOW DEBUG 2–119

2.79 SHOW DECLARATOR 2–120

2.80 SHOW DESCRIPTOR 2–121

2.81 SHOW DIRECTORY 2–124

2.82 SHOW ESCAPE 2–125

2.83 SHOW EVALUATE 2–126

2.84 SHOW INFO 2–127

2.85 SHOW KEY 2–128

2.86 SHOW LANGUAGE 2–129

2.87 SHOW LEVEL 2–130

2.88 SHOW LOGFILE 2–131

2.89 SHOW MACRO 2–132

2.90 SHOW MEMORY 2–133

2.91 SHOW MODULE 2–135

2.92 SHOW OPTION 2–136

2.93 SHOW PROTFILE 2–137

2.94 SHOW REGISTER 2–139

2.95 SHOW SCOPE 2–139

2.96 SHOW SEGMENT 2–140

2.97 SHOW SOURCE 2–141

2.98 SHOW STATUS 2–142

2.99 SHOW SYMBOL 2–143

2.100 SHOW TASK 2–144

2.101 SHOW TRACEPOINT 2–145

2.102 SHOW TYPE 2–146

2.103 SHOW VERSION 2–147

2.104 SHOW WATCHPOINT 2–148

2.105 SPAWN 2–149

2.106 STEP 2–150

2.107 WHILE 2–152

3 Organon XDB Error Messages

Contents

Debugging C Programs
C79000-G7076-C520-01 1-1

Organon XDB User Interface 1
1 ORGANON XDB USER INTERFACE 1-3

1.1 Starting Organon XDB 1-3

1.1.1 Start-up Dialog 1-3

1.1.2 Starting problems 1-7

1.2 Description of the Main Window 1-8

1.2.1 Menu Panel 1-9
1.2.1.1 File 1-10
1.2.1.2 Display 1-19
1.2.1.3 Run 1-21
1.2.1.4 Debug 1-25
1.2.1.5 Language 1-35
1.2.1.6 Options 1-36
1.2.1.7 Windows 1-44
1.2.1.8 Help 1-45

1.2.2 Browsers 1-46
1.2.2.1 The Windows® File Browser 1-46
1.2.2.2 The Organon XDB Symbol Browser 1-47

1.2.3 Buttons 1-49
1.2.3.1 Load 1-49
1.2.3.2 Search 1-50
1.2.3.3 Step 1-51
1.2.3.4 Next 1-51
1.2.3.5 Run 1-51
1.2.3.6 Recapture 1-52
1.2.3.7 Set Scope Up 1-52
1.2.3.8 Set Scope Down 1-52
1.2.3.9 Set Scope Here 1-53
1.2.3.10 Display/Hide Source Window 1-53
1.2.3.11 Display/Hide Assembler Window 1-53
1.2.3.12 Display/Hide Register Window 1-53
1.2.3.13 Display/Hide Task Window 1-54
1.2.3.14 Display/Hide Remote System Window 1-54
1.2.3.15 Evaluate 1-54
1.2.3.16 Create Memory Window 1-55
1.2.3.17 Display Callstack 1-56
1.2.3.18 Break 1-56

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-2

1.3 Description of the Subwindows 1-57

1.3.1 Command Window 1-57
1.3.1.1 Command Window Editor 1-58

1.3.2 Source Window 1-59

1.3.3 Assembler Window 1-62

1.3.4 Register Window 1-64

1.3.5 Task Window 1-65

1.3.6 Remote System Window 1-66

1.3.7 Evaluation Windows 1-66

1.3.8 Memory Windows 1-69
1.3.8.1 Memory Window Context Menu 1-70

1.3.9 Trace Windows 1-74

1.3.10 Copy and Paste 1-75

1.4 Descriptor and Register Tables 1-78

1.4.1 Descriptor Tables 1-78
1.4.1.1 Modify 1-80
1.4.1.2 Reload Table 1-82
1.4.1.3 Set Range 1-82

1.4.2 Control Registers 1-82
1.4.2.1 Modify 1-83
1.4.2.2 Update 1-85

1.4.3 Register Window 1-85
1.4.3.1 General Registers 1-85
1.4.3.2 Segment Registers 1-86

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-3

1 Organon XDB User Interface

1.1 Starting Organon XDB

1.1.1 Start-up Dialog

The first thing Organon XDB does is reading the Windows registry, which contains

information about the preferred window sizes and colors, the directories where the

sources of your target program are located, and details of the connection to the

target machine. If there are no entries Organon XDB starts anyway, using the built-

in default values for size and color. The other informations Organon XDB needs

must be entered by you into the start-up window (see below).

Now the start-up window appears where you enter the information the debugger

needs to begin its work. Check the displayed information and modify if necessary.

To start Organon XDB click the Start XDB button. When you close the start-up

window, the registry entries are updated (or created if not present) thereby saving

the actual start-up data for the next session.

If you decide not to start, click the Cancel button which ends the start-up routine

immediately and cancels the session, leaving the start-up data untouched.

This is the start-up window. You can enter the following data:

• Working Directory: This is the directory Organon XDB works in.

• Organon XDB assumes all files it wants to read or write to be in the working

directory, unless explicitly stated otherwise.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-4

• Source Directories: In this field you specify the list of directories where

Organon XDB looks for source files. The working directory is always searched

first. So you don’t have to enter the working directory here again. For all other

directories you may write the complete directory path, or the path relative to the

working directory. If you enter more than one directory, separate them with

commas.

• Initial batch file: A batch file is a file containing Organon XDB commands (see

the Command Reference). It is a convenient way to store a list of commands you

usually issue. If a file name is entered in this line, Organon XDB will read and

execute this file prior to any command you issue. If the initial batch file is not

located in the working directory, you may write the complete directory path, or

the path relative to the working directory.

• Target Connection: Here you tell Organon XDB how to connect to the target

machine. Organon XDB expects this information in the following form:

mpi:<H>,<T>

<H> is the host address of the communication partner in the MPI segment.

<T> is the TSAP-ID for communication with the terminal server.

Typical values for all boards connected to MPI or partyline (CPU-4xx, CPU-3xx,

FM-3xx) are:

mpi:2,12

For other communication boards (for example FM-400) the TSAP-ID has to be

modified as follows.

0000 1100

B yte 1

Rack-Nr.

B y te 0

S lot-N r.

A FM-400 in rack 1 at slot 4 (240CH) has to be addressed with mpi:2,9228 .

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-5

If you click the button More Options , the window changes to this:

Now you can set or change the following options:

• • Mode: You can choose between Interactive (which is the default value) and

Non Interactive . In the interactive mode, Organon XDB expects you to issue

commands, whereas the debugger finishes the session immediately after reading

and executing the initial batch file if you switch to non-interactive mode.

• • Add Underscore: Your compiler might change the symbol names by adding an

underscore or dot to it, e.g. a procedure you named "init" might be called "init",

"_init", "init_", or ".init" in the assembler code. You have to tell Organon XDB

which way the compiler translating your program uses. The default value is

None .

• • CPU: Organon XDB disassembles opcode due to the instruction set of the

chosen processor. During a debug session this option can be modified with the

SET OPTION command.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-6

• • Use only hardware breakpoints: Breakpoints are points which can be set

arbitrarily into your program, and whenever the execution of the program meets

such a breakpoint, it is stopped at this point, enabling you to examine the state

the program is in. Organon XDB can simulate breakpoints by maintaining a list

of set breakpoints and looking whether the execution encountered one of them.

But looking for breakpoint encounters before every step of execution is rather

time-consuming, slowing down the execution speed. If you want to use debug

register breakpoints only to enhance the performance, choose this option.

• • Convert symbols to upper case: If you enter this option, Organon XDB does

not distinguish between symbols written in lowercase and in uppercase. This

setting is on by default and must not be changed.

• • Additional Args: This line allows you to enter all options and arguments which

are not displayed in this window.

• IO-timeout after .. seconds: If the connection cannot be built up within this

amount of time, Organon XDB asks whether to try again or to end the session:

 Click Yes if you want to continue, or No to quit.

 If the connection is established but the target machine does not respond to a

request within the amount of time given in this field, Organon XDB assumes the

connection to be lost and quits the session, issuing an error message in the

command window.

• About: Displays the version of Organon XDB without the need to start Organon

XDB and establish a target connection.

When you dismiss the start-up window by clicking Start XDB , the debugger will

read and execute your initial batch file (if such a file was specified). Now the file

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-7

"startup.xdb" is read and executed. This file is located in the installation directory,

and it is assumed to be written in the Organon XDB command language (see

Command Reference), like the initial batch file. After this file is processed, Organon

XDB waits for your commands if the mode was set to Interactive , or exits if in Non

Interactive mode.

1.1.2 Starting problems

During the start of Organon XDB the following problems can occur.

First is when you try to start Organon XDB a second time. Doing so the following

window appears. In this case exit the running Organon XDB .

If Organon XDB can not find the authorization for software package ProC/C++ the

following window appears. Check the ProC/C++ installation.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-8

1.2 Description of the Main Window

When Organon XDB is ready, its main window will appear on the screen. This main

window consists of four parts whose elements and functions are described in the

following chapters. These parts are:

(1) the menu panel

(2) the tool bar

(3) a panel with user-defined buttons — this panel exists only if there are such
buttons

(4) and the subwindow area.

Chapter 1.2 contains a detailed explanation of the menu items, followed by a

description of the tool bar. The subwindows are covered in chapter 1.3.

The status bar at the bottom of the main window shows some general information

about the status of the target task and the debugger:

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-9

The first field contains the debug info number and the position of the execution

(source file name, function name, line number).

The second field shows the task name and the contents of the program counter.

The third field indicates the execution mode Organon XDB is in: C/C++ or PAS for

source code mode, and Asm for assembler mode. If the display is stopped (e.g. by

typing <ctrl-S>), the mode field changes to hold .

The last field is the status field, telling what Organon XDB is doing at the moment.

1.2.1 Menu Panel

The keywords in this panel give access to the menus listed below. To enter any of

these menus, click the appropriate keyword, or type <Alt x>, x being the underlined

letter in the keyword.

Example:

Organon XDB supports the high level languages C/C++ and Pascal as well as the

assembly language. To switch between these languages, perform the following

steps:

Hit <Alt L>, or click the word "Language" with the left mouse button, to get the

language menu.

Now choose one language by clicking it.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-10

1.2.1.1 File

The menu File offers the commands you see above. Most of them deal with the

handling of files on the host system or the target system. Using this menu, you can

load tasks, run Organon XDB command files, and load additional modules of the

target program. All your activities and the informations Organon XDB shows can be

written to protocol files for further examination. A quick method to search for certain

strings and patterns in the source code of the target program is offered, too. If you

have changed the appearance of the Organon XDB windows according to your

personal taste, you can save these changes for subsequent sessions. And if your

work is done, you can end the Organon XDB session using the last item of the

menu.

You can issue these commands by clicking them, or by hitting the underlined letter

while pushing down the <Alt> key. Some commands are linked to "hot keys" so that

they can be issued without opening the menu. You see these hot keys on the right

side of the menu. For example, you can start a search without opening the file

menu just by hitting <Alt S>.

• Load

loads the task to be debugged into the debugger. Assuming your next Organon

XDB session will deal with the same task, the information which files to load are

stored in the Windows registry and is read at the beginning of every Organon XDB

session. In other words, the values you enter now will be the default values for the

next Load .

The pop-up window that asks for the boundfile and task to be loaded looks like this:

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-11

The boundfile is the file which contains the debug information. It is created by the

converter and has the suffix ".bd". Enter the boundfile name and the taskfile name,

then click Ok. You can quit the load mode anytime by clicking the Cancel button.

If you are not sure which file to load, the Browse button gives you the opportunity

to check the existing files. You find a detailed description of the file browser in

chapter 1.2.2.

To load a task click the Task button and enter the name of the taskfile. The task is

supposed to be on the target machine unless you activate the Download from

Debugger button in which case Organon XDB locates the taskfile on the host and

downloads it to the target.

You can connect to a task already loaded by clicking the Segment button and

entering the Loader Result Segment (which was displayed when loading or is

available through tcb low-level debugger command) and the RMOS Task ID (see

also LOAD in the Command Reference).

• Batch

asks for the batch file to be executed, and the arguments to provide it with.

A batch file is a file containing Organon XDB commands (see Command

Reference). It is a convenient way to store a list of commands you usually issue (for

example, you always set a breakpoint at the call of a certain subroutine, then let the

execution run). As the Organon XDB command language can deal with

parameters, the batch file can be given arguments these parameters are set to. The

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-12

commands in the file are executed as if they were typed into the command window;

however, the EXIT command makes Organon XDB leave the batch file rather than

quit the session altogether.

Enter the file name into the File field, and the batch file arguments (if the batch file

expects them) into the Arguments field. When the Ok button is clicked, the

execution starts.

If the option Force single stepping is activated, the execution stops before every

command, and you are asked whether to continue:

The next line of the batch file is displayed (batch arguments and macros are

already expanded) in the command window. Click Yes (or hit <Alt Y>) to execute it,

or click Exit (resp. hit <Alt E>) to quit the execution of the batch file. Cont (or <Alt

C>) ends the single step mode, i.e. the rest of the batch file is executed without

further questions. If you want Organon XDB not to execute the command on

display but to continue the single step execution with the next command of the

batch file, click Skip (or hit <Alt S>).

If the command Organon XDB reads from the file is syntactically wrong, you are

not asked whether to execute it. Instead, Organon XDB tries to find the next

correct command in the file and continues the single step execution here.

Depending on the sort of error in the batch file, Organon XDB might skip one or

more correct commands until it finds a point to recover.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-13

If an error occurs during the execution of the batch file, the rest of the batch file is

still executed, unless the option Stop on errors was activated. In this case,

Organon XDB skips the rest of the batch file.

Anyway, if an error is detected in the batch file, Organon XDB issues an error

message in the command window, telling you the batch file line where this error

was found, and the sort of error detected.

You can choose among the existing batch files by clicking the Browse button. You

find a detailed description of the file browser in chapter 1.2.2.

• • Set Module

shows a list of the modules of the task to be debugged.

The display shows the names of the available modules and their memory

addresses. By a double-click the module is loaded. The source window (see

chapter 1.3.2) shows the source code of this module, and the scope is set

appropriately.

If you click the window with the right mouse button the following menu appears.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-14

• • Search

This menu item searches for a specified pattern in the source code of the module

displayed in the source window. If the end of the module is encountered, a

message is issued in the command window, and the search starts at the top again.

The metacharacters "?" (matches any character) and "*" (matches any string) are

recognized.

The source window displays the appropriate part of the source code, coloring the

line containing the matching string in the enhanced color (see menu item "Options /

Edit Colors", chapter 1.2.1.6).

Note that the search always starts at the beginning of the source code unless you

search again for the same pattern (in which case the search starts at the line after

the one where the last matching string was found).

The search algorithm distinguishes between uppercase and lowercase unless

Organon XDB was started with the option Convert symbols to upper case .

Examples:

Search for all strings starting with "t", followed by two unspecified characters and a

"s". This search will find the strings "this", "those", "it is", for example.

Search for an ampersand ("&") and a semicolon which are separated by an

unknown number (possibly 0) of unknown characters, i.e. letters, digits, spaces, etc.

The following strings (and many more) match this search pattern:

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-15

&;

&x;

& pointer_7 ;

• • Open Protocol

opens an output file to protocol the debug session. This feature enables you to write

important informations into files for further examination. Choose between the

following protocol modes:

All to get a complete protocol. All information is just written into this protocol, even if

some of the other protocols are opened.

Command to protocol the commands given in the command window (see chapter

1.3.1).

Source to copy the source code lines executed into the protocol file.

Assembler to protocol the executed line of the assembler window (see chapter

1.3.3).

Trace to copy the contents of the trace window (see chapter 1.3.9).

Evaluate to protocol general information messages (as opposed to error

messages) as shown in the command window (see chapter 1.3.1).

Error to protocol all error messages.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-16

Click the type of protocol you want, and the file browser (see chapter 1.2.2.1) is

invoked. Choose the directory where you want the protocol file to be in, then enter

the file name.

Example:

You have already opened an assembler protocol. Now you wish to protocol the

commands you want to issue. After hitting <Alt F> and <Alt P> (or clicking the

appropriate keywords), you see this:

You see the menu File and its submenu Open Protocol . The keyword Assembler

is disabled because this protocol is opened already.

Now click the keyword Command or type <Alt C> to open the protocol file.

Imagine the source window looking like this:

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-17

Now you perform the following steps:

You open a source code protocol file by hitting <Alt F> <Alt P> <Alt S> before you

type

step; eval d0

into the command window. After examining the value of the variable d0 you click the

line 168 in the source window, then you hit <ctrl-N> (shortcut for Run until) to let

the execution continue to this line. After you end the session by typing "exit", the

command protocol file looks like this:

! ! creation date: Thu Feb 9 14:23:51 1995
SET PROTFILE/WINDOW=SOURCE/OVERWRITE "C:/ORGANON/CHECK/PROT.SRC"
step; eval d0
run until @line 168
exit

The source protocol file contains the lines where the execution stopped:

!(SRC) creation date: Thu Feb 9 14:24:41 1995
!
!(SRC) CRM\@line 164
!(SRC) d0.flgs = 1; /* These flags dictate */
!(SRC) CRM\@line 168
!(SRC) pd0 = &d0;

The assembler protocol contains the assembler instructions where the execution

stopped (or nothing if the assembler window was hidden):

!(ASM) creation date: Thu Feb 9 14:20:16 1995
!
!(ASM) 0188:0000001D: C7 05 70 00 MOV DWORD PTR DS:MAIN+$00000070,$00000001
!(ASM) 0188:00000045: C7 05 90 00 MOV DWORD PTR DS:MAIN+$00000090,$00000054

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-18

• • Open Logfile

All commands written into the command window are copied into the logfile so that it

can be used later as a batch file to repeat the session. Some restrictions apply

when using logfiles as batch files if XDB works in the multitasking mode. If you

issue this command, the file browser (see chapter 1.2.2.1) is invoked. Choose the

appropriate directory, then enter a file name. Because opening a logfile that existed

already will destroy the contents of the old file, you will be asked to confirm this.

• • Close Logfile

Closes the logfile. None of the following commands will appear in the logfile.

• • Save Settings

Saves the colors, fonts, and window positions for subsequent sessions. These

informations are written into the Windows registry. You are asked to confirm this to

avoid an accidental change.

• • Exit

Ends the Organon XDB session, closing all output files still open. You are asked to

confirm the exit to assure you really want to leave Organon XDB.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-19

1.2.1.2 Display

This menu allows the opening (or closing, if already open) of several subwindows.

For a detailed description of these windows see chapter 1.3. Windows are

checkmarked in this menu if they are currently open.

You can open/close these subwindows by clicking their names in the menu, or by

hitting the underlined letter while pushing down the <Alt> key. For example, hit

<Alt A> to open the assembler window.

• • Source

Displays or hides the source window which shows the source code of the task you

debug.

• • Assembler

Displays or hides the assembler window which shows the assembly code of the

task you debug.

• • Register

Displays or hides the register window.

• Remote

Displays or hides the remote system window which gives access to the target

system.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-20

• Task

Displays or hides the task window which shows all the tasks XDB knows about.

• • Memory

Choosing this item causes the creation of a new memory window. Note that more

than one memory window may be open.

When you select the item „Memory“, the following dialog box pops up:

Enter the memory address and choose the size and the format the memory

contents are to be displayed in. The Browse button summons the XDB symbol

browser. You find a detailed description of the symbol browser in chapter 1.2.2.

Updating the memory window automatically whenever the contents of the memory

are changed might reduce the performance; thus you can choose whether the

memory window is to be updated automatically by activating the Auto Update

checkbutton.

If the start address of the memory window is not a constant expression, you may

want the memory window to follow whenever the value of the expression changes.

In this case, activate the Based checkbutton to set the memory window to the so-

called based mode.

Example:

Define a debugger variable called MEMSTART with the initial value 3 by issuing the

following line in the command window:

DEFINE SYMBOL /VALUE=3 MEMSTART

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-21

Now create a memory window in based mode with the start address

0x1000 * @MEMSTART

and the new memory window starts at address 0x3000. Now change the value of

the variable by typing

SET VALUE @MEMSTART = 5

into the command window, and the memory window displays the memory starting at

address 0x5000.

• CPU-Structures

This item enables you to manipulate some CPU-specific data. This feature is

available for Intel processor targets only. See chapter 1.4 for a detailed description.

• I80386EX Registers

This item enables you to manipulate some CPU-specific data. This feature is

available for Intel 386EX targets only.

1.2.1.3 Run

This menu offers several ways to execute the target program. The execution can be

continuous or stepwise. You can also issue commands to the host system. If the

connection between host and target is noisy, it can be reestablished.

You can issue these commands by clicking them, or by hitting the underlined letter

while pushing down the <Alt> key. Some commands are linked to "hot keys" so that

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-22

they can be issued without opening the menu. You see these hot keys on the right

side of the menu. For example, you can start the execution without opening the

Run menu just by hitting <ctrl-R>.

• • Run

Execute the target program. The execution stops if a breakpoint or watchpoint is

encountered.

• • Run until ...

Executes the target program until a certain condition is true. Possible conditions are

Line: The execution reaches the specified line of code (Note that this line is not

executed).

Expression: The location denoted by the expression is reached. The execution

stops immediately before this location is executed. For example, if the current line

(i.e. the next line to be executed) is line 100, the expression

@LINE (@SOURCELINE + 10)

 makes Organon XDB continue the execution until line 110 is reached.

Blockend: The end of the block is reached. A block is a number of statements

which are bundled together, e.g. statements enclosed in braces ("{}") in a C

program.

Procend: The end of the procedure is reached. The next step of execution will be

the jump back to the calling routine. If this command is issued while the execution is

in the main routine, it continues until the end of the program is reached.

Caller: Run until the calling routine is reached (useful in subroutines only).

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-23

If the condition is true already when you issue this command (e.g. run until line 50

when the current line is line 50), the execution stops immediately, i.e. nothing is

done.

Note that the execution stops if a breakpoint or a watchpoint is encountered

regardless of the condition you chose.

Example:

As the line pointer of the source window marks the source code line 168, Organon

XDB suggests to execute until this line. You can confirm this by clicking the Ok

button or hitting <Return>, or you can enter another line number or choose any

other condition. Browse invokes the symbol browser which is explained in chapter

1.2.2.2.

By default, the Line checkbutton is activated. You can enter the line number and

click the Ok button, or choose one of the other conditions. Browse invokes the

symbol browser which is explained in chapter 1.2.2.2.

• • Step

Execute the next instruction. If a subroutine call is encountered, the execution stops

at the first instruction of the subroutine. If Organon XDB is in assembler mode,

“instruction“ means “assembler instruction“, otherwise the next source code

instruction is executed.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-24

• Next

Execute until the next line of code. If a subroutine call is encountered, the whole

subroutine is executed. If Organon XDB is in assembler mode, “line of code“

means “assembler instruction“, “source code line“ otherwise.

• Recapture

Organon XDB tries to restore the current situation. Therefore Organon XDB

disregards the current status information (e.g. register values, task states) and does

an update from the target. Useful if the connection between host and target is noisy.

This functionality is also available via the command SET TASK /SET (see

Command Reference).

• • Spawn

Opens a window in which a command to the host system can be issued. Type the

command into the pop-up window, then click Ok, and the command will be

transferred to the command interpreter of your host machine.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-25

1.2.1.4 Debug

The menu items described in this chapter allow you to evaluate expressions (and

watch the variables of the target program), display the stack of procedure calls, and

to manipulate breakpoints, watchpoints, and tracepoints (features which are

explained also in this chapter).

You can issue these commands by clicking them, or by hitting the underlined letter

while pushing down the <Alt> key. Some commands are linked to "hot keys" so that

they can be issued without opening the menu. You see these hot keys on the right

side of the menu. For example, you can set a breakpoint without opening the

Debug menu just by hitting <ctrl-B>.

• Evaluate

The user is asked to enter an expression to be evaluated. The result is shown

either in the command window or in an evaluation window (see chapters 1.3.1 and

1.3.7). In the former case the evaluation takes place only once while in the latter

case every subsequent change of the result is visible.

The symbols known at this time and scope can be obtained with the Browse

button. You find a detailed description of the symbol browser in chapter 1.2.2.

Organon XDB allows you to write expressions in more than one language. Open

the "Language" menu to see which languages are available. The language

Organon XDB expects is checkmarked. To change to another language, click the

language name.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-26

Enter the expression you want to be evaluated, using the current language. Choose

the format you like the result to be in. If the expression denotes a pointer to a

character string or a character array, ascii might be useful. If you choose ascii , you

may enter the number of characters to be displayed into the Length field.

Memory access : Some processors allow byte-wise or word-wise memory access

only. If your target processor behaves this very restrictive way, click the sort of

access it accepts. In most cases, default works fine.

Level : If the expression denotes a structure containing sub-structures, you can

specify how many levels to step down into the structure.

Note that arrays may be evaluated partially, e.g. if A is an array of appropriate

length, A[2..5] denotes the elements 2, 3, 4, and 5.

If you click the Ok button, the result is printed to the command window. If you click

the Window button instead, an evaluation window is created.

• • Set Breakpoint

When debugging a program, you may wish the program to stop at a certain line of

code so you can examine the state it is in (e.g. the value of a variable). This

stopping is done by setting a breakpoint.

Similar to the SET BREAKPOINT command described in the Command Reference,

a breakpoint can be defined by giving its Location (default: current line), possibly

followed by a Condition (identical to SET BREAKPOINT option WHEN), a list of

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-27

Actions , and a Skip number. The condition must be written in the current language

(see chapter 1.2.1.5).

The execution of the target program stops when the location denoted by the

expression in the Location field is reached and the Condition is true. If a positive

Skip number was specified, every (n+1)st encounter of the breakpoint only will

cause a stop (n being the Skip number). For example, a breakpoint with the Skip

number 2 would stop the execution when encountered for the third, sixth, ninth, ...

time.

Actions may contain a list of Organon XDB commands. When the execution is

stopped by the breakpoint, these commands are processed. If the Continue

checkbutton is activated, the execution of the target program will continue after

processing the Actions list.

Symbol : The breakpoint can be given a symbolic name which can be used as a

debugger variable in commands.

Note that the breakpoint is supposed to be at the beginning of the line. For

example, a breakpoint at source code line 100 will stop the program after line 99

was executed.

By default, Organon XDB implements breakpoints by software interrupts, which are

inserted into the code. If you want to use processor-maintained breakpoints only,

choose the Hard option. This is especially useful when the program code to be

debugged is stored in EPROM.

Browse shows, as usual, a list of the known symbols. You find a detailed

description of the symbol browser in chapter 1.2.2. Click Ok to create the

breakpoint, or Cancel to cancel the operation.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-28

• • Edit Breakpoints

This is useful when details of existing breakpoints are to be changed. The pop-up

window shows all existing breakpoints:

The breakpoints are displayed in the following form:

<n> : <p1> (<p2>) [WHEN <cond>] : <status>

(S=<skip>, CS=<current_skip>, [A,] [C,] [HW=<hard>,] <scope>)

[(@SYMBOL=<name>)] [THEN <actions> END]

where <n> is the id number of the breakpoint.

<p1> and <p2> are the location in the source code resp. assembler code.

<cond> is the condition (if a condition was specified).

<status> may be enabled , disabled , or current . The latter indicates that the

execution is halted due to this breakpoint.

<skip> is the skip number.

<current_skip> indicates how many times this breakpoint will be skipped until it

stops the execution. I.e. whenever this breakpoint is encountered, <current _skip>

is decremented by one until it reaches zero. Now the execution is halted, and

<current _skip> is set to <skip> again.

A indicates that a non-empty list of actions is attached to the breakpoint.

C is displayed if the option “Continue“ is set.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-29

<hard>: If the breakpoint is a hardware breakpoint, this is its internal number.

<scope> is S for space usually. <scope> can be T for task or G for global, too.

<name>: If a symbolic name was given to the breakpoint, it is displayed here.

<actions>: If a list of actions is attached to the breakpoint, it is displayed here.

Note that the condition of a breakpoint, if existent, is always written in the current

language (see chapter 1.2.1.5) no matter in which language it was entered in the

creation of the breakpoint.

Disable disables the breakpoint, i.e. while the breakpoint still remains existent, the

execution does not stop here. Of course, disabled breakpoints can be enabled

again by clicking the Enable button (which is visible only if you click a disabled

breakpoint).

Delete and Delete all delete the breakpoint marked by inverted color display resp.

all existing breakpoints.

Modify allows the change of the details of the specified breakpoint. Just click the

item you want to change and edit it. Note that the condition, if existent, must follow

the rules of the current language (see chapter 1.2.1.5).

Like in Set Breakpoint (see above), the ability to Browse is given. You find a

detailed description of the symbol browser in chapter 1.2.2.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-30

• • Set Watchpoint

When debugging a program, you may wish the program to stop whenever a certain

piece of memory is accessed. This stopping is done by setting a watchpoint.

A watchpoint is set by specifying its symbolic address (the Location), the Length

of the memory in bytes to be watched (4 by default), and the Access mode (default:

All). A Skip number can also be issued (see below). Browse gives a list of usable

symbolic addresses (see chapter 1.2.2 for a detailed description of the symbol

browser). The watchpoint can be given a Symbol , or name, for easy access in

commands.

If the hardware interface supports real time watchpoints including all the specified

conditions, the program runs on full execution speed. If not, XDB must simulate

them by maintaining a list of watched memory pieces and looking whether they are

accessed. If you want to use processor-maintained watchpoints only, choose the

Hard option.

The execution of the target program stops when the watched piece of memory is

accessed in the specified way. If the Skip number is n, n > 0, the execution stops at

every (n+1)st access. For example, a watchpoint with the Skip number 2 and the

access mode "write" would stop the execution at the third, sixth, ninth, ... attempt to

write into the watched memory. If a list of Organon XDB commands was entered

into the Actions field, these commands are processed upon the encounter of the

watchpoint. If the checkbutton Continue was activated, the execution continues

after the processing of the Actions list (see also SET WATCHPOINT command in

the Command Reference).

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-31

• • Edit Watchpoints

This item shows the list of existing watchpoints. To change them, choose one and

click the Modify button.

Disable disables the watchpoint, i.e. while the watchpoint still remains existent, the

execution does not stop when the watched piece of memory is accessed. Of

course, disabled watchpoints can be enabled again (The Enable button is visible

only if you click a disabled breakpoint).

Delete and Delete all delete the watchpoint marked by inverted color display resp.

all existing watchpoints.

The watchpoints are displayed in the following form:

<n> : <pos1> (addr= <pos2>, len=<length>, acc=<access>) :

<status>

(S=<skip>, CS=<current_skip>, [A,] [C,] [HW=<hard>,])

[(@SYMBOL=<name>)] [THEN <actions> END]

where <n> is the id number of the watchpoint.

<pos1> and <pos2> are the location in the source code resp. assembler code.

<length> is the length (in bytes) of the watched memory.

<access> can be R for read, W for write, F for fetch, or X for all.

<status> may be enabled , disabled , or current . The latter indicates that the

execution is halted due to this watchpoint.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-32

<skip> is the skip number.

<current_skip> indicates how many times this watchpoint will be skipped until it

stops the execution. I.e. whenever this watchpoint is encountered, <current _skip>

is decremented by one until it reaches zero. Now the execution is halted, and

<current _skip> is set to <skip> again.

A indicates that a non-empty list of actions is attached to the watchpoint.

C is displayed if the option “Continue“ is set.

<hard>: If the watchpoint is a hardware maintained watchpoint, this is its internal

number.

<name>: If a symbolic name was given to the watchpoint, it is displayed here.

<actions>: If a list of actions is attached to the watchpoint, it is displayed here.

• • Set Tracepoint

Similar to watchpoints, tracepoints can be used to watch a piece of memory, e.g. a

variable. A trace window is opened for every tracepoint, and the value stored in the

memory to be traced is displayed. Unlike breakpoints or watchpoints, the encounter

of a tracepoint does not stop the execution.

Enter the location into the Location field.

If the hardware interface supports real time tracepoints including all the specified

conditions, the program runs on full execution speed. If not, XDB must simulate

them by maintaining a list of set tracepoints and looking whether the execution

changed one of them. But looking for these events at every step of execution is

rather time-consuming, slowing down the execution speed. If you want to use

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-33

processor-maintained tracepoints only to enhance the performance, click the Hard

checkbutton (see also SET TRACEPOINT command in the Command Reference).

As always, Browse shows all known symbols. You find a detailed description of the

symbol browser in chapter 1.2.2.

• • Edit Tracepoints

This menu item shows all existing tracepoints and offers the opportunity to Modify

them.

Disable disables the tracepoint, i.e. while the tracepoint still remains existent, a

change of the traced memory is not displayed. Of course, disabled tracepoints can

be enabled again by clicking the Enable button (which is visible only if you click a

disabled tracepoint).

Delete and Delete all delete the tracepoint marked by inverted color display resp.

all existing tracepoints.

The tracepoints are displayed in the following form:

<n> : <pos1> [(addr= <pos2>)] : <status> [(HW=<hard>)]

where <n> is the id number of the tracepoint.

<pos1> is the symbolic address to be traced.

<pos2> is the memory address.

<status> is either enabled or disabled .

<hard>: If the tracepoint is a hardware maintained one, this is its internal number.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-34

• Calls

The stack of procedure calls is displayed. The procedures are listed with their

names, addresses, and arguments.

To change the scope of symbols visible to Organon XDB , click one of the

procedures, then click the Set Scope button. An alternative way to set the scope is

to doubleclick the procedure line. Note that continuing the execution changes the

scope back to the procedure being executed.

For performance reasons, the procedure arguments are shown only if you ask for

them. Click the Arguments button, and the windows changes to:

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-35

1.2.1.5 Language

The expressions entered for evaluation as well as the breakpoint conditions are, by

default, assumed to be C expressions. You can switch to another language by

clicking it, or by hitting the underlined letter while pushing down the <Alt> key (for

example, hit <Alt P> to set the language to Pascal). This menu allows you to

change to the following languages:

• C/C++

Note that expressions with side effects (like "++i") don't make much sense in this

context, and are not supported. Apart from that, Organon XDB follows the ANSI

standard.

• Pascal

Organon XDB follows the standard as described by K. Jensen and N. Wirth.

• Assembler

When setting the language to Assembler, the assembler window is displayed

automatically.

The checkmark in the menu window marks the language Organon XDB expects.

Note that Organon XDB works in either source code mode or assembler mode.

The mode influences e.g. the execution of the command STEP (see chapter 1.2.1.3

or Command Reference). The only way to switch to assembler mode is to set the

language to Assembler. To switch back to source code mode, change the language

to any of the high level languages.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-36

1.2.1.6 Options

This set of commands allows you to customize and adapt Organon XDB , according

to your taste and needs. You can change the size and color of texts displayed,

create new buttons, or redefine the function keys of your keyboard. The advanced

user will find a quick and convenient way to manipulate the command language

macros, and to change some details in the behaviour of Organon XDB .

You can issue these commands by clicking them, or by hitting the underlined letter

while pushing down the <Alt> key. Some commands are linked to "hot keys" so that

they can be issued without opening the menu. You see these hot keys on the right

side of the menu. For example, you can create a button without opening the

Options menu just by hitting <ctrl-U>.

• • Options

You can switch on/off the following options:

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-37

Use mixed assembly window

The mixed assembly window does not only show the assembler code but also the

next source code line to be executed. This option is switched off by default.

Format for pointers

When displaying a character pointer in an evaluation window, the value it points to

can either be displayed as a hexadecimal number or as a character (which is the

default).

Automatic debug loading

When the execution steps into another module, this module is loaded automatically

if this option is switched on (which is the default value). Otherwise, you are asked

whether to load it. If you refuse to load it, the step command will execute until the

next line of the currently loaded module.

Show tracepoint time

If this option is switched on, the actual time is shown whenever the memory

watched by a tracepoint is changed. The option is switched off by default.

Attach segments

Can be set to Local (default) or Global . In the latter case, all segments specified at

initial load (or loaded with the menu item "File / Load") are attached to the global

segment map. Otherwise, loaded segments are attached to the current task.

Assign tasks

Can be set to Local or Global (default). In the Global mode, all target system tasks

are assigned to one virtual debugger task; otherwise, all tasks are monitored

separately.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-38

• Keys

You can use the function keys to store commands. The menu item "Options / Keys"

shows the strings connected to the function keys so far. You can change them by

using the Modify button. If you want the string to contain a newline, write "\n"

instead. To delete a key, mark it by clicking it, then click Delete .

Whenever you hit a function key, the text connected to it is written into the

command window.

To create a new key assignment select an unused key from the list and klick the

Modify button. The F10 function key is assigned with the default Windows key

definition and may not be changed. The following window appears.

Enter the command into the Command field. When you are finished, click Ok.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-39

• • Macros

The Organon XDB command language is a powerful tool, containing features like

loops and macros. This menu item allows the convenient manipulation of macros.

Mark the macro you wish to modify or delete by using the mouse or the cursor keys,

then click the Delete resp. Modify button. See Command Reference for a

description of macros in the command language.

Modify allows you to change the command list connected to the macro.

To create a new macro, click the Add new button (or hit <Alt A>). The following

window appears:

Enter the macro name into the Name field and the macro body into the Command

field. When you are finished, click Ok.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-40

Button:

When adding a new macro to the list, you have the option to create a button with

the same name. To do so, click the checkbutton Button . If the macro contains

parameters, you will be asked to provide them upon activation of the button.

Note that modification or deletion of the macro deletes the appropriate button while

manipulation of the button (see below, menu item "Options / Buttons") has no effect

on the macro.

• • Buttons

Organon XDB allows you to define additional buttons and to link them to lists of

commands. Whenever one of these user-defined buttons is clicked, its command

list is issued into the command window and processed as if it was typed there. The

menu item "Options / Buttons" shows the names of all user-defined buttons and

their respective command lists, and gives you opportunity to delete or modify them,

or to create a new button. To delete or modify an existing button, mark it with a

mouse click or with the cursor keys, then click the Delete resp. Modify button.

Modify allows you to change the command list connected to the button.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-41

Add new asks for the name and command list of a button to be created:

Enter the name of the button to be created into the first field. Type the command list

in the second field. If you try to write a newline into the command list, Organon XDB

takes this as a signal that the creation or modification is completed. If you want the

command list to end with a newline, write "\n" instead. If the list contains more than

one command, separate them by a semicolon rather than a newline or "\n".

The resulting buttons are placed in the bar below the tool bar:

• • Source path

Organon XDB assumes the source files of the task to be debugged to be in the

working directory. If this is not the case, or if the sources are placed in different

directories, you can tell Organon XDB where to look for them.

Click Add new to enter another source path.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-42

You can enter the complete path (i.e. the whole way from the root directory down);

otherwise, the path is assumed to be relative to the working directory you specified

when you started Organon XDB .

• • Window updates

This menu item allows you to determine when to check the content of Evaluation or

Memory Window and when to update it. This item is applicable only in

asynchronous mode. Repeat Time specifies the period after which XDB checks the

window contents. Update Rate specifies the number of check operations after

which a recognized change will be updated.

• • Select font

As the name implies, this menu item allows you to change the font and the size of

the displayed text. This change is effective in this session only unless you make it

permanent by activating the menu item "File / Save Settings".

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-43

• • Edit colors

You don't like the color of the texts in the subwindows? Choose this menu item, and

change to your favorite color. This change is effective in this session only unless

you make it permanent by activating the menu item "File / Save Settings".

Some texts are written in a different color to get your attention, e.g. a register value

that changed during the last instruction. This is called the enhanced color, and you

can change it, too.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-44

1.2.1.7 Windows

While you are free to move the subwindows in the subwindow area, this menu

enables you to arrange them quickly in one of these ways:

• Tile

All windows are visible, no window is fully or partially hidden by another one.

• • Cascade

The windows are resized and positioned along the diagonal across the area, one on

top of the other, so that their upper left corners are visible.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-45

• • Arrange Icons

Like all windows, the subwindows can be iconized. While you are free to arrange

the icons everywhere within the subwindow area, this menu item rearranges them

along the lower edge of the subwindow area. Note that icons of windows being

open in the moment are rearranged, too.

• • Other Subwindows

The lower part of the menu shows a list of all subwindows being on display, open or

iconized, in the moment. The active subwindow is checkmarked in the list. If you

click the name of a subwindow, this window is activated, i.e. positioned on top (and

opened if it was iconized).

You can issue these commands by clicking them, or by hitting the underlined letter

or digit while pushing down the <Alt> key. For example, hitting <Alt A> rearranges

the subwindow icons while hitting <Alt 3> would activate the third subwindow (in the

picture at the beginning of this chapter, this would be the assembler window).

1.2.1.8 Help

While working with Organon XDB , you can get online help. Choose one of the

following items by clicking it or by hitting <Alt x>, x being the underlined letter in the

menu. For example, hitting <Alt H> has the same effect as clicking Using Help .

• • Reference manual

Invokes the interactive help mechanism which corresponds to the Command

Reference.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-46

• • Using Help

Choose this if you have no experience with online help. It offers a good introduction

how to work with this feature.

• About

General information about Organon XDB .

1.2.2 Browsers

Browsers are mechanisms that help you to look over a set of items, and to choose

one of them. Several features of Organon XDB allow you to browse e.g. the files of

your host system. These browse mechanisms are described in this chapter.

1.2.2.1 The Windows ® File Browser

Some commands, like reading a batch file, require you to enter a file name. If you

are unsure which file is the one to use, you can use the Browse function to get a

list of available files. Note that this function is not a Organon XDB builtin but a

Windows ® library function.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-47

This is the pop-up window you see after clicking the Browse button. The three

fields on the left side help you to choose among the files in the directory you

browse. The lower left field shows the suffix Browse looks for. You can change this

suffix by clicking the arrow on the right side of the subwindow, then clicking the

appropriate suffix (or "*.*", matching all suffixes) in the menu that appears. Now the

middle left field shows all files with the suffix you chose. Click the file you want to

load, or enter the file name into the upper left field. As a last step, click the OK

button, and the chosen file will be loaded.

Maybe the file you look for is in another directory, maybe even on another disk. In

this case, you have to find the correct directory first, using the fields on the right

side. Choose the disk drive in the lower right field (first click the arrow, then click the

appropriate disk drive). The upper right field shows the available directories.

Doubleclick a directory to open it. When you have found the right directory, perform

the steps described above to select the right file.

Note that opening an existing file for writing will destroy the contents of this file;

therefore, the browser asks you to confirm this to avoid accidental destruction of

important data.

1.2.2.2 The Organon XDB Symbol Browser

When the compiler transforms your program into assembler code, it marks some of

the more interesting points (e.g. subroutine entry points, or the location of a

variable) by giving them an internal name, or symbol. In the case of variables and

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-48

subroutines, these symbolic names are derived from the names you use in the

source code.

Sometimes Organon XDB expects you to enter a symbol name. The symbol

browser can give you an overview over the known symbols, and helps you to

choose one. The symbols are shown with their task, module, and symbol name,

together with their addresses.

The fields on the right side help you to change the set of visible symbols.

You can change the scope level by clicking the scope level you want: Procedure

for all symbols within this subroutine, Module for all symbols within the current

module, and Global for all symbols. Current (which is the default value) sets the

scope level according to the current state of execution. You can also set the scope

level by hitting the <Alt> key and the underlined letter, e.g. <Alt R> for Procedure .

To reduce the set of symbols displayed on the left side, you may write a pattern into

the Pattern field. Finish the pattern entry by pressing <Tab>. Similar to the menu

item "File / Search", a pattern consists of characters (letters, digits, etc) which are

recognized as such, and meta-characters which have a special meaning. In this

case, the metacharacters "?" (matches any character) and "*" (matches any string)

are recognized. For example, the symbols "PD0", "PD1", and "PDX" match the

pattern "PD?", while "*D0" is matched by "D0" and "PD0". The default pattern, "*",

matches every symbol.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-49

If you click the Select functions only box, only symbols denoting subroutines are

shown.

Now enter the symbol name into the Symbol field, or click the symbol on display,

then click the Ok button (or hit <Alt O>). You can dismiss the symbol browser

anytime you want by clicking the Cancel button (or hitting <Alt C>).

1.2.3 Buttons

While you can use the full capacity of Organon XDB by typing commands into the

command window, some of the most important commands are attached to pre-

defined buttons; thus, you can issue them by a single click. Clicking a button with

your left mouse button activates the command while a click with the right mouse

button summons a brief explanation text.

Organon XDB checks whether the use of the buttons is meaningless in the current

situation (e.g. search for a pattern when the source window is not visible), and

disables buttons whose use would make no sense in the moment.

Tool Bar

1.2.3.1 Load

This button is identical to the menu item "File / Load" which is explained in detail in

chapter 1.2.1.1.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-50

1.2.3.2 Search

This button is identical to the menu item "File / Search".

This command searches for a specified pattern in the source code of the module

displayed in the source window. If the end of the module is encountered, a

message is issued in the command window, and the search starts at the top again.

The metacharacters "?" (matches any character) and "*" (matches any string) are

recognized.

The source window displays the appropriate part of the source code, coloring the

line containing the matching string in the enhanced color (see menu item "Options /

Edit Colors", chapter 1.2.1.6).

Note that the search always starts at the beginning of the source code unless you

search again for the same pattern (in which case the search starts at the line after

the one where the last matching string was found).

The search algorithm distinguishes between upper case and lower case unless

Organon XDB was started with the option Convert symbols to upper case .

Examples:

Search for all strings starting with "t", followed by two unspecified characters and a

"s". This search will find the strings "this", "those", "it is", for example.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-51

Search for an ampersand ("&") and a semicolon which are separated by an

unknown number (possibly 0) of unknown characters, i.e. letters, digits, spaces, etc.

The following strings (and many more) match this search pattern:

&;

&x;

& pointer_7 ;

1.2.3.3 Step

This button is identical to the menu item "Run / Step". It tells Organon XDB to

execute the next instruction. If this instruction is a subroutine call, the execution

stops at the first instruction of the subroutine.

1.2.3.4 Next

This button is identical to the menu item "Run / Next". XDB continues the execution

until the next line of code. If a subroutine call is encountered, the whole subroutine

is executed.

1.2.3.5 Run

The execution of the target program is continued, beginning with the current line

(the line printed in inverted color in the source window). The execution stops if a

breakpoint or watchpoint is encountered.

This button is identical to the menu item "Run / Run".

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-52

1.2.3.6 Recapture

This button is identical to the menu item "Run / Recapture". Organon XDB tries to

restore the current situation. Therefore Organon XDB disregards the current status

information (e.g. register values, task states) and does an update from the target.

1.2.3.7 Set Scope Up

If the execution enters a subroutine, the scope is set to this subroutine, i.e. the

source window shows the source code of this subroutine, and only the symbols

(variable names etc.) visible within this subroutine are accessible by the symbol

browser (see chapter 1.2.2.2). Clicking this button moves the scope one level

upward, i.e. to the calling routine. The symbols known there are accessible now,

and the source window shows the text of this calling routine, the line containing the

subroutine call being the current line.

1.2.3.8 Set Scope Down

If the execution enters a subroutine, the scope is set to this subroutine, i.e. the

source window shows the source code of this subroutine, and only the symbols

(variable names etc.) visible within this subroutine are accessible by the symbol

browser (see chapter 1.2.2.2). The scope can be changed by the menu item

"Debug / Calls". Clicking this button moves the scope one level downward, i.e. from

the calling routine to the called one. The symbols known there are accessible now,

and the source window shows the text of this routine.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-53

1.2.3.9 Set Scope Here

If the execution enters a subroutine, the scope is set to this subroutine, i.e. the

source window shows the source code of this subroutine, and only the symbols

(variable names etc.) visible within this subroutine are accessible by the symbol

browser (see chapter 1.2.2.2). The scope can be changed by the menu item

"Debug / Calls". Clicking this button moves the scope back to the active subroutine,

i.e. the one being executed in the moment. The symbols known there are

accessible now, and the source window shows the text of this calling routine, the

line to be executed next being the current line.

1.2.3.10 Display/Hide Source Window

As the name suggests, this button displays the source window if it is hidden, or

hides it if it is displayed already. Identical to the menu item "Display / Source". The

source window is explained in chapter 1.3.2.

1.2.3.11 Display/Hide Assembler Window

Hides or displays the assembler window. See chapter 1.3.3 for a description of this

window.

1.2.3.12 Display/Hide Register Window

Like the menu item "Display / Register", this button hides or displays the register

window (which is explained in chapter 1.3.4).

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-54

1.2.3.13 Display/Hide Task Window

Like the menu item "Display / Task", this button hides or displays the task window .

1.2.3.14 Display/Hide Remote System Window

Displays or hides the remote system window (see chapter 1.3.6), like the menu item

"Display / Remote".

1.2.3.15 Evaluate

Does the same as the menu item "Debug / Evaluate". The user is asked to enter an

expression to be evaluated. The result is shown either in the command window or

in an evaluation window (see chapters 1.3.1 and 1.3.7). In the former case the

evaluation takes place only once while in the latter case every subsequent change

of the result is visible.

The symbols known at this time and scope can be obtained with the Browse

button. You find a detailed description of the symbol browser in chapter 1.2.2.

Organon XDB allows you to write expressions in more than one language. Open

the "Language" menu to see which languages are available. The language

Organon XDB expects is checkmarked. To change to another language, click the

language name.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-55

Enter the expression you want to be evaluated, using the current language. Choose

the Format you like the result to be in. If the expression denotes a pointer to a

character string or a character array, ascii might be useful. If you choose ascii , you

may enter the number of characters to be displayed into the Length field.

Memory access : Some processors allow byte-wise or word-wise memory access

only. If your target processor behaves this very restrictive way, click the sort of

access it accepts. In most cases, default works fine.

Level : If the expression denotes a structure containing sub-structures, you can

specify how many levels to step down into the structure.

Note that arrays may be evaluated partially, e.g. if A is an array of appropriate

length, A[2..5] denotes the elements 2, 3, 4, and 5.

If you click the Ok button, the result is printed to the command window. If you click

the Window button instead, an evaluation window is created.

1.2.3.16 Create Memory Window

This button is identical to the menu item "Display / Memory". It causes the creation

of a new memory window. The Browse button shows the addresses of all symbols

visible within this scope. You find a detailed description of the symbol browser in

chapter 1.2.2. More than one memory window may be open.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-56

1.2.3.17 Display Callstack

This button is identical to the menu item "Debug / Calls". The stack of procedure

calls is displayed. The procedures are listed with their names, addresses, and

arguments.

To change the scope of symbols visible to Organon XDB , click one of the

procedures, then click the Set Scope button. An alternative way to set the scope is

to doubleclick the procedure line. Note that continuing the execution changes the

scope back to the procedure being executed.

For performance reasons, the procedure arguments are shown only if you ask for

them. Click the Arguments button, and the window changes to:

1.2.3.18 Break

This button tries to stop the current action so that new commands can be entered.

Useful if the XDB waits for some event that takes too long or that never happens.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-57

1.3 Description of the Subwindows

The most informative part of Organon XDB is the subwindow area where different

sorts of subwindows may appear. As usual, all windows can be iconized and

reopened. Subwindows can also be hidden, (i.e. completely invisible), with the

exception of the command window which is always visible. Closing the command

window exits the XDB.

The uppermost subwindow is called the active subwindow. Depending on the sort of

subwindow being active, the behaviour of Organon XDB changes in some details

which are described in the following chapters. To activate another subwindow, just

click this window.

1.3.1 Command Window

In this window, you are prompted for commands as described in the Command

Reference. All diagnostics and error messages are written here.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-58

1.3.1.1 Command Window Editor

All the commands you give in the current session (including commands read from

batch files or issued by user-defined buttons) are kept in a buffer, enabling you to

repeat and edit them. The following commands are available:

Key Command

<Cursor up> go up one line

<Cursor down> go down one line

<Cursor left> move cursor left

<Cursor right> move cursor right

<PgUp> one page up

<PgDown> one page down

<Home> go to beginning of line

<End> go to end of line

<Delete> delete character at cursor position

<Backspace> delete character left of cursor

<Escape> delete whole line

Everything else you type is inserted into the line. When you hit <Return>, the

command is issued and executed.

You can change from insert mode to overstrike mode (and back again) by hitting

the <Insert> key.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-59

1.3.2 Source Window

This window shows the source code of the target program. Unless you switch to

another module by using the menu item "File / Set Module", the module being

executed is displayed. The left part of the source window shows the line numbers;

the source lines are displayed in the right part. A line number marked with a stop

sign indicates that this line contains a breakpoint. The current line, i.e. the line of

code to be executed next, is displayed inverted, i.e. white on black background. The

environment variable XDBTABLEN controls the position of the tabstops for

adjusting the source code. To mark a line for further manipulation (e.g. to set a

breakpoint), position the line pointer (the black arrow left of the line numbers) by

clicking the line. You can also move the line pointer by hitting the <Cursor up> and

<Cursor down> keys. To scroll up or down in the source window, you can use the

<PgUp> and <PgDown> keys.

Note: Not every line of code contains information useful for debugging purposes,

e.g. comment lines. The line numbers of such lines are written in a different color

and a blue point is placed behind the line number.

If you click the left part of the window (i.e. a line number) with the right mouse

button, the line pointer is set to this line, and the following menu appears:

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-60

You can click one of these items (or hit <Alt> + the underlined letter), and Organon

XDB will react as follows:

• Go here : Execute the program until the line pointer is reached. The line you

clicked is not executed.

• Set Breakpoint : Set a breakpoint at the specified line. This menu item is not

visible if a breakpoint exists already at this position. An alternative way to set a

breakpoint is to doubleclick the line number.

• Delete Breakpoint : Delete the breakpoint in this line. This menu item is visible

only if a breakpoint exists at this position. An alternative way to delete a

breakpoint is to doubleclick the line number.

• Run until caller : Useful in subroutines only. The execution is continued until it

returns to the calling routine. If the line containing the call is completely

processed upon the return, the next line becomes the current line. Otherwise the

calling line remains the current line. Example: The calling line stores the return

value of the subroutine in the variable a, viz:

a = sub(x, y);

When the execution is inside the subroutine sub() , you click Run until caller ,

and the rest of sub() is processed. Now the line above is still the current line;

sub() was processed but its return value is not yet stored in a.

• Run until return : Execute until the routine is left but still remain in this routine.

The current line is the last source line of the routine. If the execution is in the

main routine, it continues until the end of the program is reached.

• Set PC: The program counter is set to the line marked by the line pointer i.e. the

execution will continue by processing this line. This feature enables you to jump

over pieces of the program, leaving them unprocessed, or to repeat the

execution of a piece of the program. As this feature forces the program to

behave in a way its author has never intended, it should be used carefully.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-61

If some of the menu items cannot be applied to the source code line you clicked

(e.g. setting the program counter into a comment), these items are disabled.

If you mark a piece of source text with the left mouse button, then click the window

with the right mouse button, the following menu appears:

If you click one of these items (or hit <Alt> + the underlined letter), Organon XDB

will react as follows:

• Evaluate: The marked text is taken as an expression to be evaluated, as if you

issued the command EVALUATE . The result is printed to the command window.

• Evaluate from pointer: The marked text is taken as an expression to be

evaluated, as if you issued the command EVALUATE . The result of the

evaluation is taken as a pointer, and the contents of the memory this pointer

points to are displayed in the command window.

• Create evalwindow: The marked text is evaluated, and an evaluation window

which displays the result appears.

• Create evalwindow from pointer: Same as Evaluate from pointer , but the

result is displayed in an evaluation window.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-62

1.3.3 Assembler Window

This window shows the assembler code of the loaded task. Similar to the source

window, the current assembler instruction (i.e. the next to be executed) is displayed

inverted.

If you click the left part of the window (i.e. an address) with the right mouse button,

the line pointer is set to this line, and the following menu appears:

You can click one of these items (or hit <Alt> + the underlined letter), and Organon

XDB will react as follows:

• Go here : Execute the program until the line pointer is reached. The line you

clicked is not executed.

• Set Start Address : Start Address for the assembler window.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-63

• Home : Choosing this item makes the assembler window go back to the start

address.

• Set Breakpoint : Set a breakpoint at the specified line. This menu item is not

visible if a breakpoint exists already at this position. An alternative way to set a

breakpoint is to doubleclick the address.

• Delete Breakpoint : Delete the breakpoint in this line. This menu item is visible

only if a breakpoint exists at this position. An alternative way to delete a

breakpoint is to doubleclick the address.

• Run until caller : This item is useful only if the menu is called from the source

window. Thus, it is disabled.

• Run until return : This item is useful only if the menu is called from the source

window. Thus, it is disabled.

• Set PC: The program counter is set to the line marked by the line pointer i.e. the

execution will continue by processing this line. This feature enables you to jump

over pieces of the program, leaving them unprocessed, or to repeat the

execution of a piece of the program. As this feature forces the program to

behave in a way its author has never intended, it should be used carefully.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-64

1.3.4 Register Window

This window allows you to examine the contents of the registers. Registers which

were changed by the last instruction executed are displayed in a different color, the

so-called enhanced color (see menu item "Options / Edit Colors", chapter 1.2.1.6).

If you click the register window with the right mouse button, the following menu

appears:

Selector register or other registers

• • Value

You can change arbitrarily the value of the register in the register window. Just click

the word “Value“ in the context menu or doubleclick the value part of the register

window to make the Value window pop up. Enter an expression into the "Value"

field, then choose the appropriate Format . When you click Ok, the expression is

evaluated and its result is assigned to the register in the register window.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-65

1.3.5 Task Window

This window displays all currently active tasks. It shows the task names, XDB task

IDs, and the scope information of the tasks. You can doubleclick any task to make it

the current task for XDB. The scope info of this task is set and the source window is

updated to reflect this task’s source code.

If you click the task window with the right mouse button, this popup window

appears:

You can select each of these items to get the following actions:

• Set Task: Sets the scope of the currently highlighted task; this is equal to

doubleclicking this task.

• Task Info: Displays the output of the command "SHOW TASK /ID=<task_id>" in

the command window, where <task_id> is the ID of the highlighted task.

• Current Task: Sets the currently active task. As in RMOS the active task is the

current task, this is a "no operation". This menu item exists for compatibility

reasons only.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-66

1.3.6 Remote System Window

This window offers you access to the target system. Within the remote system

window you can’t use shortcuts (for example ^X,^R). Only the escape-character is

active and closes the remote window.

1.3.7 Evaluation Windows

These windows are opened when you evaluate an expression (see the menu item

"Debug / Evaluate", chapter 1.2.1.4, and the command SET EVALUATE in the

Command Reference). If the expression denotes a complex structure, like a record

or an array, all components are shown together with the declaration of the structure.

Whenever the result of the expression changes, the new value is displayed in a

different color, the so-called enhanced color (see menu item "Options / Edit Colors",

chapter 1.2.1.6). You can open as many evaluation windows as you want.

If the expression denotes a complex structure, like a record or an array, you can get

information about its type declaration by doubleclicking the left part of the

evaluation window.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-67

If you want to change the value of the expression, just doubleclick the value

displayed, and a pop-up window appears which allows you to manipulate the

memory, assuming the expression has a memory address.

If you click the window with the right mouse button, the cursor is set to this line, and

the following menu appears:

or

(if on a structure) (otherwise)

You can click one of these items (or hit <Alt> + the underlined letter), and XDB will

react as follows:

• • Value

You can change arbitrarily the value of the expression in the active evaluation

window. Just click the word “Value“ in the context menu or doubleclick the value

part of the evaluation window to make the Value window pop up. Enter an

expression into the "Value" field, then choose the appropriate Format . When you

click Ok, the expression is evaluated and its result is assigned to the address of the

expression in the active evaluation window.

If the expression has no address (e.g. "i+1"), Organon XDB will issue an error

message.

If the expression denotes a structured variable, you can change only one

component at a time. First click the component in the evaluation window, then

choose the item Value .

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-68

• Type

Clicking this item or doubleclicking the type part of the evaluation window makes

the Type window pop up, showing some information about the expression of the

active evaluation window, like its address and type declaration. Note that an

expression like "i+1" has a type but not an address.

You can summon this pop-up window by doubleclicking the left (i.e. component

name) part of the evaluation window.

• Follow

If the expression denotes a pointer, the Follow button makes the evaluation

window follow it and show the structure the pointer references to. Follow is

disabled if the expression is not a pointer.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-69

• Expand

If the expression denotes a structure, the Expand button replaces the current

evaluation window content with the detailed listing of the structure.

• • Back

If the evaluation window followed a pointer or expanded a structure (see below,

menu item "Value"), this item makes it go back again.

1.3.8 Memory Windows

A memory window displays a certain piece of the memory. Values that were

changed by the last instruction executed are displayed in a different color, the so-

called enhanced color (see menu item "Options / Edit Colors", chapter 1.2.1.6).

Memory windows are opened by the menu item "Display / Memory" or by the button

Create Memory Window . You can open as many memory windows as you want.

The title bar contains the name of the memory window. The text "[based] " is

displayed if the window is in based mode. The string "[?] " indicates that the window

is not updated automatically and something happened since the last update which

possibly changed the memory on display.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-70

The first line of the Memory Windows contains the start address. If the Memory

Window cursor is located at the address of a (program or XDB) symbol, the first line

of the window displays the symbol name inclusively the path of the respective

debug information.

In bytewise display, the contents of the memory are not only displayed numerically

but also interpreted as characters and written on the right side of the memory

window. Invisible characters are replaced by a dot.

Note that a window in based mode always displays the memory denoted by the

start address expression and, therefore, cannot be scrolled.

1.3.8.1 Memory Window Context Menu

If you click the memory part of the window (i.e. not the title bar, scroll bar or first

line) with the right mouse button, the following menu pops up:

The menu can also be summoned by typing <ctrl-Return> into the window.

You can choose an item from the menu by either clicking it or by typing the

underlined letter.

• Modify

Select this item if you want to change the memory contents. The following dialog

box pops up:

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-71

 You can enter the address where the modification starts (the memory window

cursor location is the default value for the address) and choose the size of the

information to be written. Click the Browse button to invoke the symbol browser

which helps you getting the addresses of program symbols. Enter the value to be

written into the Expression List field. As the name implies, you can enter a list

of expressions here, separated by commas. The amount of memory being

accessed is the size times the number of expressions. For example, if you enter

"1000" into the Start Address field and the list "1, 0, 1, 1" into the Expression

List field and select the size "BYTE", the bytes 1000 through 1003 are modified.

The same operation with the size "WORD" would affect the bytes 1000 through

1007.

• Start Address

 You can change the start address of the memory window by selecting this item.

Enter the new start address in the dialog box popping up. This dialog box also

offers the ability to invoke the symbol browser which helps you getting the

addresses of program symbols.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-72

• Reload

 This menu item updates the window contents. This is especially useful if the

memory window is not updated automatically.

• Home

 Choosing this item makes the window go back to the start address.

• Follow

 If the format is one of the pointer types "Near 16", "Far 16", etc., this menu item

makes the memory window follow the pointer marked by the memory window

cursor, i.e. the contents of the marked piece of memory are interpreted as

memory address which becomes the new start address. This menu item is

disabled if the format is not a pointer type.

• Back

 If the start address is changed by Start Address or Follow , the old start address

is saved. By selecting the menu item Back you reset the start address to its

previous value. Note that not only the last change but all changes done by

Start Address or Follow can be undone; in other words, you can go back to the

initial start address after an arbitrary number of address changes. If no previous

address exists, this menu item is disabled.

• Assembler

 This menu item opens the assembler window (unless it is open already). The

assembler window is set to the address marked by the memory window cursor.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-73

• Watchpoint

 Select this item to set a watchpoint to the location marked by the memory

window cursor. The dialog box popping up is the same as invoked by the main

menu item "Debug / Set Watchpoint" described in chapter 1.2.1.4.

• Size

 You can tell XDB how to group the array of bits it extracts from the memory. Click

the size you want or hit the underlined letter. The current size is checkmarked.

• Format

 This menu item enables you to change the display format of the memory window.

Click the format you want or hit the underlined letter. The current format is

checkmarked.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-74

• Based Mode

 If the start address of the memory window is not a constant expression, you may

want the memory window to follow whenever the value of the expression

changes. This is the so-called based mode. You can toggle between based

mode and constant mode by selecting this item. The menu item is checkmarked

if the memory window is in based mode. Note that the automatical start address

change of a based memory window cannot be undone by means of the item

Back .

• Auto Update

 If this item is checkmarked, the window is updated automatically whenever the

memory on display is changed. Otherwise, it is updated only when you select the

menu item Reload . You can toggle between these two update modes by

selecting Auto Update .

1.3.9 Trace Windows

Tracepoints can be used to watch a piece of memory, e.g. a variable. You can set a

tracepoint using the Debug menu in the tool bar (see chapter 1.2.1.4), or you can

issue the SET TRACEPOINT command in the command window. A trace window is

opened for every tracepoint, and the value stored in the memory to be traced is

displayed.

If a value has changed in the last execution step, it is displayed in a different color,

the so-called enhanced color (see menu item "Options / Edit Colors", chapter

1.2.1.6) to catch your attention.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-75

Here you see two trace windows which were named "trace[0]" and "trace[1]" by the

debugger. trace[0] was set on the integer variable J which has the value 4 at the

moment. The variable D0 is a compound structure, thus Organon XDB shows the

structure component names in the left part of the trace window while displaying the

values of these components in the right part. The value of the component RFS is

displayed in enhanced color because it was changed in the last execution step.

The handling of trace windows is - excepted the missing Pop-Up menues available

by pressing the the right mouse button - exactly the same as the handling of

evaluation windows.

1.3.10 Copy and Paste

It is possible to transfer text from one subwindow to another by using the mouse.

Just brush over the text with the mouse while pressing down the left mouse button.

To paste the copied text into another window, move the mouse into this window and

click the right mouse button. Note that the text copied into the copy-and-paste

buffer remains there until you mark another text.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-76

You can copy text from the following subwindows:

Command window, source window, assembler window, remote window.

You can paste the copied text into the following subwindows:

Command window, remote window.

When you choose the menu item "Debug / Evaluate" or click the Evaluate button, a

pop-up window appears where you enter the expression to be evaluated. If you

have copied text into the copy-and-paste buffer, this text is the default value for the

expression. The same holds for the Search command which can be issued by

clicking the Search button or choosing the menu item "File / Search": When the

search window pops up, the content of the copy-and-paste buffer is in the pattern

field already.

Example:

Examining the C program displayed in the source window, you wonder whether the

condition in the if-statement on line 23 is true in the moment:

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-77

You place the mouse at the beginning of the condition, press down the left mouse

button, and drag the mouse across the condition, marking it:

Now you click the tool bar button Evaluate , and this window pops up:

The expression you marked is already in the Expression field. All you have got to

do is to click the Ok button, and the result appears in the command window.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-78

1.4 Descriptor and Register Tables

The menu item "Display / CPU-Structures" gives access to the CPU structures used

by the processors Intel386 and upward. Open the menu and choose the table you

want to manipulate by clicking it (or by hitting <Alt> and the underlined letter).

If one of these tables is displayed already, its name is checkmarked. Clicking this

name is the appropriate way to dismiss the table.

1.4.1 Descriptor Tables

If you choose to display the GDT (Global Descriptor Table) or the IDT (Interrupt

Descriptor Table), the following dialog box pops up:

Enter the number of the first table item to be displayed into the Table Start field and

activate the button Index or enter the selector into the Table Start field and activate

the button Selector (The Selector option makes sense only in the case of a GDT

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-79

and is therefore disabled in the IDT case). Write the number of items to be

displayed into the Length field, then click Ok or hit <Return>.

A similar dialog box appears when you choose to display an LDT (Local Descriptor

Table). Additionally to the items mentioned above, you have to choose which LDT

to display by entering the appropriate GDT index number; to display the LDT of the

current task (which is referenced to by the LDTR register), activate the LDTR

button.

Now, the descriptor table is loaded from the target. During loading the following is

displayed:

Afterwards the descriptor table is displayed:

If you want to change the table or examine an item in detail, click it with the right

mouse button to summon this pop-up menu:

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-80

Choose one of the items by clicking it or by hitting <Alt> and the underlined letter.

The items are described in the following chapters.

If you hit <Return> while the descriptor table window is active, Organon XDB

directly goes into the modify mode, skipping the pop-up menu. The descriptor to be

modified is the one being displayed in inverted colors in the descriptor table

window.

1.4.1.1 Modify

The following dialog box enables you to examine or modify the chosen item of the

GDT, LDT, or IDT:

The modification becomes effective when you click the Set button. The Close

button dismisses the dialog box, discarding all changes you made. Clicking the

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-81

Restore button discards all changes made since the opening, but the dialog box

remains open.

To change the type of the descriptor, open the Descriptor Type pull-down menu

and choose one of the offered types. You can modify the values of the segment

base address and the segment limit by entering a number (octal, decimal, or hex).

The Descriptor Layout field helps you modifying the contents of the descriptor bit

for bit. Click the bit or bit group (or its name displayed in the field) to set the focus

on it. The focused bit or bit group can be altered by a click or by hitting the space

bar. This increases the value of the bit group by 1 (wrapping around the maximal

value). The focus can be moved left or right with the "cursor left" and "cursor right"

keys.

Some bit groups are so large that changing them in the manner described above

would be cumbersome. Thus, a different mechanism to change their contents was

implemented: Just doubleclick the bit group (or its name displayed in the layout

field), then enter the new value as a decimal, octal or hex number. Bit groups with

this change mechanism are displayed hatched, viz:

You find a short description of the focused bit group and its current value below the

Descriptor Layout field. The Description field at the bottom of the box shows a

summary of the contents of the descriptor.

Changed bits are displayed in enhanced color in the Descriptor Layout field.

Bits which are not accessible directly (i.e. by clicking them in the Descriptor

Layout field) are displayed in gray, indicating they are "disabled".

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-82

1.4.1.2 Reload Table

The descriptor table is not updated automatically when the target memory is

changed (e.g. by performing a step). Choose this menu item to update the table on

display. Note that the whole table on display is updated; it does not matter which

line was clicked to summon the pop-up menu.

1.4.1.3 Set Range

This menu item enables you to change the range of the list of descriptors on

display. Enter the number of the first table item to be displayed and the number of

items to be displayed, then click Ok or hit <Return>.

1.4.2 Control Registers

If you choose to display the control registers, the following window appears:

Clicking a line with the right mouse button summons the following menu whose

items are explained in the chapters below:

If you hit <Return> while the control register table window is active, Organon XDB

directly goes into the modify mode, skipping the pop-up menu. The register to be

modified is the one being displayed in inverted colors in the register table window.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-83

1.4.2.1 Modify

The following dialog box enables you to examine or modify the selected register:

The modification becomes effective when you click the Set button. The Close

button dismisses the dialog box, discarding all changes you made. Clicking the

Restore button discards all changes made since the opening, but the dialog box

remains open.

You can change the whole register value by entering a number (octal, decimal or

hex) into the Register Value field.

You can change the value of a bit group by clicking it (or its name) in the Register

Layout field, then set the focus to the Group Value field and enter a number (octal,

decimal or hex). The Bits field shows which bits belong to this group.

The Register Layout field helps you modifying the contents of the descriptor bit for

bit. Click the bit or bit group (or its name displayed in the field) to set the focus on it.

The focused bit or bit group can be altered by a click or by hitting the space bar.

This increases the value of the bit group by 1 (wrapping around the maximal value).

The focus can be moved left or right with the "cursor left" and "cursor right" keys.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-84

Some bit groups are so large that changing them in the manner described above

would be cumbersome. Thus, a different mechanism to change their contents was

implemented: Just doubleclick the bit group (or its name displayed in the layout

field), then enter the new value as a decimal, octal or hex number. Bit groups with

this change mechanism are displayed hatched, viz:

You find a short description of the focused bit group and the meaning of its current

value below the Register Layout field. The Description field at the bottom of the

box shows a detailed explanation of the contents of the register.

Changed bits are displayed in enhanced color in the Register Layout field.

Bits which are not accessible directly (i.e. by clicking them in the Register Layout

field) are displayed in gray, indicating they are "disabled".

Some registers contain only numerical values rather than single and independent

bits. These registers are displayed without the Register Layout field, e.g. the

register IDTR:

To change the register value, set the focus to one of the value fields (i.e. click the

field or hit <Alt> and the underlined letter), then enter a number (octal, decimal or

hex).

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-01 1-85

1.4.2.2 Update

The control register table is not updated automatically when the target CPU

registers change (e.g. by performing a step). Choose this menu item to update the

table on display. Note that the whole table on display is updated; it does not matter

which line was clicked to summon the pop-up menu.

1.4.3 Register Window

The Organon XDB386 offers the ability to manipulate the register contents. This

feature is explained in this chapter.

1.4.3.1 General Registers

If you click a register name or register value with the right mouse button, this menu

appears:

Only the first item, Value , is enabled. Select it to summon the following dialog box.

This dialog box also pops up if you doubleclick the register value, circumventing the

menu.

The Format radio buttons determine the display format of the value. You can

change the register value by entering an expression into the Value field. The

change takes place if you click Ok or hit <Return>. Note that the Follow button is

always disabled.

Organon XDB User Interface

Debugging C Programs
C79000-G7076-C520-011-86

1.4.3.2 Segment Registers

The behaviour of the segment registers CS, ES, DS, etc, is somewhat different.

Clicking one of them with the right mouse button summons this menu:

Only the items Value and Descriptor are enabled. The item Value is described in

the previous chapter. Selecting Descriptor activates the descriptor modification

mechanism described in chapter 1.4.1.1.

Both menu items can be selected without summoning the menu. Doubleclick the

segment register name to activate the descriptor modification mechanism or

doubleclick the segment register value to activate the value modification

mechanism.

Debugging C Programs
C79000-G7076-C520-01 2-1

Organon XDB Command Set 2
2 Organon XDB Command Set 2-5

2.1 BATCH 2-6

2.2 BREAK 2-8

2.3 CLOSE 2-9

2.4 CONTINUE 2-10

2.5 DEFINE Commands 2-11

2.6 DEFINE BUTTON 2-12

2.7 DEFINE KEY 2-13

2.8 DEFINE MACRO 2-15

2.9 DEFINE SYMBOL 2-17

2.10 DELETE Commands 2-18

2.11 DELETE BREAKPOINT 2-19

2.12 DELETE BUTTON 2-20

2.13 DELETE DEBUG 2-21

2.14 DELETE DIRECTORY 2-22

2.15 DELETE EVALUATE 2-23

2.16 DELETE KEY 2-24

2.17 DELETE MACRO 2-25

2.18 DELETE MODULE 2-26

2.19 DELETE TRACEPOINT 2-27

2.20 DELETE WATCHPOINT 2-28

2.21 DISABLE Commands 2-29

2.22 DISABLE BREAKPOINT 2-30

2.23 DISABLE EVALUATE 2-32

2.24 DISABLE TRACEPOINT 2-33

2.25 DISABLE WATCHPOINT 2-35

2.26 DISPLAY 2-37

2.27 DISPLAY Descriptor Table 2-39

2.28 DISPLAY SYSREG 2-40

2.29 ENABLE Commands 2-41

2.30 ENABLE BREAKPOINT 2-42

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-2

2.31 ENABLE EVALUATE 2-43

2.32 ENABLE TRACEPOINT 2-44

2.33 ENABLE WATCHPOINT 2-45

2.34 ERASE 2-46

2.35 ERASE SYSREG 2-47

2.36 EVALUATE 2-48

2.37 EXIT 2-51

2.38 GOTO 2-52

2.39 HELP 2-53

2.40 IF 2-54

2.41 Label 2-56

2.42 LINE 2-57

2.43 LOAD 2-59

2.44 MESSAGE 2-62

2.45 NEXT 2-63

2.46 PAGE 2-64

2.47 PRINT 2-66

2.48 REMOTE 2-67

2.49 RUN 2-68

2.50 SCAN 2-70

2.51 SEARCH 2-71

2.52 SET Commands 2-72

2.53 SET BREAKPOINT 2-73

2.54 SET DEBUG 2-76

2.55 SET DESCRIPTOR 2-78

2.56 SET DIRECTORY 2-80

2.57 SET ESCAPE 2-81

2.58 SET EVALUATE 2-82

2.59 SET INTERFACE 2-85

2.60 SET LANGUAGE 2-86

2.61 SET LOGFILE 2-87

2.62 SET MODULE 2-88

2.63 SET OPTION 2-89

2.64 SET PROTFILE 2-92

2.65 SET REGISTER 2-94

2.66 SET SCOPE 2-97

2.67 SET SCROLL 2-99

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-3

2.68 SET TASK 2-100

2.69 SET TRACEPOINT 2-102

2.70 SET VALUE 2-104

2.71 SET WATCHPOINT 2-109

2.72 SHOW Commands 2-112

2.73 SHOW ACTIVE 2-113

2.74 SHOW BREAKPOINT 2-114

2.75 SHOW BUTTON 2-115

2.76 SHOW CALLS 2-116

2.77 SHOW DBVAR 2-118

2.78 SHOW DEBUG 2-119

2.79 SHOW DECLARATOR 2-120

2.80 SHOW DESCRIPTOR 2-121

2.81 SHOW DIRECTORY 2-124

2.82 SHOW ESCAPE 2-125

2.83 SHOW EVALUATE 2-126

2.84 SHOW INFO 2-127

2.85 SHOW KEY 2-128

2.86 SHOW LANGUAGE 2-129

2.87 SHOW LEVEL 2-130

2.88 SHOW LOGFILE 2-131

2.89 SHOW MACRO 2-132

2.90 SHOW MEMORY 2-133

2.91 SHOW MODULE 2-135

2.92 SHOW OPTION 2-136

2.93 SHOW PROTFILE 2-137

2.94 SHOW REGISTER 2-138

2.95 SHOW SCOPE 2-139

2.96 SHOW SEGMENT 2-140

2.97 SHOW SOURCE 2-141

2.98 SHOW STATUS 2-142

2.99 SHOW SYMBOL 2-143

2.100 SHOW TASK 2-144

2.101 SHOW TRACEPOINT 2-145

2.102 SHOW TYPE 2-146

2.103 SHOW VERSION 2-147

2.104 SHOW WATCHPOINT 2-148

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-4

2.105 SPAWN 2-149

2.106 STEP 2-150

2.107 WHILE 2-164

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-5

2 Organon XDB Command Set

Organon XDB contains a rich set of commands. These commands are listed in

alphabetical order below:

BATCH EXIT REMOTE

BREAK GOTO RUN

CLOSE HELP SCAN

CONTINUE IF SEARCH

DEFINE Label SET

DELETE LINE SHOW

DISABLE LOAD SPAWN

DISPLAY MESSAGE STEP

ENABLE NEXT WHILE

ERASE PAGE

EVALUATE PRINT

Note that commands and keywords may be abbreviated as long as they are

unambiguous. E.g., "DEF" is recognized as "DEFINE" while "DIS" is illegal because

it could mean "DISABLE" as well as "DISPLAY".

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-6

2.1 BATCH

Syntax

BATCH [/STEP] [/ERROR] [/NOOUT] [/ARGUMENTS = " arg1 [, arg2 ...]"] "< filename >"

Description

<filename>

The name of the batch file. To avoid problems with path names including

special characters, the file name must be enclosed in double quotes.

/STEP

This option forces single-stepping through the batch file (and its possible

recursive descendants), asking for every command to be executed. The

command is shown at the command window.

There are four choices for each command:

Choice Description

y execute the command

s skip the command

c continue without asking anymore

e exit batch mode and return to interactive mode

/ERROR

This option stops the execution of commands if XDB detects an error, and

returns to interactive mode.

/NOOUT

This option switches off any update of windows except the error window

during execution of a BATCH file.

/ARGUMENTS="arg1[,arg2...]"

This option allows to pass arguments to BATCH files. Up to 40 arguments

are allowed. An argument is referenced with &<argument-number>. The

argument 0 contains the name of the BATCH file. To suppress the expansion

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-7

of a positional parameter use a '\' (backslash) character as prefix. Undefined

parameters are treated as empty strings. The parameters are passed as

textual strings.

The qualifiers /STEP, /NOOUT, and /ERROR are propagated through nested

batch file calls.

Examples

BATCH /STEP "cmdfile"
BATCH /ERROR "validate"
BATCH /STEP /ERROR "test"
BATCH "..\cmddir\setup"

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-8

2.2 BREAK

Syntax

BREAK

Description

BREAK terminates the current WHILE loop. This command has no effect if

called outside a loop.

Example

WHILE i > 10
 THEN
 EVAL j
 IF j < 20
 THEN
 BREAK
 END
END

References

WHILE

CONTINUE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-9

2.3 CLOSE

Syntax

CLOSE LOGFILE
CLOSE PROTFILE/WINDOW = <window >
CLOSE PROTFILE/ALL

Description

CLOSE stops writing into the specified logfile or protocol file. If the last

window of a protocol file is closed, the file itself is closed, too.

<window> may have the following names:

ASSEMBLER EVALUATE TRACEPOINT

COMMAND REGISTER

ERROR SOURCE

/ALL closes all protocol files immediately.

Examples

CLOSE LOGFILE "session"
CLOSE PROTFILE /WINDOW=EVAL
CLOSE PROTFILE /ALL

References

SET LOGFILE

SET PROTFILE

SHOW LOGFILE

SHOW PROTFILE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-10

2.4 CONTINUE

Syntax

CONTINUE

Description

CONTINUE skips the remaining part of a loop and resumes at the test

expression.

Example

WHILE i > 10
 THEN
 EVAL i
 IF j < 10
 THEN
 CONTINUE
 END
 EVALUATE j
END

References

BREAK

WHILE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-11

2.5 DEFINE Commands

Syntax

DEFINE < item >

The item <item> to be defined can be one of the following:

BUTTON

KEY

MACRO

SYMBOL

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-12

2.6 DEFINE BUTTON

Syntax

DEFINE BUTTON [/OVERWRITE] < name> "< text >"

Description

The DEFINE BUTTON command creates a new button in the toolbar of the

command window. Whenever this button is pressed, the string <text> is sent

to the command line processor.

/OVERWRITE

Redefining an existing button causes an error message. But it is possible to

redefine a button if the qualifier /OVERWRITE is used. In this case only a

warning message appears.

Examples

DEFINE BUTTON step "step\n"
DEFINE BUTTON break "SET breakpoint at "
DEFINE BUTTON Assem "SET language assembler\n"
DEFINE BUTTON /OVERWRITE oldbutton "newcommand"

References

DELETE BUTTON

SHOW BUTTON

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-13

2.7 DEFINE KEY

Syntax

DEFINE KEY [/OVERWRITE] < key > "< text >"

Description

The function key with the symbolic code <key> is defined to send the text

<text>.

Unlike the other DEFINE commands redefining an existing key causes no

error or warning message.

/OVERWRITE

Although redefining a key without the qualifier /OVERWRITE causes no

warning message it is good practice to use this qualifier for redefining.

Currently possible key codes are:

Key Code Name

F1

:

F9

function key

:

function key

F11

:

F20

function key

:

function key

F21

:

F24

function key

:

function key

Function Key F10 is reserved for Windows.

A defined key does not send the newline character automatically; thus, a

command can be combined by pressing a couple of function keys. If a string

is to be sent to the debugger immediately, add the newline escape "\n"

(backslash -n) to the end of the string.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-14

XDB does not check whether the key is really available on your current

terminal.

Examples

DEFINE KEY F1 "set break at"
DEFINE KEY /OVERWRITE F2 "step\n"
DEFINE KEY F3 "/ALL"

References

SHOW KEY

DELETE KEY

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-15

2.8 DEFINE MACRO

Syntax

DEFINE MACRO [/OVERWRITE] [/BUTTON] < name> "< text >"

Description

<name>

The macro <name> is defined. <name> is a name consisting of letters and

digits. The first character has to be a letter. The names of internally

predefined variables and macro functions must not be used (see SET

VALUE). <text> is the replacement text of the macro. <text> can contain

more than one line. The maximum number of parameters for a macro is 20.

These parameters can be addressed by @<number>. The macro may

contain any text. Macros cannot be used recursively.

The execution of the macro on the command level is done by:

@name (parameter1,...,parameter9)

Only the parameters actually used must be specified. The others are

replaced by empty strings. The macro is replaced, and the replacement text

is interpreted like any other input. Macros can be nested and used as

parameters to other macros. The parameters are expanded during the

scanning of the parameter list. If no parameters are given, the parentheses

may be omitted. Macros must not be recursive!

Macros and debugger variables use the same designations. In case of equal

names, the macro definition is used.

/OVERWRITE

Redefining an existing macro causes an error message. But it is possible to

redefine a macro if the qualifier /OVERWRITE is used. In this case only a

warning message appears.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-16

/BUTTON

It is possible to define toolbar buttons for the macro by using the /BUTTON

qualifier. The macro is executed whenever the associated button is pressed.

If a macro body spans more than 1 line, a '\' (backslash) character must be

entered immediately before the newline character. If the macro contains

more than one command, the commands must be separated by semicolons.

Examples

DEFINE MACRO MAC0 "SET BREAK AT @1"
DEFINE MACRO CONTINUE "RUN"
DEFINE MACRO FILENAM "testset.@1"
DEFINE MACRO /OVERWRITE OLDMAC "parr@1[@2]"
DEFINE MACRO /BUTTON Symbols "SHOW ACTIVE @1"

Some macro invocations:

@MAC0 (@LINE20)
SET LOGFILE @FILENAM(log)
@MAC1 (BREAKPOINT,main)

References

DELETE MACRO

SHOW MACRO

SHOW BUTTON

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-17

2.9 DEFINE SYMBOL

Syntax

DEFINE SYMBOL [/OVERWRITE]
 [/ADDRESS = < expression >]
 [/TYPE = "< type >"]
 [/VALUE = < expression >]
 < symbol-name >

Description

This command generates a symbol called <symbol-name> which behaves

like a debugger variable or a program symbol. The optional parameter /TYPE

can be used to define a type for the symbol. To store an initial value, use the

/VALUE option.

/ADDRESS = <expression>

This optional parameter specifies the address of the symbol. If no address is

given, the symbol is taken to be a debugger variable.

/OVERWRITE

By default, overwriting an existing symbol causes an error message. If this

option is set, only a warning message is issued, and the old symbol is

destroyed.

Examples

DEFINE SYMBOL /TYPE="int" /VALUE=-1 n
DEFINE SYMBOL /OVERWRITE /ADDRESS=2000 main

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-18

2.10 DELETE Commands

Syntax

DELETE <item >

The item to be deleted, <item>, may be one of the following:

BREAKPOINT KEY

BUTTON MACRO

DEBUG MODULE

DIRECTORY TRACEPOINT

EVALUATE WATCHPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-19

2.11 DELETE BREAKPOINT

Syntax

DELETE BREAKPOINT AT < expression >
DELETE BREAKPOINT /ID = < halt-id >
DELETE BREAKPOINT /ALL

Description

A breakpoint is deleted. It can be selected by the ID number or the location

where it is set.

AT <expression>

The expression which yields the address of the breakpoint to be deleted.

/ID=<halt-id>

This is a decimal number or a debugger variable. <halt-id> is the number of

the breakpoint to be deleted.

The ID number and expression of the deleted breakpoint are displayed in the

command window.

/ALL

This option deletes all specified breakpoints.

Examples

DELETE BREAKPOINT AT main\@LINE 256
DELETE BREAKPOINT /ID=5
DELETE BREAKPOINT /ALL
DELETE BREAKPOINT AT main

References

DISABLE BREAKPOINT

ENABLE BREAKPOINT

SHOW BREAKPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-20

2.12 DELETE BUTTON

Syntax

DELETE BUTTON <name>
DELETE BUTTON /ALL

Description

This command can be used to delete a user-defined button. <name> is the

name of the button to be deleted. The option /ALL deletes all user-defined

buttons in the tool bar.

Examples

DELETE BUTTON break
DELETE BUTTON /ALL

References

DEFINE BUTTON

SHOW BUTTON

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-21

2.13 DELETE DEBUG

Syntax

DELETE DEBUG <debug-id >

Description

This command deletes the debug information tree addressed by <debug-id>.

This is useful if a loaded module is changed and compiled again. By deleting

and reloading the debug info the changed version can be debugged without

a restart of the debugger.

Example

DELETE DEBUG 12

References

LOAD /DEBUG

SET DEBUG

SHOW DEBUG

Note

The debug id 0 cannot be deleted.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-22

2.14 DELETE DIRECTORY

Syntax

DELETE DIRECTORY "<name>"

Description

The directory named <name> is deleted from the list of directories in the

search path.

Example

DELETE DIRECTORY "oldsrcs"

References

SET DIRECTORY

SHOW DIRECTORY

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-23

2.15 DELETE EVALUATE

Syntax

DELETE EVALUATE <expression >
DELETE EVALUATE /ID = < eval-id >
DELETE EVALUATE /ALL

Description

Removes a member from the list of expressions which are to be evaluated at

every program halt.

<expression>

Deletes all items with an equal expression stored.

/ID = <eval-id>

The expression with the ID number <eval-id> is selected.

/ALL

All expressions from the list are deleted.

Examples

DELETE EVALUATE globstat
DELETE EVALUATE /ID = 3

References

DISABLE EVALUATE

ENABLE EVALUATE

SET EVALUATE

SHOW EVALUATE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-24

2.16 DELETE KEY

Syntax

DELETE KEY < name>
DELETE KEY /ALL

Description

<name>

Deletes the user-definition of the specified key <name>.

/ALL

All user-defined function keys are deleted.

Examples

DELETE KEY F1
DELETE KEY /ALL

References

DEFINE KEY

SHOW KEY

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-25

2.17 DELETE MACRO

Syntax

DELETE MACRO <name>
DELETE MACRO /ALL

Description

<name>

Delete the macro <name>. The macro <name> must be specified without the

leading '@'. Otherwise the content of <name> is considered to be the macro

to be deleted.

/ALL

All currently defined macros are deleted.

Examples

DELETE MACRO getid
DELETE MACRO /ALL

References

DEFINE MACRO

SHOW MACRO

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-26

2.18 DELETE MODULE

Syntax

DELETE MODULE <name>
DELETE MODULE /ALL

Description

This command frees all dynamic memory space needed by the debug

information of the selected module(s). All symbol and line number

information for the selected module are deleted. To regain the information,

the module must be reloaded using the command SET MODULE.

<name>

The module <name> of the internal module list is deleted. This name is not

the file name of the source module. It contains no path name and extension.

/ALL

All modules from the module list are deleted.

The command is invoked internally by XDB when it runs out of heap space.

The current module of the program cannot be deleted.

Use the command SHOW DEBUG to obtain the current status of the

modules.

Examples

DELETE MODULE fileio
DELETE MODULE /ALL

References

SET MODULE

SHOW DEBUG

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-27

2.19 DELETE TRACEPOINT

Syntax

DELETE TRACEPOINT AT < expression >
DELETE TRACEPOINT /ID = < halt-id >
DELETE TRACEPOINT /ALL

Description

A tracepoint is deleted. It can be selected by the ID number or the location

where it is set.

AT <expression>

The expression which yields the address where the tracepoint to be deleted

is located.

/ID=<halt-id>

This is a decimal number or a debugger variable. <halt-id> is the number of

the tracepoint to be deleted.

The ID number and the expression of the deleted tracepoint are displayed in

the command window.

/ALL

This option deletes all specified tracepoints.

Examples

DELETE TRACEPOINT AT main\buffercount
DELETE TRACEPOINT AT globptr
DELETE TRACEPOINT /ID=5
DELETE TRACEPOINT /ALL

References

DISABLE TRACEPOINT

ENABLE TRACEPOINT

SHOW TRACEPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-28

2.20 DELETE WATCHPOINT

Syntax

DELETE WATCHPOINT AT <expression >
DELETE WATCHPOINT /ID = < halt-id >
DELETE WATCHPOINT /ALL

Description

A watchpoint is deleted. It can be selected by the ID number or the location

where it is set.

AT <expression>

The expression which yields the address where the watchpoint to be deleted

is located.

/ID=<halt-id>

This is a decimal number or a debugger variable. <halt-id> is the number of

the watchpoint to be deleted.

The ID number and the expression of the deleted watchpoint are displayed in

the command window.

/ALL

This option deletes all specified watchpoints.

Examples

DELETE WATCHPOINT AT main\buffercount
DELETE WATCHPOINT AT globptr
DELETE WATCHPOINT /ID=5
DELETE WATCHPOINT /ALL

References

DISABLE WATCHPOINT

ENABLE WATCHPOINT

SHOW WATCHPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-29

2.21 DISABLE Commands

Syntax

DISABLE < item >

The item <item> can be one of the following:

BREAKPOINT

EVALUATE

TRACEPOINT

WATCHPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-30

2.22 DISABLE BREAKPOINT

Syntax

DISABLE BREAKPOINT AT < expression >
DISABLE BREAKPOINT /ID = < halt-id >
DISABLE BREAKPOINT /ALL

Description

A breakpoint is set inactive. This means that a program does not stop at

such a haltpoint. However, XDB preserves all information about the selected

haltpoints in the internal tables. Therefore it is easy to activate them again.

This is very useful if you want to reuse haltpoints with complex conditions

and actions later.

<expression>

This is the expression which yields the address where a breakpoint is

located.

/ID= <halt-id>

This is the number of the breakpoint to be set inactive. It is a decimal number

or a debugger variable containing the ID number.

/ALL

All breakpoints are set inactive.

On the target system this breakpoint is really cleared. The resources (like

debug registers) used by the disabled breakpoint can be reused.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-31

Examples

DISABLE BREAKPOINT AT putrecord
DISABLE BREAKPOINT AT calculate\erg0
DISABLE BREAKPOINT AT @LINE 170
DISABLE BREAKPOINT /ALL

References

DELETE BREAKPOINT

ENABLE BREAKPOINT

SET BREAKPOINT

SHOW BREAKPOINT

Note

The option /HARD is lost by using ENABLE or DISABLE BREAKPOINT command.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-32

2.23 DISABLE EVALUATE

Syntax

DISABLE EVALUATE < expression >
DISABLE EVALUATE /ID = < id >
DISABLE EVALUATE /ALL

Description

The denoted expression is not evaluated anymore but still remains in the list

of expressions to be evaluated.

<expression>

The item with this expression is disabled. Note that <expression> has to

match literally the expression to be disabled, e.g. "a+b" does not match

"b+a".

/ID = <eval-id>

The expression with the ID number <eval-id> is disabled.

/ALL

All expressions from the list are disabled.

Examples

DISABLE EVALUATE globstat
DISABLE EVALUATE /ID = 3

References

DELETE EVALUATE

ENABLE EVALUATE

SET EVALUATE

SHOW EVALUATE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-33

2.24 DISABLE TRACEPOINT

Syntax

DISABLE TRACEPOINT AT < expression >
DISABLE TRACEPOINT /ID = < halt-id >
DISABLE TRACEPOINT /ALL

Description

A tracepoint is set inactive. This means that XDB does no longer check the

memory location until this tracepoint is set active again by the ENABLE

TRACEPOINT command. However, XDB preserves all information about the

selected tracepoints in the internal tables. Therefore it is easy to activate

them again.

<expression>

This expression yields the address where a tracepoint is located.

/ID= <halt-id>

This is the number of the tracepoint to be set inactive. It is a decimal number

or a debugger variable containing the ID number.

/ALL

All tracepoints are set inactive.

On the target system this tracepoint is really cleared. The resources (like

debug registers) used by the disabled tracepoint can be reused.

Examples

DISABLE TRACEPOINT AT putrecord
DISABLE TRACEPOINT AT calculate\erg0
DISABLE TRACEPOINT /ID=@BRKSYM1
DISABLE TRACEPOINT /ALL

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-34

References

DELETE TRACEPOINT

ENABLE TRACEPOINT

SET TRACEPOINT

SHOW TRACEPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-35

2.25 DISABLE WATCHPOINT

Syntax

DISABLE WATCHPOINT AT < expression >
DISABLE WATCHPOINT /ID = < halt-id >
DISABLE WATCHPOINT /ALL

Description

A watchpoint is set inactive. This means that a program does not stop at

such a haltpoint. However, XDB preserves all information about the selected

haltpoints in the internal tables. Therefore it is easy to activate them again.

This is very useful if haltpoints with complex conditions and actions are to be

deleted temporarily.

<expression>

This is the expression which yields the address where a watchpoint has been

set.

/ID= <halt-id>

This is the number of the watchpoint to be set inactive. It is a decimal

number or a debugger variable containing the ID number.

/ALL

All watchpoints are set inactive.

On the target system this watchpoint is really cleared. The resources (like

debug registers) used by the disabled watchpoint can be reused.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-36

Examples

DISABLE WATCHPOINT AT putrecord
DISABLE WATCHPOINT AT calculate\erg0
DISABLE WATCHPOINT /ID=@BRKSYM1
DISABLE WATCHPOINT /ALL

References

DELETE WATCHPOINT

ENABLE WATCHPOINT

SET WATCHPOINT

SHOW WATCHPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-37

2.26 DISPLAY

Syntax

DISPLAY < window >

Description

With this command, it is possible to display additional windows. These

windows can be displayed (and erased) at any time during the debugging

session.

DISPLAY <window>

<window> may have the following values:

ASSEMBLER MODULE SYSREG

GDT REGISTER TASK

IDT REMOTE

LDT SOURCE

DISPLAY ASSEMBLER

Displays the assembler window.

DISPLAY MODULE

Displays the module window. This window shows all modules which are

mentioned in the debug information.

DISPLAY REGISTER

Displays the register window.

DISPLAY REMOTE

Displays the remote window which works like a terminal and shows the

output of the RMOS low level debugger. For details see REMOTE.

DISPLAY SOURCE

Displays the source window.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-38

DISPLAY TASK

Displays the task window.

DISPLAY GDT
DISPLAY IDT
DISPLAY LDT
DISPLAY SYSREG

These commands are described in the sections following.

Examples

DISPLAY ASSEMBLER
DISPLAY REMOTE

Reference

ERASE

REMOTE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-39

2.27 DISPLAY Descriptor Table

Syntax

DISPLAY GDT [/REPEAT = < count >] [< first >]
DISPLAY IDT [/REPEAT = < count >] [< first >]
DISPLAY LDT [/REPEAT = < count >] [/GDT = < index >] [< first >]

Description

A window displaying one of the descriptor tables GDT (Global Descriptor

Table), LDT (Local Descriptor Table) or IDT (Interrupt Descriptor Table) is

opened.

<first>

This optional expression denotes the number of the first table entry to be

displayed. The default value is 1 for the GDT and 0 otherwise.

/REPEAT=<count>

The expression <count> specifies the number of table entries to be

displayed. If this option is not specified, 64 entries will be displayed.

/GDT=<index>

The expression <index> denotes the number of the GDT entry. This entry

must be an LDT selector. If this option is not specified, the register LDTR is

taken so that the descriptor table of the current task will be displayed.

Examples

DISPLAY IDT
DISPLAY GDT /REPEAT = 20 1
DISPLAY LDT /REPEAT=5 /GDT=1

Reference

ERASE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-40

2.28 DISPLAY SYSREG

Syntax

DISPLAY SYSREG /< register >

Description

DISPLAY SYSREG displays the system register windows. <register> may

have the following value:

CONTROL

/CONTROL

The 80386 control register window is displayed.

Example

DISPLAY SYSREG /CONTROL

Reference

ERASE SYSREG

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-41

2.29 ENABLE Commands

Syntax

ENABLE <item >

The item <item> can be one of the following:

BREAKPOINT

EVALUATE

TRACEPOINT

WATCHPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-42

2.30 ENABLE BREAKPOINT

Syntax

ENABLE BREAKPOINT /ID < halt-id >
ENABLE BREAKPOINT /ALL

Description

The breakpoint that was set inactive by DISABLE BREAKPOINT is

reactivated.

<halt-id>

This is the number of the breakpoint to be reactivated. It is a decimal number

or a debugger variable containing the ID number of the breakpoint.

/ALL

All currently inactive breakpoints are set active again.

Examples

ENABLE BREAKPOINT /ID=15
ENABLE BREAKPOINT AT @LINE 170
ENABLE BREAKPOINT AT location
ENABLE BREAKPOINT /ALL

References

DELETE BREAKPOINT

DISABLE BREAKPOINT

SET BREAKPOINT

SHOW BREAKPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-43

2.31 ENABLE EVALUATE

Syntax

ENABLE EVALUATE <expression >
ENABLE EVALUATE /ID = < eval-id >
ENABLE EVALUATE /ALL

Description

The expression which was prevented from evaluation by DISABLE

EVALUATE is to be evaluated again.

<expression>

The item with this expression is enabled. Note that <expression> has to

match literally the expression to be enabled, e.g. "a+b" does not match

"b+a".

/ID = <eval-id>

The expression with the ID number <eval-id> is enabled.

/ALL

All disabled expressions from the list are enabled.

Examples

ENABLE EVALUATE globstat
ENABLE EVALUATE /ID = 3

References

DELETE EVALUATE

DISABLE EVALUATE

SET EVALUATE

SHOW EVALUATE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-44

2.32 ENABLE TRACEPOINT

Syntax

ENABLE TRACEPOINT /ID < halt-id >
ENABLE TRACEPOINT /ALL

Description

The tracepoint that was set inactive by DISABLE TRACEPOINT is

reactivated.

<halt-id>

This is the number of the tracepoint to be reactivated. It is a decimal number

or a debugger variable which contains the ID number of the tracepoint.

/ALL

All currently inactive tracepoints are set active again.

Examples

ENABLE TRACEPOINT /ID=15
ENABLE TRACEPOINT /ID=@BPID
ENABLE TRACEPOINT AT location
ENABLE TRACEPOINT /ALL

References

DELETE TRACEPOINT

DISABLE TRACEPOINT

SET TRACEPOINT

SHOW TRACEPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-45

2.33 ENABLE WATCHPOINT

Syntax

ENABLE WATCHPOINT /ID < halt-id >
ENABLE WATCHPOINT /ALL

Description

The watchpoint that was set inactive by DISABLE WATCHPOINT is

reactivated.

<halt-id>

This is the number of the watchpoint to be reactivated. It is a decimal number

or a debugger variable which contains the ID number of the watchpoint.

/ALL

All currently inactive watchpoints are set active again.

Examples

ENABLE WATCHPOINT /ID=15
ENABLE WATCHPOINT /ID=@BPID
ENABLE WATCHPOINT AT location
ENABLE WATCHPOINT /ALL

References

DELETE WATCHPOINT

DISABLE WATCHPOINT

SET WATCHPOINT

SHOW WATCHPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-46

2.34 ERASE

Syntax

ERASE <window >
ERASE SYSREG /<window >

Description

<window>

This command closes the window <window>. <window> may have the

following values:

ASSEMBLER MODULE SYSREG

GDT REGISTER TASK

IDT REMOTE

LDT SOURCE

SYSREG /<window>

This command is explained in the chapter ERASE SYSREG.

Example

ERASE REGISTER

Reference

DISPLAY

ERASE SYSREG

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-47

2.35 ERASE SYSREG

Syntax

ERASE SYSREG /<window >

Description

This command closes the system register window <window>. <window> may

have the following value:

CONTROL

Example

ERASE SYSREG /CONTROL

Reference

DISPLAY SYSREG

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-48

2.36 EVALUATE

Syntax
EVALUATE [< format >] [< size >] [/ADDRESS] [/LEVEL[= <nr >]] [/WINDOW[= <nr >]]
<expr >

Description

<expr>

The given expression <expr> is evaluated, and the result is displayed in the

command window. <expr> has to be in the notation of the currently selected

language. If no qualifier is supplied, the output is formatted according to the

type of the result.

All members of structured data types are shown with their member names.

The value of a union is shown in the format of all union members. All

elements of arrays are displayed.

As a default, scalar values are in decimal and all pointers are in hexadecimal

notation.

If a pointer has the value 0, the string “(NIL)“ is printed. In case of function

pointers, the name of the procedure which is referenced by the pointer is

printed.

<format>

The option <format> may be one of the following:

/ASCII [:<length>] /DEC /OCTAL

/BINARY /HEX

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-49

/BINARY
/DEC
/HEX
/OCTAL

Values are shown in binary, decimal, hexadecimal, or octal notation if you

use the /BINARY, /DEC, /HEX, or /OCTAL qualifier.

/ASCII[:<length>]

The qualifier /ASCII is used to show a char pointer or a char array as a

readable string enclosed in double quotes ("). Nonprintable characters are

shown as '.' signs. By default, a string is shown up to the first 0-byte. This

can be avoided by giving a length declaration after the /ASCII qualifier

separated by ':' (/ASCII:<length>). Then up to <length> bytes are shown

where <length> is any expression.

/ADDRESS

The qualifier /ADDRESS shows the address where the result of the

expression is stored. If the expression refers to a register, the register name

is printed. Note that this option is rather meaningless when applied to

expressions like "42" or "i+1" which do not have a memory address.

/LEVEL[=<nr>]

If the expression to be evaluated, <expr>, denotes a structure containing

sub-structures, the /LEVEL qualifier limits the depth of the evaluation to the

number <nr>. If the depth number is omitted, the complete substructure is

taken. This is also the case if the option /LEVEL is omitted.

/WINDOW[=<nr>]

<nr> denotes the ID number of the evaluation window. Using an ID number

not in use at the moment creates a new window. If an evaluation window with

the ID <nr> exists already, this window now evaluates <expr> instead of its

old expression. If no window number is given, a new window is created.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-50

/<size>

The type of memory access is defined by the qualifier <size>. Possible

values are:

/BYTE /WORD /LONG

The amount of memory read from the target must be a multiple of the

selected size. The default is /BYTE. The /<size> option can be used with any

<format> qualifier. It is ignored when /ASCII is used which forces byte

access.

Examples

EVALUATE struct1.member1
EVALUATE (i%5) - 10 + (x * i - b)
EVALUATE ptr->pmember.a[2]
EVALUATE struct1.array[i]
EVALUATE i*10 + struct1.member2 - x
EVALUATE /DEC pointer1
EVALUATE /DEC structa
EVALUATE /BIN ptr->pmember
EVALUATE /OCTAL i
EVALUATE /HEX struct1.member1
EVALUATE &i
EVALUATE /ADDRESS i
EVALUATE /ADDRESS struct1
EVALUATE /ADDRESS struct1.member1
EVALUATE /ADDRESS ptr->pmember->next->next
EVALUATE /ASCII *char_array[0]
EVALUATE /ASCII:10 *char_pointer
EVALUATE @DBVPTR->next[idx]

References

SET EVALUATE

SET OPTION

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-51

2.37 EXIT

Syntax

EXIT

Description

EXIT terminates the execution of the actual batch file. If EXIT is used

interactively on command level, the debug session is finished.

To avoid leaving XDB by mistake, this command must be confirmed by the

user. The message

really quit ?

appears in a pop-up window. If the Yes button is selected, XDB quits. In any

other cases the command is ignored, and XDB resumes execution.

Example

IF @quit
THEN exit
END

Reference

BATCH

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-52

2.38 GOTO

Syntax

GOTO <label>

Description

This command can be used in a batch file only. It is not allowed to use this

command in interactive mode. The command makes the command execution

continue at the batch file line marked with <Label>. Forward references to

currently undefined labels are allowed, but labels cannot be referenced from

outside of the batch file where they are defined.

<label>

A label is a sequence of letters followed by a ':'.

Example

line text
1 SET BREAK AT fune
2 label:RUN
3 EVALUATE I+J
4 GOTO label

Reference

Label

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-53

2.39 HELP

Syntax

HELP

Description

You can enter HELP to activate the Windows online help mechanism for XDB. By

default the F1 key is defined as "HELP\n" in the startup.xdb file, so that you can

also press F1 to activate the online help.

Example

HELP

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-54

2.40 IF

Syntax

IF < expression >
 THEN < commandlist >
 [ELSE < commandlist >]
END

Description

<expression>

<expression> is evaluated. If the result of <expression> is not zero, the

command list between THEN and ELSE (or THEN and END if ELSE is

omitted) is executed. If the result of <expression> is zero, the optional ELSE-

part or the command after the END keyword is executed.

<commandlist>

The <commandlist> is an arbitrary list of commands separated by command

delimiters. The command delimiter is the ';' character.

The IF command can be nested.

In batch files it is additionally possible to separate commands with the

newline character.

The whole sequence between IF and END is one command. If it is itself a

member of a command list, the command delimiter must follow the END

keyword.

Example

IF commandtype == 4
 THEN
 EVALUATE/ASCII *commandname
 ELSE
 EVALUATE commandclass
END

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-55

References

WHILE

GOTO

Label

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-56

2.41 Label

Syntax

<label> :

Description

The actual line is marked by the label <label>. This command is allowed in

batch files only. Labels must start with an alphabetic character.

Labels can be used as jump targets of the GOTO command.

Example

line text
1 SET BREAK AT fune
2 Label:RUN
3 EVALUATE I+J
4 GOTO Label

References

GOTO

BATCH

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-57

2.42 LINE

Syntax

LINE UP [< lines >]
LINE DOWN [< lines >]
LINE < line-number >
LINE CURRENT

Description

With the LINE command, you can scroll up or down in the source window.

UP [<lines>]
DOWN [<lines>]

UP or DOWN specifies the direction of the movement. The <lines>

parameter is optional. The default value is 1. The movement is relative to the

currently displayed line.

<line-number>

If UP or DOWN is omitted, <line-number> denotes an absolute line in the

shown source file.

CURRENT

The cursor is positioned at the current location of the program.

Examples

LINE DOWN
LINE UP 20
LINE 127
LINE CURRENT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-58

Reference

PAGE

Notes

This command is not available in assembler mode because it is tied to the source

window.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-59

2.43 LOAD

Syntax

LOAD /ARGUMENTS = " <string> "
LOAD /BINARY
 /DEBUG[= < debug-id>]
 /GLOBAL
 /SEGMENT = " <Loader Result Segment>,<RMOS-Task-ID> "
 /TASK[= < tname >]
 OF " <file >"

Description

Load parts of an executable file <file>. The options specify which part of

<file> is to be loaded.

/ARGUMENTS="<string>"

The loaded program gets <string> as parameter list. Blanks are used to split

<string> into several parameters. During a set task /attach command, this

string is passed to the target process.

/BINARY

Binary download of an executable file.

/DEBUG[=<debug-id>]

Debug information of <file> is loaded. If the optional argument <debug-id> is

omitted, a new debug id is created, else the symbols are added to the

symbols of <debug-id>.

/GLOBAL

The segment is assigned to global level, thus the information is not bound to

any task. This means global sharing of segment information.

/SEGMENT="<Loader Result Segment>,<RMOS-Task-ID>"

This option allows you to load the debug information of a file already loaded.

The segment specifier must be included in quotation marks.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-60

/TASK[=<tname>]

The segment information is assigned to the specified task <tname>. The

taskname must be included in quotation marks. If the task name is omitted,

the current task of the debugger is used.

Note: the debugger searches for a file named tname.BD which contains the

corresponding debug information. This file can be generated using the

PE32BND converter which is part of the XDB distribution. The PE32 file

(output of the Borland TLINK) is converted to a bound file using the syntax:

pe32bnd pe32 file

Single tasks can be loaded from the PC file system with the /TASK="<task>"

command of the LOAD command or using the Load requester.

All host versions of XDB386 accept the load command given on the

command line:

LOAD /TASK="c:\rmos\test\test1.386" of test1
LOAD /TASK="a:test2.386" of test2

The second way to load a task is the download method . The following

commands imply that the task resides on floppy disk or on hard disk in the

target:

LOAD /BINARY /TASK="c:\rmos\test\test1.386" of test1
LOAD /BINARY /TASK="a:test2.386" of test2

If the task was loaded successfully, the debugger returns a task-id. To

attach that task to the debugger, enter

set task /attach /set /id=<task-id>

This command is available via the button „set_task“.

Now the task is started on the target and the CS:EIP is at the entry point.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-61

Examples

LOAD /ARGUMENTS = "-f machine.dat" of "simulate.bd"
LOAD /TASK="c:\rmos\test\test1.386" of test1
LOAD /BINARY /TASK="a:test2.386" of test2
LOAD /SEGMENT = "3F8,4D" of "simulate.bd"

References

DELETE DEBUG

SET DEBUG

SET OPTION

SHOW DEBUG

SHOW SEGMENT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-62

2.44 MESSAGE

Syntax

MESSAGE <string>

Description

A new window is created which displays the message <string>.

This command is especially useful in batch files.

Examples

MESSAGE loading
MESSAGE "loading file, please wait ..."

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-63

2.45 NEXT

Syntax

NEXT [< count >]

Description

NEXT continues the execution of the program. If XDB is in HLL mode, the

next <count> source lines are executed. If a subroutine call occurs, it is

executed, but the line counter is not affected.

On assembler language level, the next <count> instructions are executed.

Subroutines are called, but counted as one instruction.

<count>

If <count> runs to zero, the program is stopped. The default value for

<count> is 1. Note that <count> is not an expression but a number.

Examples

NEXT
NEXT 10

References

RUN

STEP

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-64

2.46 PAGE

Syntax

PAGE [/<window>] <window-direction>

Description

This command is used to scroll in the specified window <window> or in the

current active window.

/<window>

The following values are allowed for <window>:

ASSEMBLER SOURCE

The active window is the assembler window if the current language is set to

assembler. Otherwise the active window is the source window.

<window-direction>

<window-direction> may have the following values:

<expression> assembler window only

UP <pages>

DOWN <pages>

TOP

BOTTOM

LEFT <cols> source window only

RIGHT <cols> source window only

NULL source window only

<expression> is allowed for the assembler window only. The disassembly is

set to the address given by <expression>.

UP and DOWN scroll up/down the specified number of pages.

TOP and BOTTOM scroll to the first/last line.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-65

LEFT, RIGHT and NULL are allowed for the source window only (In this case

the qualifier /SOURCE is not allowed). The window is scrolled to column 0 or

to the specified number of columns into the specified direction.

Examples

PAGE TOP
PAGE DOWN
PAGE /ASSEMBLER 0x12400
PAGE interface
PAGE LEFT 5
PAGE RIGHT 10
PAGE NULL

References

LINE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-66

2.47 PRINT

Syntax

PRINT " mask" [, < expression >,...]

Description

PRINT formats the results of the optional listed expressions according to the

format specifications in the string "mask". The output is shown in the

command window and is written to an optional opened protocol file. No

output takes place until the newline symbol "\n" is encountered in "mask".

Subsequent calls of PRINT may be used to build up one line of output. In this

case no other command may be interspersed, because the already stored

output would be lost.

The interpretation of the "mask" string follows the conventions defined by the

ANSI C standard of the library function printf(). Some restrictions to the ANSI

definitions for formatting requests are made:

• the '#' flag is not supported

• the sequence "%n" is ignored, no expression argument should

be given

Examples

PRINT "Current array settings\n"
PRINT "input=%04d \t"
PRINT "result: %f \"%s\"\n", outfl*10.0,sval

Reference

EVALUATE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-67

2.48 REMOTE

Syntax

REMOTE

Description

The remote window is displayed, and the input and output is directed directly

to the low level debugger on the target.

A simple terminal emulation supporting backspacing, tabs, and newlines is

done.

Typing <ctrl-L>, the remote window is closed and you get back to the

command mode. <ctrl-L> is the default escape sequence. The escape

sequence can be changed using the command SET ESCAPE.

For further information about the low level debugger see in System Software

for M7-300 and 400, Installation and Operation, User Manual.

Example

REMOTE

References

DISPLAY REMOTE

ERASE REMOTE

SET ESCAPE

SET INTERFACE

SHOW ESCAPE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-68

2.49 RUN

Syntax

RUN
RUN UNTIL < expression >
RUN UNTIL BLOCKEND
RUN UNTIL PROCEND
RUN UNTIL CALLS

Description

RUN

The execution of the program is done up to a break- or watchpoint, or up to

the end of the program.

RUN UNTIL <expression>

The execution of the program is done up to a break- or watchpoint, or until

the program reaches the location denoted by <expression>.

RUN UNTIL BLOCKEND

The execution of the program is done up to a break- or watchpoint, or up to

the end of the actual block.

The option UNTIL BLOCKEND is not allowed in the assembler mode. If no

debug information is available, an error message is issued.

RUN UNTIL BLOCKEND cannot work if the function uses non-local jumps in

the corresponding code part, like the function longjmp() in the programming

language C.

RUN UNTIL PROCEND

The execution of the program is done up to a break- or watchpoint, or up to

the end of the function. The option UNTIL PROCEND is not allowed in the

assembler mode. If no debug information is available, an error message is

issued.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-69

RUN UNTIL PROCEND cannot work if the function uses non-local jumps in

the corresponding code part, like the function longjmp() in the programming

language C.

RUN UNTIL CALLS

This stops execution after returning from the current procedure.

This is also true for own assembler subroutines which effect the execution of

the program in a similar way.

Examples

RUN UNTIL PRINT\@LINE 10
RUN UNTIL callback
RUN UNTIL PROCEND

References

NEXT

STEP

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-70

2.50 SCAN

Syntax

SCAN [/HEADER = "< header >"] "< string >", < address > [< address > ...]

Description

This command is used to read values from the command window and to

store the read values into the memory of the target program. <string> is a

control string following the rules of the C function scanf(). The addresses

following the format string are C-style memory addresses (viz. &<name>).

/HEADER="<header>"

You are prompted for input with the string <header> in the command

window. If no header is given, the string "SCAN>" is used.

Examples

SCAN "%c", &ch
SCAN /HEADER="Set i and j to:" "%d %d", &i, &j
SCAN /HEADER = "a=" "%s", @a

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-71

2.51 SEARCH

Syntax

SEARCH "<regexp >"

Description

In the source file of the active module, a character sequence which matches

the regular expression <regexp> is searched. The environment of the

matched text appears in the source window. If no text is found, the source

window remains unchanged.

<regexp> may contain the wildcard characters '?' for “any character“ and '*'

for “any string of characters“.

Examples

SEARCH "*output"
SEARCH "main"
SEARCH "put??out"

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-72

2.52 SET Commands

Syntax

SET < set_modes >

The following <set_modes> are available:

BREAKPOINT LANGUAGE SCROLL

DEBUG LOGFILE TASK

DESCRIPTOR MODULE TRACEPOINT

DIRECTORY OPTION VALUE

ESCAPE PROTFILE WATCHPOINT

EVALUATE REGISTER

INTERFACE SCOPE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-73

2.53 SET BREAKPOINT

Syntax

SET BREAKPOINT AT < expression >
 [WHEN <expression>]
 [SKIP < count >]
 [CONTINUE]
 [SYMBOL < bid >]
 [HARD < number >]
 [THEN < actions > END]

Description

AT <expression>

A breakpoint is set at the address specified by <expression>. This can be:

• a line number in a source module denoted as “module\@LINE

xx“ or “@LINE xx“

• a global name of a procedure

• an address

WHEN <expression>

If a WHEN clause is used, the expression is evaluated after the stop of the

program at the breakpoint. If the result is FALSE (zero), the execution of the

program continues. In this case an optional SKIP count remains unchanged.

SKIP <count>

If a SKIP-count is specified, the execution of the program stops first if this

breakpoint is reached for the (count+1)-th time (and the WHEN clause is

true).

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-74

CONTINUE

The CONTINUE qualifier forces XDB to continue execution after processing

the <action>-list. The debugger variable @ERROR is checked. If it has a

non-zero value, the loop is stopped and the next command is executed.

SYMBOL <bid>

The SYMBOL qualifier directs XDB to store the ID number of the breakpoint

into the debugger variable <bid>. This variable can be used in expressions or

to enable, disable, show, or delete this breakpoint.

HARD <number>

The HARD qualifier forces the hardware interface to select the hardware

specific breakpoint specified by <number>. If this breakpoint is not available,

an error message is issued.

With this option the i80386 debug registers can be used directly if they are

not set. Each of the four debug registers can serve as a trace-, watch- or

breakpoint.

XDB issues a warning message if the requested breakpoint cannot be

executed in real time. This is true if a WHEN clause is used.

THEN <actions> END

<actions> is an optional command list, enclosed by the keywords THEN and

END. It is executed if the program stops at this breakpoint. If more than one

action is specified, they must be separated by a delimiter (;).

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-75

Examples

SET BREAKPOINT AT calculate\@LINE 10
SET BREAKPOINT AT rundown
SET BREAKPOINT AT server\hidden

SET BREAKPOINT AT txtofil WHEN outcount > 10

SET BREAKPOINT AT @LINE17 WHEN loop > end+5 THEN
 EVALUATE temp1
 EVALUATE erg
 END

SET BREAKPOINT AT toggle SKIP 20
SET BREAKPOINT AT checkpoint CONTINUE
 THEN
 EVAL counter
 END

SET BREAKPOINT AT fun2 SYMBOL DBID

References

DELETE BREAKPOINT

DISABLE BREAKPOINT

ENABLE BREAKPOINT

SHOW BREAKPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-76

2.54 SET DEBUG

Syntax

SET DEBUG <debug-id >

Description

Select between multiple debug information trees.

If more than one image was loaded by the debugger, the corresponding

debug information is stored in separate so-called debug trees which are

addressed by a unique number called <debug-id>.

The debugger selects the right debug tree after every program halt

automatically, according to the current location of the application.

With SET DEBUG this selection can be changed, so that the symbols and

types of all other regions of the program can be accessed. After the next

execution of a command as STEP, NEXT or RUN, the debugger switches to

the right <debug-id> automatically.

This allows concurrent debugging of independently linked modules which

decreases the size of the images and allows a finer granularity of application

modules.

The actual <debug-id> is shown enclosed in square brackets ("[]") at the left

field of the baseline of the main window.

Example

SET DEBUG 3

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-77

References

DELETE DEBUG

LOAD /DEBUG

SHOW DEBUG

SHOW SCOPE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-78

2.55 SET DESCRIPTOR

Syntax

SET DESCRIPTOR [/LENGTH = < length >] /GDT < GDT-index > < address >
SET DESCRIPTOR [/LENGTH = < length >] /IDT < IDT-index > < address >
SET DESCRIPTOR [/LENGTH = < length >] /LDT [= < GDT-LDTsel >] < LDT-index >
<address >
SET DESCRIPTOR [/LENGTH = < length >] /MEMORY < address > < address >
SET DESCRIPTOR [/LENGTH = < length >] /SELECTOR < selector-value > < address >

Description

This command copies a piece of memory, starting at the address <address>,

formatted as INTEL segment descriptor. The location of the descriptor can

be specified in several ways:

/GDT <GDT-index>

The given expression <GDT-index> is used as index into the GDT of the

target system. The GDTR register is used to get the base address of the

GDT and to check whether the index is inside the current GDT-limit.

/IDT <IDT-index>

The given expression <IDT-index> is used as index into the IDT of the target

system. The IDTR register is used to get the base address of the IDT and to

check whether the index is inside the current IDT-limit.

/LDT[=<GDT-LDTsel>] <LDT-index>

The given expression <LDT-index> is used as index into the LDT of the

target system. The LDTR register is used to get the base address of the LDT

and to check whether the index is inside the current LDT-limit. If the optional

expression <GDT-LDTsel> is specified, this value is used as index into the

GDT to obtain an LDT-descriptor. The value is checked against the current

GDT-limit, and the selected descriptor must be an LDT-descriptor.

/MEMORY <address>

The given expression <address> yields the memory location where the

descriptor is written.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-79

/SELECTOR <selector-value>

The expression <selector-value> is used as index into the GDT or LDT,

according to the TI-bit of the selector.

/LENGTH = <length>

If this option is specified, <length> descriptors are copied. The default value

is 1.

Examples

SET DESCRIPTOR /GDT 5 0x3000
SET DESCRIPTOR /MEMORY 0x1000 /GDT 5 @address
SET DESCRIPTOR /SELECTOR cs 0x3000

Reference

SHOW DESCRIPTOR

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-80

2.56 SET DIRECTORY

Syntax

SET DIRECTORY "< directory >"
SET DIRECTORY @<var >

Description

The name <directory> (or the contents of the debugger variable @<var>) is

added to the list of search paths for source files. These are used if a source

file cannot be found under the path name stored within the debug information

of the program.

Up to 30 alternative search directories are possible. By setting the

environment variable XDBMAXSRCDIRS to a value >30 this limit can be

increased.

Example

SET DIRECTORY "c:\usr\src\local"

References

DELETE DIRECTORY

SHOW DIRECTORY

SHOW DEBUG

Notes

Disk drive specifications in front of a directory name are accepted.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-81

2.57 SET ESCAPE

Syntax

SET ESCAPE "< esc_sequence >"
SET ESCAPE @<var >

Description

SET ESCAPE "<esc_sequence>"

The escape sequence to finish the transparent mode is defined. All inputs

from the keyboard are given to the remote system. The input of

<esc_sequence> terminates this state.

SET ESCAPE @<var>

As above, but the contents of the debugger variable @<var> is taken as the

new escape sequence.

The default sequence is '^L' ("ctrl-L"). Control characters are denoted as

"^char". The control characters ^C and ^S must not be used.

Examples

SET ESCAPE "^A"
SET ESCAPE "^Xc"

References

REMOTE

SHOW ESCAPE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-82

2.58 SET EVALUATE

Syntax

SET EVALUATE [<format>] [<size>] [/ADDRESS] [/LEVEL[=<nr>]]
[/WINDOW[=<nr>]] <expr>

Description

The mentioned <expression> is stored in an internal list. After every STEP,

NEXT or RUN command, all expressions from this list are evaluated, and the

results are written to the command window.

If local variables are monitored, they are evaluated only if they are valid at

the current point of the program.

As a default, scalar values are in decimal and all pointers are in hexadecimal

notation.

If a pointer has the value 0, the string “(NIL)“ is printed. In case of function

pointers, the name of the procedure which is referenced by the pointer is

printed.

format

The option <format> may be one of the following:

/ASCII [:<length>] /DEC /OCTAL

/BINARY /HEX

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-83

/BINARY
/DEC
/HEX
/OCTAL

Values are shown in binary, decimal, hexadecimal, or octal notation if you

use the /BINARY, /DEC, /HEX, or /OCTAL qualifier.

/ASCII[:<length>]

The qualifier /ASCII is used to show a char pointer or a char array as a

readable string enclosed in double quotes ("). Nonprintable characters are

shown as '.' signs. By default, a string is shown up to the first 0-byte. This

can be avoided by giving a length declaration after the /ASCII qualifier

separated by ': ' (/ASCII:<length>). Then up to <length> bytes are shown

where <length> is any expression.

/ADDRESS

The qualifier /ADDRESS shows the address where the result of the

expression is stored. If the expression refers to a register, the register name

is printed. Note that this option is rather meaningless when applied to

expressions like "42" or "i+1" which do not have a memory address.

/LEVEL=<nr>

If the expression to be evaluated, <expr>, denotes a structure containing

sub-structures, the /LEVEL qualifier limits the depth of the evaluation to the

number <nr>. If the depth number is omitted, the complete substructure is

taken. This is also the case if the option /LEVEL is omitted.

/WINDOW [=<nr>]

<nr> denotes the ID number of the evaluation window. Using an ID number

not in use at the moment creates a new window. If an evaluation window with

the ID <nr> exists already, this window now evaluates <expr> instead of its

old expression. If no window number is given, a new window is created.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-84

<size>

The type of memory access is defined by the qualifier <size>. Possible

values are:

/BYTE /WORD /LONG

The amount of memory read from the target must be a multiple of the

selected size. The default is /BYTE. The <size> option can be used with any

<format> qualifier. It is ignored when /ASCII is used which forces byte

access.

Examples

SET EVALUATE statusflag
SET EVALUATE iomode\write\arglen
SET EVALUATE token[type]->t_base

Notes

This is not a tracepoint which monitors the expression continuously. No special

services are requested from the target system.

References

DELETE EVALUATE

DISABLE EVALUATE

ENABLE EVALUATE

EVALUATE

SET OPTION

SET TRACEPOINT

SHOW EVALUATE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-85

2.59 SET INTERFACE

Syntax

SET INTERFACE "< string >"
SET INTERFACE @<var >

Description

The string <string> (or the contents of the debugger variable @<var>) is

given to the hardware interface. This enables the user to set special target

commands without using the REMOTE feature. Control characters are

denoted as "^char", or as "\n", "\t" or "\f".

For further information about the low level debugger see in System Software

for M7-300 and 400, Installation and Operation, User Manual.

Examples

SET INTERFACE "dir task \n"
SET INTERFACE "calc 1+7 \n"

References

REMOTE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-86

2.60 SET LANGUAGE

Syntax

SET LANGUAGE <language>

Description

The language mode is switched to the given language. The language names

must be fully qualified. This switches the scanning of expressions and the

style of output to that of the specified language.

<language>

Legal values for <language> are:

ASSEMBLER ASM C PASCAL

"ASM" is shorthand for "ASSEMBLER".

Example

SET LANGUAGE pascal

Reference

SHOW LANGUAGE

Notes

SET LANGUAGE C also enables the use of C++ constructs.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-87

2.61 SET LOGFILE

Syntax

SET LOGFILE [/APPEND] [/OVERWRITE] "< file >"

Description

All commands given after the command SET LOGFILE are stored in the

logfile <file>. <file> can be used as a batch file for further debug sessions.

Some restrictions apply when using logfiles as batch files if XDB works in the

multitasking mode. If the file <file> already exists, this command aborts,

issuing an error message.

/APPEND

If the file <file> already exists, the commands following are written to the end

of the file without destroying the old contents.

/OVERWRITE

If the file <file> already exists, only a warning message is issued and the file

is overwritten.

Example

SET LOGFILE "reuse.bat"

References

BATCH

CLOSE LOGFILE

SET PROTFILE

SHOW LOGFILE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-88

2.62 SET MODULE

Syntax

SET MODULE <module_name >
SET MODULE /ALL

Description

<module_name>

The module <module_name> is loaded into the debugger and displayed in

the source window. Now all symbolic information and all line information of

this module are available. The scope is set to this module.

/ALL

MODULE/ALL activates all modules of the loaded program. The last loaded

module is displayed.

Examples

SET MODULE main
SET MODULE /ALL

References

DELETE MODULE

SET OPTION

SHOW DEBUG

SHOW MODULE

Notes

The debugger loads the necessary information automatically. A breakpoint at a

procedure inside a module can be set, even if the debug information of this module

is not loaded.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-89

2.63 SET OPTION

Syntax

SET OPTION /AUTOLOAD = [ON|OFF]
SET OPTION /TASK = [GLOBAL|LOCAL]
SET OPTION /SEGMENT = [GLOBAL|LOCAL]
SET OPTION /TIME = [ON|OFF]
SET OPTION /POINTER = [ASCII|HEX]
SET OPTION /ASSEMBLER = [ON|OFF]
SET OPTION /ASM = [ON|OFF]
SET OPTION /CODE = [USE16|USE32]
SET OPTION /EVALUATE = [BINARY|OCTAL|DEC|HEX|DEFAULT]
SET OPTION /< processor_type > = [ON|OFF]
SET OPTION /MULTITASK = [ON|OFF]
SET OPTION /NOWAIT = [ON|OFF]

Description

Each SET OPTION command enables the setting of one of the global

debugger flags described below.

/AUTOLOAD=[ON|OFF]

If AUTOLOAD is set to ON, XDB loads automatically any required debug

information. Otherwise the user is asked for every module to load. This

option is set to ON by default.

/TASK=[GLOBAL|LOCAL]

If TASK is set to GLOBAL, all target system tasks are assigned to one virtual

debugger task. If TASK is set to LOCAL, all tasks are monitored separately

by XDB. The default value is GLOBAL.

/SEGMENT=[GLOBAL|LOCAL]

The value GLOBAL forces XDB to attach all segments specified at initial load

or LOAD commands to the debugger’s global segment map. If LOCAL is

used, segments are attached to task. The default value is LOCAL.

/TIME=[ON|OFF]

If TIME is set to ON, XDB shows for evaluated tracepoints the current time in

the format hh:mm:ss after the actual address/line. This option is set to OFF

by default.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-90

/POINTER=[ASCII|HEX]

If a character pointer is referenced, the result can be displayed in

hexadecimal or in ASCII, depending on this option.

/ASSEMBLER=[ON|OFF]
/ASM=[ON|OFF]

If this option is set to ON, the assembler window shows not only the

assembler code but also the appropriate source code lines.

/CODE=[USE16|USE32]

This option determines the way the code segments are interpreted.

/EVALUATE=[BINARY|OCTAL|DEC|HEX|DEFAULT]

This option sets the default display mode for evaluations. The default for this

option is DEC.

/<processor_type>=[ON|OFF]

The selected <processor_type> forces XDB to disassemble opcode due to

the instruction set of the chosen processor. The default for all these options

is OFF. Then disassembly is done for an 80386 processor.

<processor_type> may be one of the following processors:

I80486

PENTIUM

/MULTITASK=[ON|OFF]

This option allows toggling between multitasking mode and compatible

mode. If the option is set to ON XDB works in multitasking mode. If the

option is set to OFF XDB works in compatible mode. This option is set to ON

by default.

/NOWAIT=[ON|OFF]

If this option is set to ON XDB works in the original asynchronous mode. This

is the default. If this option is set to OFF the XDB waits until a RUN, NEXT or

STEP command has been finished.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-91

Examples

SET OPTION /AUTOLOAD=ON
SET OPTION /PENTIUM=ON
SET OPTION /SEGMENT=LOCAL
SET OPTION /TASK=GLOBAL
SET OPTION /EVALUATE=HEX

References

EVALUATE

LOAD

SET EVALUATE

SHOW OPTION

SHOW SEGMENT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-92

2.64 SET PROTFILE

Syntax

SET PROTFILE [/APPEND] /WINDOW = < window > "< file >"
SET PROTFILE [/OVERWRITE] /WINDOW = < window > "< file >"
SET PROTFILE [/APPEND] /ALL "< file >"
SET PROTFILE [/OVERWRITE] /ALL "< file >"

Description

"<file>"

Switch on the protocol mechanism for a set of windows. The output of the

window[s] is copied to this file.

/WINDOW=<window>

<window> specifies which window output is to be directed to the protocol file.

The following values are allowed for <window>:

ASSEMBLER EVALUATE TRACEPOINT

COMMAND REGISTER

ERROR SOURCE

All selected inputs to the system and all outputs of the system are recorded

in the file <file>. The outputs of the system are recorded as comments. The

source of the output is shown with a parenthesed shorthand of the window

name after the comment character. Every window can be tied together to

one protocol file, but several protocol files can receive any combination of

window outputs.

/ALL

If /ALL is used, all in- and outputs are recorded just in the ALL protocol file,

even if other protocol files are opened.

/APPEND

With this option, the output is appended to the selected file, instead of

overwriting it.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-93

/OVERWRITE

With this option, no warning is issued if a protocol file exists already.

Examples

SET PROTFILE /WINDOW=ASSEMBLER "bericht.prt"
SET PROFFILE /ALL "\log\session.prt"

References

CLOSE PROTFILE

SHOW PROTFILE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-94

2.65 SET REGISTER

Syntax

SET REGISTER [/SIZE = < size >] < register > = < expr >

Description

<register> = <expr>

The specified hardware register <register> is filled with the value of the

expression <expr>.

/SIZE = <size>

The optional qualifier /SIZE defines the number of bytes which are changed

in the register.

The following values are allowed for <size>:

Value Description

BYTE 1 byte is written

WORD 2 bytes are written

LONG 4 bytes are written

By default, the whole register is set. The result of <expr> is converted

according to the type and size of the register.

Register Legal Sizes

AH BYTE

AL BYTE

AX WORD

BH BYTE

BL BYTE

BP WORD

BX WORD

CH BYTE

CL BYTE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-95

Register Legal Sizes

CR0 LONG

CR2 LONG

CR3 LONG

CR4 LONG 3)

CS WORD

CX WORD

DH BYTE

DI WORD

DL BYTE

DS WORD

DX WORD

EAX BYTE, WORD, LONG

EBP BYTE, WORD, LONG

EBX BYTE, WORD, LONG

ECX BYTE, WORD, LONG

EDI BYTE, WORD, LONG

EDX BYTE, WORD, LONG

EFL LONG

EIP BYTE, WORD, LONG

ES BYTE

ESI BYTE, WORD, LONG

ESP BYTE, WORD, LONG

FS WORD

GDTR (no /SIZE allowed) 1)

GS WORD

IDTR (no /SIZE allowed) 1)

LDTR WORD

SI WORD

SP WORD

SS WORD

TR WORD

TR3 4) LONG

TR4 4) LONG

TR5 4) LONG

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-96

Register Legal Sizes

TR6 2) LONG

TR7 2) LONG
1) read-only (only for SHOW REGISTER.

2) only if SET OPTION /PENTIUM=off

3) only if SET OPTION /PENTIUM=on
4) only if SET OPTION /I80486=on (and /PENTIUM=off)

Examples

The following examples are valid for language = ASSEMBLER.

SET REGISTER EAX = $0000001f
SET REGISTER /SIZE = WORD ESI=$0017
SET REGISTER AL = $45
SET REGISTER DI = $0786

References

DISPLAY REGISTER

SHOW REGISTER

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-97

2.66 SET SCOPE

Syntax

SET SCOPE /DOWN[= < levels >]
SET SCOPE /UP[= < levels >]
SET SCOPE /CURRENT
SET SCOPE <expression >
SET SCOPE @@

Description

Set the scope of the debugger. The term scope means the current visibility of

symbols and types. The source window and the assembler window are

updated to show the corresponding source lines and machine statements

respectively.

The location fields of the program are enclosed in brackets ("[]") to signal that

the address shown is not the current program address.

/DOWN[=<levels>]

With this qualifier, the scope can be moved forward along the current call

stack to show the dynamic call structure of the program. The value of

<levels> defaults to 1.

/UP[=<levels>]

With this qualifier, the scope can be moved backwards along the current call

stack to show the dynamic call structure of the program. The value of

<levels> defaults to 1.

If you set the scope to a procedure not using /UP or /DOWN, its local stack

and register variables cannot be evaluated because they are not

addressable.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-98

<expression>

The scope can be set to a static position in your program. Allowed

<expressions> are:

<module>\<procedure> <procedure>

/CURRENT,
@@

The scope is set to the location where the program currently halts.

Examples

SET SCOPE /UP=2
SET SCOPE /DOWN
SET SCOPE main\function7
SET SCOPE procedure
SET SCOPE /CURRENT

References

SHOW SCOPE

SHOW CALLS

Notes

The qualifiers /UP and /DOWN can work correctly only if the list of nested

procedure calls contains only procedures with normal function prologue/epilogue

sequences. These sequences maintain a linked list on the user stack which is used

by XDB to walk up and down. If some procedures do not place themselves into this

list, or do not execute their prologue codes, they are not visible to the debugger.

The latter case happens if a breakpoint is set on a procedure name and the

debugger stops there, and the command SHOW CALLS is used immediately. In this

case the last procedure is missing in the list of nested procedures.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-99

2.67 SET SCROLL

Syntax

SET SCROLL <mode> [PAGE|CONTINUE]

Description

<mode>

The scroll mode of the command window is set. In the current version,

<mode> can only be EVALUATE.

PAGE

If this qualifier is selected, the output of an EVALUATE command to the

command window stops when it is completely filled. Then the debugger asks

whether to continue or not.

CONTINUE

If this qualifier is selected, the output scrolls without automatic stop. This

mode is the default.

Example

SET SCROLL EVALUATE PAGE

Reference

EVALUATE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-100

2.68 SET TASK

Syntax

SET TASK /ATTACH [/ID=< task_id >]
SET TASK /DETACH [/ID=< task_id >]
SET TASK /STEP
SET TASK /SET [/ID=< task_id >]
SET TASK /DEBUG = < debug_id > [/ID=< task_id >]
SET TASK /KILL

Description

The purpose of this command is task manipulation. Tasks can be switched,

killed, attached and detached.

/ATTACH [/ID=<task_id>]

With this option, a task is started on the target and attached to the debugger.

If no task is specified by /ID, the current task is attached.

/DETACH [/ID=<task_id>]

With this option, a task can be detached from the debugger. If no task is

specified by /ID, the current task is detached.

The Organon XDB attempts to exit and then delete the current task with the

command set task/detach as well as enabling assigned memory and

resources.

/STEP

This option modifies the state of the currently monitored task. This allows to

unlock tasks which run into an unpredictable state. The task state is modified

to a normal halted state. The current location of the application is not

changed.

/SET [/ID=<task_id>]

With this option, the current task is set to the task specified by <task_id>.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-101

/DEBUG=<debug_id> [/ID=<task_id>]

With this option, the debug information specified by <debug_id> is assigned

to a task. If no task is specified by /ID, the current task is used.

/KILL

Sends a FREETASK command with the current RMOS task ID to the target,

deletes the task and frees the memory on the target. This option works only if

the task is in state DORMANT (RMOS) / INIT (XDB).

Examples

SET TASK /ATTACH /ID=4
SET TASK /DETACH
SET TASK /SET /ID=1

References

SHOW TASK

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-102

2.69 SET TRACEPOINT

Syntax

SET TRACEPOINT AT < expression > [HARD < number >]

Description

AT <expression>

The result of <expression> is monitored by a tracepoint. When the value of

<expression> is changed, it is displayed in the appropriate window, and the

program continues execution.

HARD <number>

This qualifier forces the hardware interface to select the internal tracepoint

specified by <number>. If this tracepoint is not available, an error message is

issued.

With this option the i80386 debug registers can be used directly if they are

not set. Each of the four debug registers can serve as a trace-, watch- or

breakpoint.

If there is no debug register left or the expression can not be controlled by a

single debug register, the tracepoint is simulated by XDB. In this case XDB

will perform single steps through the program, which causes a very slow

execution of your application task. Therefore XDB issues a warning message

(CAUTION !! : trace- or watchpoint not maskable must be simulated)

which has to be confirmed by the user. The expression is computed and the

result is stored in an internal buffer as a reference value to compare with.

Examples

SET TRACEPOINT AT main\buffercount
SET TRACEPOINT AT globptr HARD 3

References

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-103

DELETE TRACEPOINT

DISABLE TRACEPOINT

ENABLE TRACEPOINT

SET EVALUATE

SET WATCHPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-104

2.70 SET VALUE

Syntax

SET VALUE [/SIZE = < size>] [/REPEAT = < number >] address = <expression>
SET VALUE [/SIZE = < size>] [/REPEAT = < number >] address = <list>

Description

<address>=<expression>

The value of <expression> is evaluated and written to the address given by

expression <address>. If there is no /SIZE parameter given, the written data

width is equal to the width of the object referenced by <address>. If there is a

/SIZE parameter given, the result is converted unsigned to the size which is

given by <size>, and written. If structured data types are used, only complete

member identifications are allowed.

If <address> is @name, the debugger variable @name is set to the value of

<expression>. Debugger variables inherit the type of the assigned result.

<address>=<list>

<list> is a list of expressions separated by commas. As above, the

expressions are evaluated, converted to the size given by /SIZE, and written

into the memory, starting at address <address>. The amount of memory

accessed is the number of expressions in the list times the length determined

by the option /SIZE. If no /SIZE is given, the written data width is equal to the

width of the object referenced by <address> times the number of

expressions in the list.

/SIZE=<size>

This optional parameter defines the number of bytes to be written.

The following values are allowed for <size>:

Value Description

BYTE 1 byte is written

WORD 2 bytes are written

LONG 4 bytes are written

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-105

Value Description

FLOAT a floating point number is written

EXTEND an extended number is written

DOUBLE a double number is written

NEAR16 a near 16 pointer is written

NEAR32 a near 32 pointer is written

FAR16 a far 16 pointer is written

FAR32 a far 32 pointer is written

CONSTANT <number> number of bytes specified by

<number> are written

/REPEAT=<number>

If this option is specified, the value of <expression2> is written not only into

the address denoted by <expression1> but also to the following <number>

pieces of memory. If, e.g., <number> equals 3, the value of <expression2> is

written four times altogether.

There are internal predefined debugger variables and macro functions. Their

names must not be used to define new XDB variables. If these names are

used for macro definition the predefined function is overwritten and is

available again after deleting the user-defined macro.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-106

The following internal variables are predefined:

Variable Meaning Remark

@BWID last ID of Break- or Watchpoint read-only

@CS code selector read-only

@CURRLINE current line read-only

@EFL flags read-only

@EIP instruction pointer read-only

@ERROR last error message number writable

@ERRORTEXT last error message read-only

@INSTANCE incarnation of the actual process read-only

@LEVEL active scope level read-only

@MODULE active (where the PC is) module read-only

@NEST nesting level read-only

@PC actual PC read-only

@PROCEDURE active procedure read-only

@PROCESS actual process number read-only

@SOURCEFILE current file read-only

@SOURCELINE source line read-only

@STACK 0 = "CURRENT"

32 ="WIND"

64 ="TOP"

read-only

@STOPREASON last reason of program stop read-only

The following macro functions are predefined (The macro functions offer the

functionality of the C Runtime library function with the same name.):

Function Arguments

@ACOS double

@ASIN double

@ATAN double

@ATAN2 double, double

@COS double

@EXEC char *

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-107

Function Arguments

@EXP double

@FABS double

@GETCHAR void

@GETS char *

@ISALNUM int

@ISALPHA int

@ISASCII int

@ISCNTRL int

@ISDIGIT int

@ISLOWER int

@ISPRINT int

@ISPUNCT int

@ISSPACE int

@ISUPPER int

@ISXDIGIT int

@LOG double

@LOG10 double

@OPRINTF char *, ...

@POW double, double

@PRINTF char *, ...

@PUTCHAR char

@PUTS char *

@REG register name 1)

@SCANF char *, ...

@SIN double

@SQRT double

@STRCAT char *, char *

@STRCMP char *, char *

@STRCPY char *, char *

@STRLEN char *

@STRNCAT char *, char *, int

@STRNCMP char *, char *, int

@STRNCPY char *, char *, int

@TAN double

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-108

Function Arguments

@TOASCII int

@TOLOWER int

@TOUPPER int
1)

Valid register names see SET REGISTER

Examples

SET VALUE loop = 10
SET VALUE angle = -1.271e-13

References

EVALUATE

SET REGISTER

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-109

2.71 SET WATCHPOINT

Syntax

SET WATCHPOINT [/LENGTH = < bytes >]
 [/ACCESS = [FETCH|READ|WRITE|ALL]]
 AT < expression >
 [SKIP < count >]
 [SYMBOL < dbid >]
 [HARD < number >]
 [CONTINUE]
 [THEN < actions > END]

Description

If the location of <expression> is accessed in a way specified by /ACCESS

and /LENGTH, and the SKIP counter decrements to zero, the program stops.

The default value for <count> is 1, for /LENGTH the size of the result of

<expression>, and for /ACCESS it is WRITE.

If there is no debug register left or the expression can not be controlled by a

single debug register the watchpoint is simulated by XDB. This slows down

the speed dramatically, so that XDB issues a warning message

(CAUTION !! : trace- or watchpoint not maskable must be simulated)

which must be confirmed by the user. Under simulation, only WRITE is

possible as /ACCESS value. Respectively WRITE is possible only if XDB

detects an access, because XDB compares against a reference value.

SKIP <count>

The SKIP qualifier allows to specify a value which delays the stop of

execution until this counter <count> decrements to zero.

CONTINUE

This qualifier lets the program continue after the detection of a watched

condition and after execution of the optional action list. This will not take

place if the debugger variable @ERROR has a non-zero value.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-110

SYMBOL <dbid>

The SYMBOL qualifier forces XDB to place the ID number of this watchpoint

into the debugger variable <dbid>.

HARD <dbid>

The HARD qualifier forces the hardware interface to select the internal

watchpoint specified by <number>. If this watchpoint is not available, an error

message is issued.

With this option the i80386 debug registers can be used directly if they are

not set. Each of the four debug registers can serve as a trace-, watch- or

breakpoint.

THEN <actions> END

<actions> is an optional command list enclosed between THEN and END.

These commands are executed at every stop at this watchpoint.

/ACCESS=[FETCH|READ|WRITE|ALL]

With the /ACCESS qualifier, the type of memory access can be specified.

Type Remark

FETCH code fetch

READ data read

WRITE data write

ALL any

/LENGTH=<bytes>

With this qualifier, the size of the monitored memory region can be specified.

This overrides the default which is the size of the result of <expression>.

For restrictions introduced by the low level hardware interface, refer to the

command SET TRACEPOINT.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-111

Examples

SET WATCHPOINT AT array[10]
SET WATCHPOINT AT badloc HARD 1
SET WATCHPOINT /ACCESS=WRITE AT deadzone
SET WATCHPOINT /ACCESS=READ AT box1 CONTINUE
THEN
 PRINT "fetch mailbox %5d" box1
 END

References

DELETE WATCHPOINT

DISABLE WATCHPOINT

ENABLE WATCHPOINT

SET TRACEPOINT

Notes

XDB issues a warning message if the requested watchpoint cannot be executed in

real time.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-112

2.72 SHOW Commands

Syntax

SHOW <show_modes>

The following <show_modes> are available:

ACTIVE INFO SEGMENT

BREAKPOINT KEY SCOPE

BUTTON LANGUAGE SOURCE

CALLS LEVEL STATUS

DBVAR LOGFILE SYMBOL

DEBUG MACRO TASK

DECLARATOR MEMORY TRACEPOINT

DESCRIPTOR MODULE TYPE

DIRECTORY OPTION VERSION

ESCAPE PROTFILE WATCHPOINT

EVALUATE REGISTER

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-113

2.73 SHOW ACTIVE

Syntax

SHOW ACTIVE <level > ["< regexp >"]
SHOW ACTIVE GLOBAL ["< regexp >"]
SHOW ACTIVE MODULE ["< regexp >"]
SHOW ACTIVE CURRENT ["< regexp >"]

Description

<level>

All current active (visible) variables of the debugged program with static level

greater than or equal to <level> are displayed. A procedure has a higher

scope level than a module. <level> = 0 displays all currently active variables.

GLOBAL
MODULE
CURRENT

The symbolic values GLOBAL, MODULE and CURRENT respond to the

scope levels, program global, module global and the current scope of the

program.

<regexp>

If the regular expression <regexp> is specified, only the symbols whose

names match the regular expression <regexp> are displayed.

<regexp> may contain the wildcard characters '?' for “any character“ and '*'

for “any string of characters“.

Examples

SHOW ACTIVE 0
SHOW ACTIVE CURRENT "*ptr*"
SHOW ACTIVE MODULE

References

SHOW LEVEL

SHOW SCOPE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-114

2.74 SHOW BREAKPOINT

Syntax

SHOW BREAKPOINT AT <expression >
SHOW BREAKPOINT /ID = < halt-id >
SHOW BREAKPOINT /ALL

Description

The status and the count-, expression- and action-parameters for the

breakpoints and their ID numbers are displayed.

The status can be ENABLE, DISABLE, or CURRENT. The status CURRENT

means that the last program stop is caused by this haltpoint.

AT <expression>

The breakpoint at the address denoted by <expression> is displayed.

/ID=<halt-id>

The breakpoint with the ID number <halt-id> is displayed.

/ALL

All existing breakpoints are shown.

Examples

SHOW BREAKPOINT /ID=13
SHOW BREAKPOINT AT @LINE 170
SHOW BREAKPOINT /ALL

References

SET BREAKPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-115

2.75 SHOW BUTTON

Syntax

SHOW BUTTON <name>
SHOW BUTTON /ALL

Description

This command shows the current mappings of the user-defined button

<name>, or of all currently defined buttons, if /ALL was specified.

Example

SHOW BUTTON restart

References

DEFINE BUTTON

DELETE BUTTON

DEFINE MACRO

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-116

2.76 SHOW CALLS

Syntax

SHOW CALLS [/ARGUMENTS] [/LEVEL = < number >]

Description

A list of all current active functions is displayed.

The output is written to the command window. The first column contains the

address where the procedure was called from. The second one contains the

symbolic name of the address. The module name and the source line the

address in the first column belongs to is shown at the end of the line.

The procedure which matches the current scope setting of the debugger is

marked with

<<< scope

at the end of the line.

/ARGUMENTS

If this option is used, the function arguments are displayed, too. Note that

there are restrictions, because if parameters are stored in registers, they are

hidden by later calls. There are also restrictions if the top level function has

not passed its prologue code which moves the parameters from the stack

into their registers.

/LEVEL=<number>

With /LEVEL only the first <number> of nested calls are displayed.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-117

Examples

SHOW CALLS
SHOW CALLS/ARGUMENTS
SHOW CALLS/LEVEL=3/ARGUMENTS

Reference

SET SCOPE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-118

2.77 SHOW DBVAR

Syntax

SHOW DBVAR <regexpr >

Description

All debugger variables which match the regular expression <regexpr> are

printed to the command window. <regexpr> may contain wildcard characters

as '*' or '?'. The regular expression may be enclosed in ““ to protect them

from the keyword scanner.

Examples

SHOW DBVAR "s*"
SHOW DBVAR *

Notes

The @-character is not a part of the variable names and must not be used in the

regular expression.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-119

2.78 SHOW DEBUG

Syntax

SHOW DEBUG [/ID [=< debug-id >] ["< module >"]]

Description

/ID[=<debug-id>]

With the optional /ID parameter a special debug tree can be selected. If the

<debug-id> value is omitted, all available debug IDs with their modules are

displayed. The current ID is enclosed in square brackets.

"<module>"

All or the selected modules are displayed in the command window. They are

marked with “[loaded]“ if their debug information is read in. If there is no

source file found, the module is marked with “[no source]“. Modules of source

files that have a more recent modification date than the program image are

marked with “[modified]“. The optional "<module>" argument can include

wildcard characters such as '*' and '?'.

Examples

SHOW DEBUG
SHOW DEBUG "io*"
SHOW DEBUG "data"
SHOW DEBUG/ID
SHOW DEBUG/ID=1 "*link"

References

DELETE DEBUG

LOAD /DEBUG

SET DEBUG

SET MODULE

SET DIRECTORY

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-120

2.79 SHOW DECLARATOR

Syntax

SHOW DECLARATOR <expression >

Description

The type definition of the result of the expression <expression> is displayed.

Sub-array or member specifications are allowed.

Examples

SHOW DECLARATOR strsok.type
SHOW DECLARATOR array[0]
SHOW DECLARATOR *pointer

References

SHOW INFO

SHOW TYPE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-121

2.80 SHOW DESCRIPTOR

Syntax

SHOW DESCRIPTOR [/REPEAT = <times>] /GDT < GDT-index >
SHOW DESCRIPTOR [/REPEAT = <times>] /IDT < IDT-index >
SHOW DESCRIPTOR [/REPEAT = <times>] /LDT [= < GDT-LDTsel >] < LDT-index >
SHOW DESCRIPTOR [/REPEAT = <times>] /MEMORY < address >
SHOW DESCRIPTOR [/REPEAT = <times>] /SELECTOR < selector-value >

Description

This command shows pieces of 64 bits of memory formatted as INTEL

segment descriptor. The location of the descriptor can be specified in several

ways:

/GDT <GDT-index>

The given expression <GDT-index> is used as index into the GDT of the

target system. The GDTR register is used to get the base address of the

GDT and to check whether the index is inside the current GDT-limit.

/IDT <IDT-index>

The given expression <IDT-index> is used as index into the IDT of the target

system. The IDTR register is used to get the base address of the IDT and to

check whether the index is inside the current IDT-limit.

/LDT[=<GDT-LDTsel>] <LDT-index>

The given expression <LDT-index> is used as index into the LDT of the

target system. The LDTR register is used to get the base address of the LDT

and to check whether the index is inside the current LDT-limit. If the optional

expression <GDT-LDTsel> is specified, this value is used as index into the

GDT to obtain an LDT-descriptor. The value is checked against the current

GDT-limit, and the selected descriptor must be an LDT-descriptor.

/MEMORY <address>

The given expression <address> yields the memory location where the

descriptor is read.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-122

/SELECTOR <selector-value>

The expression <selector-value> is used as index into the GDT or LDT,

according to the TI-bit of the selector.

/REPEAT=<times>

The expression <times> specifies how many descriptors are to be displayed.

The default value is 1.

The output shows the memory address, the table where it resides, and a

hexadecimal dump of the addressed memory.

The descriptor fields are decoded and formatted. Based on the type of the

descriptor, various fields are displayed:

Field Description

base The base address of the segment

limit The limit of the segment

sel The target selector of the gate descriptor

off The target offset of the gate descriptor

dwcnt The argument count of the call-gate descriptor

G (granularity) The granularity of the segment. 1b means that the limit

value is used as byte count, 4k means that the limit value

is used as 4kb page count.

P (present) Shows the status of the present bit

dpl The value of the privilege level

attr The segment attributes

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-123

If attr is a CODE-segment, following abbreviations are used:

Symbol Description

USE32 USE32 segment

USE16 USE16 segment

C conforming segment

N non-conforming segment

R read-execute segment

E execute-only segment

A segment accessed

 X segment not accessed

If attr is a DATA-segment, following abbreviations are used:

Symbol Description

D expand down

U expand up

W writeable segment

R read-only segment

A segment accessed

X segment not accessed

Examples

SHOW DESCRIPTOR/GDT 5
SHOW DESCRIPTOR/REPEAT=6 /GDT 5
SHOW DESCRIPTOR/IDT idtsel
SHOW DESCRIPTOR/MEMORY 0x1000
SHOW DESCRIPTOR/SEL cs
SHOW DESCRIPTOR/LDT=10 ldtsel

References

SET DESCRIPTOR

SHOW REGISTER

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-124

2.81 SHOW DIRECTORY

Syntax

SHOW DIRECTORY

Description

The current list of alternative search directories for source files is shown.

Example

SHOW DIRECTORY

References

DELETE DIRECTORY

SET DIRECTORY

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-125

2.82 SHOW ESCAPE

Syntax

SHOW ESCAPE

Description

The escape sequence to switch off the transparent mode is displayed.

Example

SHOW ESCAPE

References

REMOTE

SET ESCAPE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-126

2.83 SHOW EVALUATE

Syntax

SHOW EVALUATE

Description

All currently monitored expressions are displayed in the command window.

Example

SHOW EVALUATE

References

DELETE EVALUATE

DISABLE EVALUATE

ENABLE EVALUATE

SET EVALUATE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-127

2.84 SHOW INFO

Syntax

SHOW INFO "< regexp >"

Description

SHOW INFO searches through the internal symbol table for type names

which match the regular expression pattern "<regexp>". This pattern may

contain wildcard characters as '*' and '?'. The type tables are searched from

the current scope level upwards.

The types found are displayed in the command window with their scope

levels and full descriptions.

Examples

SHOW INFO "int"
SHOW INFO "struct *"
SHOW INFO "struct s_abc"

References

SHOW DECLARATOR

SHOW TYPE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-128

2.85 SHOW KEY

Syntax

SHOW KEY <key >
SHOW KEY /ALL

Description

<key>

Displays the definition of the user-defined key <key>.

/ALL

All currently defined keys are displayed.

Examples

SHOW KEY F2
SHOW KEY /ALL

References

DEFINE KEY

DELETE KEY

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-129

2.86 SHOW LANGUAGE

Syntax

SHOW LANGUAGE

Description

Displays the current language setting of the debugger in the command

window.

Example

SHOW LANGUAGE

Reference

SET LANGUAGE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-130

2.87 SHOW LEVEL

Syntax

SHOW LEVEL

Description

This command shows the static nesting level of the current position. The

static nesting level defines the visibility of symbols and types. 0 stands for

global, 1 for module local, 2 and higher for procedure local.

The debugger displays information if and how this level was reached via the

SET SCOPE command: “[wind]“ means /UP or /DOWN was used, “[walk]“

means <expression> was used.

Example

SHOW LEVEL

References

SET SCOPE

SHOW ACTIVE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-131

2.88 SHOW LOGFILE

Syntax

SHOW LOGFILE

Description

If a logfile is open, this command shows the name and directory. Otherwise,

you are told that no logfile is used currently.

Example

SHOW LOGFILE

References

CLOSE

SET LOGFILE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-132

2.89 SHOW MACRO

Syntax

SHOW MACRO "<name>"
SHOW MACRO /ALL

Description

"<name>"

Displays the selected macros and their replacement texts. The <name>

argument may contain wildcard characters as '*' and '?'.

/ALL

With /ALL, all currently defined macros are shown.

Examples

SHOW MACRO /ALL
SHOW MACRO "MAC"
SHOW MACRO "*DEF"

References

DEFINE MACRO

DELETE MACRO

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-133

2.90 SHOW MEMORY

Syntax

SHOW MEMORY [/LENGTH = <length >] [/SIZE = < size >] [/WINDOW] [/<format>]
 < expression >

Description

The contents of the memory are shown in hexadecimal and ASCII notation

starting at the address specified by <expression>.

/LENGTH=<length>

The optional parameter /LENGTH defines the number of bytes to be

displayed. The default is 16 bytes.

/SIZE=<size>

The optional parameter /SIZE defines the grouping of the bits in the memory.

The size defaults to BYTE. The following values are allowed for <size>:

Size Description

BYTE The contents are displayed as a sequence of byte

values

WORD The contents are displayed as a sequence of 16-bit

words

LONG The contents are displayed as a sequence of 32-bit

long words

FLOAT The contents are displayed as a sequence of 32bit

IEEE floating point variables

DOUBLE The contents are displayed as a sequence of 64bit

IEEE floating point variables

EXTENDED The contents are displayed as a sequence of 96bit

IEEE floating point variables

/WINDOW

The memory is displayed in a memory window rather than in the command

window.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-134

/<format>

This option defines the format of the output. Following values are allowed for

<format>: BINARY, OCTAL, DEC, HEX (which is the default).

Examples

SHOW MEMORY buffer
SHOW MEMORY /SIZE = WORD action.statetab
SHOW MEMORY /SIZE = LONG /WINDOW ivttab
SHOW MEMORY /SIZE = DOUBLE tschebytab
SHOW MEMORY /LENGTH = 256 area

References

EVALUATE

SET VALUE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-135

2.91 SHOW MODULE

Syntax

SHOW MODULE <name>

Description

The source of the module <name> is displayed in the source window. This

does not change the scope of the debugger or load any symbol or debug

information.

Example

SHOW MODULE mainloop

References

SET MODULE

SHOW DEBUG

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-136

2.92 SHOW OPTION

Syntax

SHOW OPTION /<option >
SHOW OPTION /ALL

Description

Displays the current setting of global options.

The set of legal values for <option> depends on the configuration. See the

command SET OPTION for further details.

Examples

SHOW OPTION /ALL
SHOW OPTION /SEGMENT

Reference

SET OPTION

Notes

SHOW OPTION lists the item TIME as TRACETIME.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-137

2.93 SHOW PROTFILE

Syntax

SHOW PROTFILE

Description

This command tells you which protocol files are currently open (complete

with file name and path name).

Example

SHOW PROTFILE

References

SET PROTFILE

CLOSE

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-138

2.94 SHOW REGISTER

Syntax

SHOW REGISTER <register >

Description

The value of register <register> is displayed in the command window.

General purpose registers are shown in hexadecimal and decimal notation.

Floating point registers are shown as floating point numbers. Special register

values are encoded and shown in symbolic form. The states of status bits

are shown in an abbreviated manner. Lower case letters mean that the bit is

not set, upper case letters indicate that the option is set.

For valid register names see SET REGISTER.

Examples

SHOW REGISTER EAX
SHOW REGISTER ES
SHOW REGISTER EBP
SHOW REGISTER DI

References

SET REGISTER

DISPLAY REGISTER

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-139

2.95 SHOW SCOPE

Syntax

SHOW SCOPE

Description

Display the current scope of the debugger. If this is not the scope of the

program, this is marked via [wind] or [walk].

Example

SHOW SCOPE

References

SET SCOPE

SHOW LEVEL

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-140

2.96 SHOW SEGMENT

Syntax

SHOW SEGMENT

Description

Displays the global segment map of the debugger.

The address ranges for logical and physical addresses and the segment

attributes are shown.

Example

SHOW SEGMENT

Reference

LOAD /GLOBAL

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-141

2.97 SHOW SOURCE

Syntax

SHOW SOURCE

Description

The complete file name of the module currently displayed in the source

window is printed. This means you can check which source code is

displayed. This is very useful if several search directories are specified.

Example

SHOW SOURCE

References

SHOW DIRECTORY

SET DIRECTORY

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-142

2.98 SHOW STATUS

Syntax

SHOW STATUS

Description

Displays the current task as well as all debug-IDs loaded by the debugger.

Example

SHOW STATUS

References

SET DEBUG

SHOW DEBUG

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-143

2.99 SHOW SYMBOL

Syntax

SHOW SYMBOL <expression >

Description

The expression <expression> is evaluated, and the result is taken as the

address of a symbol. The nearest global symbol with an optional offset is

displayed.

Examples

SHOW SYMBOL ptrtab[4]
SHOW SYMBOL *funptr

References

EVALUATE /ADDRESS

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-144

2.100 SHOW TASK

Syntax

SHOW TASK /ID[=< task-id >]]
SHOW TASK ["< taskname >"]

Description

All or the selected tasks are displayed in the command window. Their task

names assigned by the target system, their command line arguments, and

their internal task IDs are displayed.

"<taskname>"

This optional argument can include wildcard characters such as '*' and '?'.

/ID[=<task-id>]

With the optional /ID parameter a particular task can be selected. If the

<task-id> value is omitted, all available task IDs are displayed. The current ID

is enclosed in square brackets.

Examples

SHOW TASK
SHOW TASK "io*"
SHOW TASK "data"
SHOW TASK/ID
SHOW TASK/ID=1

Reference

SET TASK

Notes

The shown states have a different meaning than the states of RMOS tasks.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-145

2.101 SHOW TRACEPOINT

Syntax

SHOW TRACEPOINT AT <expression >
SHOW TRACEPOINT /ID = < halt-id >
SHOW TRACEPOINT /ALL

Description

The status and count-, expression-, and action-parameters for the

tracepoints and their ID numbers are displayed.

The status can be ENABLE or DISABLE.

AT <expression>

The tracepoint at the address denoted by <expression> is displayed.

/ID=<halt-id>

The tracepoint with the ID number <halt-id> is displayed.

/ALL

All existing tracepoints are shown.

Examples

SHOW TRACEPOINT /ID=13
SHOW TRACEPOINT /ID=@DBID
SHOW TRACEPOINT /ALL

References

DELETE TRACEPOINT

SET TRACEPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-146

2.102 SHOW TYPE

Syntax

SHOW TYPE "<regexp >"

Description

The type definitions of all symbols whose names match the regular

expression <regexp> are displayed.

<regexp> may contain wildcard characters as '*' and '?'.

Only basic types and declarators are used to print the type. If a structured

mode like struct, union or enum is used, their members are expanded

recursively until any non-structured type is found.

Examples

SHOW TYPE "*table"
SHOW TYPE "p?io"

References

SHOW DECLARATOR

SHOW INFO

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-147

2.103 SHOW VERSION

Syntax

SHOW VERSION

Description

This command displays the version number of your XDB version in the

command window.

Example

SHOW VERSION

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-148

2.104 SHOW WATCHPOINT

Syntax

SHOW WATCHPOINT AT <expression >
SHOW WATCHPOINT /ID = < halt-id >
SHOW WATCHPOINT /ALL

Description

The status and count-, expression- and action-parameters for the

watchpoints and their ID numbers are displayed.

The status can be ENABLE, DISABLE or CURRENT. The status CURRENT

means that the last program stop is caused by this watchpoint.

AT <expression>

The watchpoint at the address denoted by <expression> is displayed.

/ID=<halt-id>

The watchpoint with the ID number <halt-id> is displayed.

/ALL

All existing watchpoints are shown.

Examples

SHOW WATCHPOINT /ID=13
SHOW WATCHPOINT /ID=@DBID
SHOW WATCHPOINT /ALL

References

DELETE WATCHPOINT

SET WATCHPOINT

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-149

2.105 SPAWN

Syntax

SPAWN <command> [< arguments >...]

Description

Executes the specified command and passes the optional arguments to it.

Reserved words must be enclosed in double quotes '"'. Arguments with non-

alphanumeric characters except '+' and '-' must be enclosed in double

quotes, too. If the argument <command> or <arguments> consists of a

macro name or a debugger variable not being protected by double quotes,

the macro is expanded, or the value of the debugger variable is used.

For executing DOS- or Windows programs the extension „.com“ or „.exe“ has

to be specified. Built-In commands of the COMMAND.COM (dir, copy)

require a special syntax. For the DIR command it is:

SPAWN COMMAND.COM /K DIR

For further details on DOS command processor enter help command on a

DOS prompt.

Example

SPAWN notepad.exe "d:\\tmp\\notes.txt"

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-150

2.106 STEP

Syntax

STEP [< count >]
STEP /RETURN
STEP /INTO

Description

The next code line of the loaded program is executed. If you are debugging

in assembler level, the next opcode is executed. If a subroutine is called, the

execution of the program stops at the first command of the subroutine.

<count>

With the optional <count> argument, more than 1 line/instruction can be

stepped. The default value for <count> is 1.

/RETURN

Using /RETURN, the actual value on the stack top is interpreted as return

address. At this address a temporary breakpoint is set. There is no check

done whether this address is valid or not. Then the execution is continued.

You should use /RETURN only if the program execution has stopped at the

first command of a subroutine, and the program stack is unchanged.

/INTO

If the step leads to a part of the program the debugger has no debug

information about (e.g. a jump to a system routine), the execution runs

through this part by performing a NEXT. If the option /INTO is specified, XDB

also performs single-steps inside such code.

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-01 2-151

Examples

STEP 8
STEP /RETURN
STEP /INTO

References

NEXT

RUN

Organon XDB Command Set

Debugging C Programs
C79000-G7076-C520-012-152

2.107 WHILE

Syntax

WHILE < expression > THEN < commandlist > END

Description

As long as the result of <expression> has a value different from 0, the

<commandlist> is executed.

Example

WHILE crashvalue != 0x1FF
 THEN
 STEP
 END

References

BREAK

CONTINUE

GOTO

Debugging C Programs
C79000-G7076-C520-01 3-1

Organon XDB Error Messages 3

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-2

3 Error Messages

The following table lists the error messages of Organon XDB . The error message

you get represents the letters of the columns CLASS + CODE. Note that the code of

the messages is sorted in alphabetical order.

CODE CLASS TEXT DESCRIPTION

D-D-DIAR E address out of sync The shown address lies between

two opcodes. The task walks

through garbage.

H-H-HWAS E hardware breakpoint

already set

The real hardware break point is

set already.

H-H-HWNB E too many hardware

breakpoints

The internal table for real

hardware breakpoints overflows.

H-H-HWUB E unknown breakpoint

at

The program halts at a

breakpoint which is not found in

the internal tables of the

debugger. Anyone has written

the opcode of the breakpoint into

the target memory.

L-B-ADRR E unary & not for

register-variables

The address operator is not

applicable to variables stored in

registers.

L-B-APGNO E no line in ASM-

buffer, use PAGE

<addr>

The lines up are not in the

assembler buffer; an address is

needed for new disassembly.

L-B-AWND E no code displayed There is no code displayed.

Therefore you cannot move up

or down.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-3

CODE CLASS TEXT DESCRIPTION

L-B-AWPG E no PAGE in

assembler window

The PAGE command is not

allowed in the assembler

window.

L-B-BDBG E bad debug

information for

This symbol contains corrupt

debug data.

L-B-BDMU E debug info already

loaded

The debug information is loaded

already.

L-B-BEVEX E evaluation

expression not found

The entered expression was not

found in the internal tables.

L-B-BEVID E evaluation ID not

found

This evaluation ID was not found

in the internal tables.

L-B-BID E bad id number IDs must be positive numbers.

L-B-BPNA E specified halt not

found, no action

done

The specified break-, watch- or

tracepoint can not be found; the

commands DELETE, ENABLE

or DISABLE are impossible.

L-B-BPOE E another breakpoint at

this address already

enabled

Another breakpoint at this

address is already enabled.

L-B-BPSA E breakpoint not

identified by address

 More than one breakpoint at the

specified address.

L-B-BPU W breakpoint already

on this location

This source location is already

monitored by a breakpoint. It is

set only once.

L-B-BRTP E bad range type It is not allowed to prefix the

shown type with a range

definition.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-4

CODE CLASS TEXT DESCRIPTION

L-B-BWN E invalid window This command is not allowed in

this window.

L-B-COMT E unary ~(bitwise not)

not allowed for

The bitwise not operator is not

allowed for this type.

L-B-CSOP E not allowed implicit

cast

The necessary cast of the

operands for this operator is not

allowed for their types.

L-B-CSTW W can't cast The first type cannot be cast to

the second one.

L-B-CSTY E can't cast The first type cannot be cast to

the second one.

L-B-CUMT E not current module The program currently resides in

another module. Use the

command SET MODULE first.

L-B-DBDC E create debug-image

descriptor

The set-up of the descriptor for

the shown debug-image failed.

L-B-DBFM E bad debug format The debug information of this file

is corrupt.

L-B-DBID E no such debug-id

available

The debugger does not know

the requested debug-id.

L-B-DBND E may not delete

debug-id

This debug-id must not be

deleted.

L-B-DBNE E undefined debugger-

variable

The shown debugger variable is

not defined.

L-B-DBNM E can't build debug-

image name

The shown file name cannot be

converted to a debug-image

name.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-5

CODE CLASS TEXT DESCRIPTION

L-B-DBRD E debug info error at An error occurred during reading

and interpreting the debug

information. Possible errors are

corrupt file systems or disk

overflow during compilation.

L-B-DBRO E readonly debugger

variable

Try to assign a value to a read-

only debugger variable.

L-B-DBSY E bad debug symbol The debug information of a

symbol in this file is corrupt. You

can go on with your debug

session, but the information of

this symbol is lost.

L-B-DBTP E no printable type The type of the shown debugger

variable cannot be converted

into a string word.

L-B-DBVU E undefined debugger

variable, get ID

The debugger variable used in

an expression /ID=@.. is not

defined.

L-B-DBVUN E undefined debugger

variable

There is no debugger variable

defined with the issued name.

L-B-DBWR E wrong debug info Wrong debug info is used or no

debug info is loaded.

L-B-DID E invalid debug-id# The shown debug-id# is invalid.

Only numbers greater or equal

to zero are allowed.

L-B-DITG E different tag names The tag name of the symbol-

item is different from that of the

type information.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-6

CODE CLASS TEXT DESCRIPTION

L-B-DIVZ E division by zero The current evaluated

expression contains a division by

zero.

L-B-DRNF E directory not found The specified directory was not

found.

L-B-DVRD E readonly variable This debugger variable is

predefined. The user cannot set

the value of a predefined

debugger variable.

L-B-ERANS E can't erase

ASSEMBLER without

SOURCE

At least one of the two windows

must be displayed.

L-B-ERSNA E can't erase SOURCE

without ASSEMBLER

At least one of the two windows

must be displayed.

L-B-EVIX E invalid index-type The shown value is not allowed

as an array-index.

L-B-EVMX E evaluation string too

long

The string for evaluation window

is too long.

L-B-EVRI E invalid range

selection

These two values do not form a

valid range. The start value

exceeds the end value.

L-B-FXCV E unknown type in

'cast'-expression

The shown tag is not found at

the current scope level.

L-B-HIID E no history id This history-id is not in the

history-pool.

L-B-HIST E no history string No command in the history

string matches this string.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-7

CODE CLASS TEXT DESCRIPTION

L-B-HXNM E can't build hex-file

name

The shown file name cannot be

converted to a hex-file name.

L-B-ILLOP E invalid operator for

evaluation

This operator is not a valid

identifier for the command

EVALUATE.

L-B-ILLP E illegal pointer

sub/add

These pointers cannot be added

or subtracted because they point

to different types.

L-B-ILTG E illegal tag reference The tag name of the forward

reference is illegal.

L-B-LDHX E can't open hex-file The file with the shown name

cannot be opened.

L-B-LDIS E invalid segment

number

A segment number consists of

decimal numbers 0-9 only.

L-B-LDMB E missing debug-image

file

The command LOAD needs a

debug-image file to load

segments.

L-B-LDNS E invalid segment

number

A segment number must be in

the range [0..max].

L-B-LDNT E for task DEBUG- and

SEGMENT-option

needed

The option TASK is not allowed

without the options DEBUG and

SEGMENT.

L-B-LDSA E invalid segment

loadaddress

The address must be a decimal

or hexadecimal (which is

prefixed with a '$') number.

L-B-LDSF E invalid segment flag The segment flag can be built up

by the letters A,P,R,W and C.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-8

CODE CLASS TEXT DESCRIPTION

L-B-LDSL E invalid segment

length

The length must be a decimal or

hexadecimal (which is prefixed

with a '$') number.

L-B-LDSP E invalid CPU-space The CPU-space qualifier can

have the values UD,

UP,UX,SP,SD,SX,XX and CP

L-B-LDSS E i/o error A disk-error occured during

loading an image from the host

system to the target.

L-B-LDTG E missing /TASK or

/GLOBAL qualifier

An attempt to download

segments is made without a task

or global specification. The

global-task qualifier is set to ON,

but XDB has currently no task

under control.

L-B-LDTN E missing task name

for load

There is no task name specified,

and the TASK option is not set to

global.

L-B-LDUS E segment already

used

The shown segment is already

used during the command

LOAD.

L-B-LMAL E out of memory,

stopped at

There is not enough memory to

load the debug information of all

modules. The load process

stopped at the issued name, but

does not include this module.

L-B-LNCU E no current line The program stops at an invalid

source line.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-9

CODE CLASS TEXT DESCRIPTION

L-B-LOGOP E can't open logfile The mentioned file cannot be

opened. Check its name and

your access privileges.

L-B-MBID E no such member The structure/union does not

contain this member.

L-B-MBRK E too many breakpoints No more breakpoints available.

L-B-MCUR E current module This module is the current

location of the program.

L-B-MLIN E multiple lines for this

address, used line:

There are more than one lines

associated with the evaluated

address.

L-B-MMPU E too many memory

pushes

An internal buffer overflows.

Your entered expression is too

complex.

L-B-MNLD E module not loaded The debug information of the

requested module is not loaded

into the debugger.

L-B-MODZ E modulo by zero The current evaluated

expression contains a modulo

operation by zero.

L-B-MOVE E Bad move coordinate The given X/Y-position is a bad

position for a window.

L-B-N2PT E no pointer left and

right for

This operator does not allow

operands of type pointer on both

sides.

L-B-NADB E no active debug

tables

The program halts at an address

where no debug information is

available.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-10

CODE CLASS TEXT DESCRIPTION

L-B-NADE E no addressible

expression

The expression cannot be used

as an address.

L-B-NADR E expression not

addressible

The expression cannot be

referenced with a pointer.

L-B-NARR E no array type for This operator does not allow

operands of type array.

L-B-NBEA E no physical address

for end of block

The logical end-address of the

current local block cannot be

converted to a physical address.

L-B-NBLK E no valid block The program is not inside a

debugged block or function.

L-B-NCON E string constant not

allowed

String constants are not

addressible.

L-B-NCTK E no current task There is no task attached to the

debugger.

L-B-NDIX E cannot address as

subarray

The equivalence between

pointers and arrays is only

possible for the first-index stage.

L-B-NEGT E unary - not allowed

for

The unary - operator is not

allowed for this type.

L-B-NFLT E no float/double type

for

This operator does not allow

operands of type float or double.

L-B-NFNC E no procedure type for This operator does not allow

operands of type procedure.

L-B-NIDX E no index allowed The expression is not of type

array or pointer. An index

(offset) specification is not

allowed.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-11

CODE CLASS TEXT DESCRIPTION

L-B-NIND E no indirection

allowed

The expression is usable for

dereferencing or indexing.

L-B-NLNO E no code line, use The given line number does not

point to a real code location. Use

the shown alternatives.

L-B-NMAIN E MAIN-symbol not

found for

The language specific entry

point cannot be found for the

current language ore one the

other possible debugger

languages.

L-B-NMB E not a struct/union

member for

The term following the “member-

of“ operator is not of type

member-of anything.

L-B-NMOF E no offset address The left-side expression is not

suitable to enter using an offset

(no structure/array).

L-B-NOBD E boundfile not found No bound file found for this

debug-id.

L-B-NOEV E not a enum-member The shown string is not a

member of the given

enumeration constant.

L-B-NOEX E missing expression An expression node is required.

Check your input.

L-B-NOHXNM E missing filename of

hex-record

The file name of the hex-record

has not been specified.

L-B-NOLV E no lvalue The entered expression is not

usable to form an address.

L-B-NOMV E MOVE not allowed This version of XDB does not

allow the movement of windows.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-12

CODE CLASS TEXT DESCRIPTION

L-B-NOP E no binary operator The operator is not usable for an

expression with 2 operands.

L-B-NOSP E no SPAWN

command

This version of XDB does not

support the command SPAWN.

L-B-NOTG E no target type This type is not a structure/union

or enum.

L-B-NOTK E no task to reset There is no task known for the

debugger.

L-B-NOTT E unary ! not allowed

for

The unary !-operator is not

allowed for this type.

L-B-NOTY E command not yet

implemented

This command is not usable in

this release. Check the release

notes of further updates.

L-B-NPEA E no physical address

for end of procedure

The logical end-address of a

procedure cannot be converted

to a physical address.

L-B-NPRC E no valid procedure XDB is currently not inside a

debugged function.

L-B-NPTR E no pointer type for This operator does not allow

operands of type pointer.

L-B-NSGA E no segment list There is no segment list

available.

L-B-NSMO E no source module

displayed

The source window does not

contain a source module. Use

the command SHOW or SET

MODULE first.

L-B-NSNF E segment name not

found

The given segment name was

not found in the segment list.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-13

CODE CLASS TEXT DESCRIPTION

L-B-NSTC E no struct/union

referenced by

The left side of the expression is

neither a structure nor a union.

L-B-NSUE E no struct/enum/union

types for

This operator does not allow

structured types.

L-B-NTKS E no segments for task The shown task contains no

physical segments.

L-B-NTP E no type information The operands have no type

information.

L-B-NTSK E no task for PC= None of the assigned address

spaces of the task matches the

given PC value.

L-B-NUSP E no struct/union

pointer

The expression left of '->' is not

a structure or union pointer.

L-B-OBNM E module not found The shown module name is not

found in the internal list of

loaded modules.

L-B-OJRD E object-format-error The shown object file is corrupt

and cannot be read in by the

debugger correctly.

L-B-ONEP E procedure in

epilogue

The end of the procedure is

reached already.

L-B-OPBD E can't open The mentioned boundfile cannot

be opened. This file contains the

symbol and debug information.

L-B-OPOJ E can't open object file The shown object file cannot be

opened.

L-B-OVFL W near pointer overflow The given near pointer with its

offset exceeds a 16 bit value.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-14

CODE CLASS TEXT DESCRIPTION

L-B-PDIR E illegal PAGE-

direction

The direction word after the

PAGE command is not allowed

in HLL-mode.

L-B-PRFM E bad format

specification

The shown format string is not

valid.

L-B-PRMA E missing argument

expression

The PRINT command is called

with less argument expressions

than required in the given format

string.

L-B-PRTEX W protfile already exists The protocol file exists already.

Confirm overwriting.

L-B-PRTOP E can't open protfile The mentioned file cannot be

opened. Check its name and

your access privileges.

L-B-PSUB E illegal pointer

subtraction

The two pointers cannot be

subtracted because they point to

different types.

L-B-RGGP E no CPU register This register is not a general

purpose CPU register.

L-B-RGNV E register not valid This register is not accessible

now.

L-B-RGSE E can't set value of This register cannot be modified

by the debugger.

L-B-RGSH E can't show value of This register cannot be shown

by the debugger.

L-B-RGSZ E illegal register size The mentioned register cannot

be entered with this size

parameter.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-15

CODE CLASS TEXT DESCRIPTION

L-B-RLSZ E size of expression

exceeds buffer limit

The result of an expression is

too big. It is probably a very big

structure in an expression.

L-B-RLVO E value of VOID ? A value of a void type

expression is requested.

L-B-RMAP E register not

accessible

The symbol is located in a

register. The value of this

register is currently saved at an

unknown position at the stack.

L-B-RNOV W range-selection

overflow

The selected range of index

values exceeds the number of

elements of this array.

L-B-RSNE E too deep nested

stack

The runtime stack is nested too

deeply. The internal buffer for

tracking the stack-frame is filled

completely.

L-B-SCCM E no current module There is no module currently

used.

L-B-SCCP E no current procedure There is no procedure currently

used.

L-B-SCID E no valid identifier This expression is not a valid

identifier for the command SET

SCOPE.

L-B-SCLN E line number too high The given line number is outside

the module.

L-B-SCNE E scope stack deeply

nested

The dynamic stack of local

symbol tables overflows. There

are currently too many active

procedures.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-16

CODE CLASS TEXT DESCRIPTION

L-B-SCNL E no current line The program is not at a correct

source line.

L-B-SCNM E no such module This module is not found in the

debug tables.

L-B-SCNP E no procedure The mentioned procedure name

is not in the given module.

L-B-SCNR E no global scope The debugger is not located at

any debug information.

L-B-SGNF E segment not found The given address is not

included in the segment list.

L-B-SHAL E level too high The requested scope level is

higher than the current level of

the program.

L-B-SHMA E expression not

addressible

The result of the expression in

not located in memory.

L-B-SHMO E no such module The issued module name cannot

be found in the debug tables.

L-B-SHMR E expression evaluated

to register

The result of the expression is

located in a register.

L-B-SMBO W already at bottom The source window already

displays the last lines of this

module.

L-B-SMBT W can't go down The source window cannot be

moved down so many lines. The

debugger goes to the last line.

L-B-SMLE W already at left border The source window already

displays the first column.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-17

CODE CLASS TEXT DESCRIPTION

L-B-SMLN W can't go to The source window cannot be

moved to that line. The

debugger goes to the last line.

L-B-SMTO W already at top The source window already

displays the first lines of this

module.

L-B-SMTP W can't go up The source window cannot be

moved up so many lines. The

debugger goes to line 1.

L-B-SRNF E string not found The shown pattern was not

found in the current source file.

L-B-STFR E Corrupt stack-frame

at

An illegal return-address is

fetched during a walk through

the dynamic procedure link on

the stack.

L-B-STOP E unrecognized option This option is no valid argument

for the command SET OPTION.

L-B-STSB E on top of stack The symbolic scope is already

on top of stack.

L-B-STSC E not on active stack The symbolic scope is not at any

of the currently active

procedures. Use the command

SET SCOPE/CURRENT to get

back on the active frame, and

then you can use /UP and

/DOWN.

L-B-STSE E move scope not

implemented

This command is currently not

usable.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-18

CODE CLASS TEXT DESCRIPTION

L-B-STSM E procedure not in

current module

The given procedure is not in the

current module.

L-B-STSR E relative scope

changes not allowed

in assembler

The relative changes of scope

with /UP and /DOWN are not

allowed in language assembler.

L-B-STST W on bottom of stack The symbolic scope has

reached the lower end of the

stack frame.

L-B-STSZ E illegal size The qualifier of the size option is

illegal.

L-B-STTR W Unable to track call-

frames, stop unwind

The current frame cannot be

unwinded. The loop is stopped,

thus not all procedures are

currently visible on stack.

L-B-SVCO E set value of a

constant expression

only in assembler

Set value of a constant

expression is possible in

language assembler only.

L-B-SYBA W address not resolved The address lies outside of any

known memory region.

L-B-SYMB E symbol not found The symbol is not found in the

requested scope. Possibly the

name is wrong or the path name

specification is insufficient.

L-B-SYNA E symbol not

addressible

The symbol is not reachable at

this state of the debugger scope

view.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-19

CODE CLASS TEXT DESCRIPTION

L-B-SYTY W no type information

for, 'int' assumed

The issued symbol references to

an unknown type. This is a

problem of the debug

information writer in the

compiler. The debugger

assumes an integer type for this

symbol.

L-B-TID E invalid task-id# The shown task-id# is invalid.

Only numbers greater or equal

to zero are allowed.

L-B-TKCP E capture task failed An attempt to get the shown task

under control of the debugger

failed again.

L-B-TKEC E unmonitored

exception

The shown exception is detected

by the hardware interface but

the debugger does not control it.

L-B-TKEN E invalid exception

code

The shown exception code

issued by the hardware interface

is illegal. Check your monitor.

L-B-TKER E task This task cannot be continued

because it is in error state.

Terminate this task and restart it.

L-B-TKID E no such task-id

available

The requested task-id is not

known by the debugger.

L-B-TKIF E INFO about task

needed

Neither a task name nor

arguments exists.

L-B-TKIN E invalid command The requested command is not

allowed for this task.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-20

CODE CLASS TEXT DESCRIPTION

L-B-TXNR E no running task There is no monitored running

task; thus no active stack frame

can be shown.

L-B-TYFX E cannot fixup

typename

The shown type name is

referenced, but its definition is

not found in any debug table.

L-B-TYMK E can't construct this

type

This type cannot be generated

internally by the debugger.

L-B-UDTY E undefined type The shown type is referenced

but not defined.

L-B-UPLNM E can't build upload-file

name

The shown file name cannot be

converted to an upload-file

name.

L-B-UPLOP E can't open file The mentioned file cannot be

opened. Check its name and

your access privileges.

L-B-VART E variable return offset The return address offset is

variable and there is no prologue

information about this function

available.

L-B-ZSTY E zero sized type The shown type occupies 0

bytes of memory.

M-D-BAOP E can't open BATCH

file

This file cannot be read. Check

its name and your permissions.

M-D-FMIOE E Disk-i/o error no-# The disk-i/o system interface

detects an error.

M-D-FMIOW E Disk-i/o warning no-# The disk-i/o system interface

detects a warning.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-21

CODE CLASS TEXT DESCRIPTION

M-D-IONE E too deeply nested

input

Your input sources (BATCH-file,

MACROS) are nested too

deeply.

M-H-HEAM E ambiguous topic

name

The input string matches more

than one help topic. Supply

more characters.

M-H-HEFM E HELP-file format

error

The help file is corrupt. Check

your disk and restore it.

M-H-HEIN E can't setup HELP The help feature cannot be

started. Check the correctness

of your help file.

M-H-HEOP E can't open HELP file The help file cannot be opened.

Check your installation or disk.

M-H-HEUN E unknown topic This topic is not found in the

help tables.

M-I-HICM E illegal history

command

This command is not allowed in

HISTORY mode. Consult your

manual.

M-I-HIDL E delete history /ID= The deletion of the history

member with <id> failed.

M-I-HIID E no command word The entered string is not a

command word.

M-I-HIOP E can't open help file The help-test database cannot

be opened.

M-M-CLAC E read/write-access

denied

The shown device cannot be

used for read- and write-i/o.

M-M-CLOK W Target i/o redirected

to

The target in-/output is

redirected to the shown device.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-22

CODE CLASS TEXT DESCRIPTION

M-M-MABE E error in creating

debug file name

The input file name cannot be

modified to the name of the

debug file. Check path name

and length of file name.

M-M-MACV E preprocessing debug

info failed

The preprocessor for the input

file failed. Check your

permissions and disk quota.

M-M-MAIT W target not initialized The target initialization is not

possible.

M-M-MALO E error in initialization The internal set-up of the

debugger fails.

M-M-MASU E error in setup The basic set-up of the

debugger with the configuration

file failed.

M-M-MINF E too many input files The debugger was started with

too many input images.

M-M-MSDI E too many source

directories

The limit of search directories for

source directories is exceeded.

M-M-NCTK E no attached task The debugger has no current

attached task.

M-M-PWAP E absolute path

needed in spite of

The call of XDB needs an

absolute pathname.

M-M-PWCF E create password file The password file cannot be

opened for writing. Check the

permissions.

M-M-PWDL E missing security key

...

The security mechanism is

corrupted.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-23

CODE CLASS TEXT DESCRIPTION

M-M-PWHI E get host identification The id of the host system XDB

currently runs on cannot be

read.

M-M-PWIL E too long input The input line was too long.

M-M-PWKY E make key path The path to the XDB license file

cannot be made.

M-M-PWLF E create lock file The lock file cannot be opened

for writing. Check the

permissions.

M-M-PWLK E make lock path The path to the lock directory

cannot be made.

M-M-PWNP W path not found The path to XDB was not found.

M-M-PWOL E open lock directory The lock directory was not

found.

M-M-PWWF E write to password file Write error on password file.

Check disk quota.

M-M-SMVN W file-version not

available, '0'

assumed

The shown file is not accessible

with the original version number.

M-M-TCLI E can't redirect XDB

and CHILD output

Only one of them can be

redirected to another in/out-

device.

M-M-TLAC E read/write-access

denied

The shown device cannot be

used for read- and write-i/o.

M-M-TLOK W Debugger i/o

redirected to

The in-/output of XDB is

redirected to the shown device.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-24

CODE CLASS TEXT DESCRIPTION

U-E-AGREG E CPU register

expected

The second parameter of an

indirect addressing mode has to

be a register.

U-E-AILL E illegal expression The input string does not form a

legal assembler expression.

U-E-AIREG E index-register

required

A register is required which is

suitable for an indexed

addressing mode.

U-E-AMISS E missing Supply it.

U-E-ARPAR E missing ')' A ')' is missing. Supply it.

U-E-CID E identifier required A C-Identifier is necessary at this

point of the expression.

U-E-CMA E ',' expected, not The ',' is missing between two

expressions in an argument list.

U-E-CNUN E no unary The shown string does not form

a unary expression.

U-E-CRBR E ']' expected The closing ']' is missing after an

array index.

U-E-CRPAR E missing ')' The closing ')' is missing after an

expression.

U-E-EP E wrong identifier path

name

An identifier can be prefixed by a

path name which selects an

other scope as the default. The

path name consists of identifiers,

level numbers and ' ' characters

only.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-25

CODE CLASS TEXT DESCRIPTION

U-E-EXPR E missing expression,

not

An expression was expected

during reading of an argument

list.

U-E-FCOM E COMMON block

member expected

An identifier containing a

common block member name is

required.

U-E-FNUN E no unary The shown string does not form

a unary expression.

U-E-FOLWORD E invalid command The entered word is not allowed.

U-E-FOPER E unknown F77

operator

This string does not match any

F77 operator.

U-E-FRPAR E ')' expected The closing ')' after a FORTRAN

expression is missing.

U-E-LNR E line number expected A number constant for an

@LINE expression is needed.

U-E-LNV E @LINE or @LEVEL

expected

The expression allows a line

number or level number only.

U-E-LV E level number

expected

A number constant used as level

is requested.

U-E-NCMA E missing argument

separator

The ',' is missing between two

expressions of an argument list.

U-E-OPTL E operator name too

long

The name of the given operator

exceeds 7 characters.

U-E-PID E identifier expected This is not an identifier name.

U-E-PNUN E no unary The shown string does not form

a unary expression.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-26

CODE CLASS TEXT DESCRIPTION

U-E-PRBR E ']' expected The closing ']' is missing after an

array index.

U-E-PRPAR E ')' expected The closing ')' after a PASCAL

expression is missing.

U-E-REGI E invalid register This name is no CPU general

purpose register of the target

processor.

U-E-TLP E too many path

prefixes

The path specification of an

identifier contains more than the

allowed specifications of module,

procedure and level.

U-E-XID E identifier required A C-Identifier is necessary at this

point of the expression.

U-E-XNUN E no unary The shown string does not form

a unary expression.

U-E-XRBR E ')' expected The closing ')' is missing after an

array index.

U-E-XRPAR E missing ')' The closing ')' is missing after an

expression.

U-L-CHRDEL E char-const delimiter

missing

A character constant has to be

enclosed in single quotes.

U-L-EOI E unexpected End-of-

Input on

The end-of-input condition was

set by the mentioned input

source. Check the source, e.g. a

truncated BATCH-file or a

corrupt MACRO-body definition.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-27

CODE CLASS TEXT DESCRIPTION

U-L-ICHAR E invalid number-prefix The prefix of a numeric-constant

is not the regular prefix for

OCTAL (0) or HEXADECIMAL

(0x,$) numbers.

U-L-IDTOL E identifier too long An identifier name longer than

79 characters was entered.

U-L-NONASC E non-ASCII char A value larger than 7 bits was

read from the input. Only values

between 0 and 127 are allowed

(ASCII-character set). Possibly

an unmonitored function/control

key or a mouse button was

pressed.

U-L-NTOL E number too long A numberic-string longer than 79

characters was entered.

U-L-STRNT E unterminated string-

constant

The delimiter character '"' is

missing. Supply one.

U-L-STRTL E string-constant too

long

A string constant longer than 79

characters was entered.

U-L-UPBOF F input-overflow An overflow of the internal input-

buffer occurs during scanning

the actual input line.

U-M-MAAI E Wrong parameter

number

The shown number is not in the

range of the called argument

parameter list.

U-M-MADF E Macro already

defined

The issued macro name is used

already.

U-M-MANA E Too many arguments

passed

The issued macro is called with

an improper count of arguments.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-28

CODE CLASS TEXT DESCRIPTION

U-M-MANF E Macro not defined The issued macro is not defined.

There is no deletion possible.

U-M-MARD W Macro redefined This macro is redefined. The old

definition is lost.

U-M-NIMA E Not an immediate

addressing mode

The shown expression does not

form an immediate addressing

mode.

U-M-SPC E illegal CPU-space

qualifier

The shown name does not

specify any legal addressing

space of the processor.

U-M-SPTK E illegal SPAWN

argument

The given string is not allowed

as argument to SPAWN; enclose

it in double quotes.

U-M-SPTL E too long argument list The maximal size of an

argument list for SPAWN is

exceeded.

U-P-AMBK E Ambiguous keyword The shown string is too short.

This string matches to more than

one keyword. Supply more

characters.

U-P-CUGOTO E bad label name This is not a correct label

specifier. An alphanumeric name

is needed.

U-P-EXIT E misplaced EXIT The EXIT call is allowed on

WINDOW-input level only.

U-P-FLAB E not in BATCH-File Labels are allowed in BATCH-

input mode only.

U-P-IFNEX E missing expression The boolean expression is

missing.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-29

CODE CLASS TEXT DESCRIPTION

U-P-IFRET E dangling END-if End-of-input is reached inside

the IF-body. Check the input.

U-P-IFTHE E THEN expected The keyword THEN is necessary

at this point of input.

U-P-IFTHP E END expected The keyword END is necessary

to terminate the action list of a

true/false node in an IF

construct.

U-P-ILLEX E illegal expression The entered string does not form

an expression in the current

input language.

U-P-ILLRW E illegal keyword The entered word is no keyword.

U-P-ILLTK E illegal keyword This keyword is not allowed

here. Look at your manual for

the correct syntax.

U-P-INLAB E label already defined A label can be defined only

once.

U-P-MLAB E too many labels Too many labels are defined.

Reduce your input.

U-P-NHIST E no history The command HISTORY is

allowed on WINDOW-level only.

U-P-NOFILE E missing BATCH-file

name

The name of the batchfile is

missing.

U-P-NREG E not a register-name This is not a name of any of the

target CPU registers.

U-P-NSTR E no BATCH-file name The entered string is not a string

constant.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-30

CODE CLASS TEXT DESCRIPTION

U-P-SELIL E not a language name This is not an identifier for an

XDB language name.

U-P-TNRET E missing END The END keyword is necessary

to terminate the optional action

list of the BREAKPOINT or

WATCHPOINT command.

U-P-UEOC E unexpected EOF by The last read word signals

improper command completion.

Review your input.

U-P-UFLAB E unbalanced labels The BATCH-File contains

undefined label references.

U-P-UNID E not a label This is neither a LABEL nor a

keyword.

U-P-WHNEX E missing WHEN-

expression

The WHEN expression is

missing.

U-P-WHRET E bad WHILE construct A WHILE construct terminates

incorrectly.

U-P-WHTHE E THEN missing The THEN keyword must

precede any action list in a

WHILE loop.

U-X-STOL E string constant too

long

The shown quoted string is too

long for the internal buffer of the

debugger.

U-X-XAML E missing '(' after

keyword ADDR

The ADDR-modifier needs

parantheses '(' and ')'.

U-X-XIMC E illegal mode

conversion

A mode-conversion is not

possible here.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-31

CODE CLASS TEXT DESCRIPTION

U-X-XIMO E illegal mode name The shown name is not a mode

name for type conversions.

U-X-XNDL E missing ''' after

number constant

A numeric constant with prefix

must be enclosed in single

quotes.

U-X-XNLP E no '(' allowed The left parenthesis is not

allowed here.

W-I-EOF E unexpected EOF in The source file does not contain

as many lines as expected.

W-I-EXMX E reached maximum of

monitored

expressions 61

The limit of 61 expression for

monitoring expression is

reached

W-I-IEMR W end of module

reached

The end of the module and all its

includes are reached.

W-I-IGDS E get include file The include file for the given line

is not found.

W-I-INLF E line not found The given line number is not

found in the file.

W-I-ISDS E yet no source line

read

Until now, the debugger has not

read line information of the given

file.

W-I-MOMD W source module The shown source module has a

modification time which is newer

than the debugged image.

W-I-NOMAC E unknown macro An unknown macro name was

entered in the emulator window.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-32

CODE CLASS TEXT DESCRIPTION

W-I-WENASC E non-ASCII char A value larger than 7 bits was

read from the input to the

emulator window. Only values

between 0 and 127 are allowed

(ASCII-character set). Possibly

an unmonitored function/control

key or a mouse-button was

pressed.

W-I-WENESC E wrong escape

sequence

The read string is no valid

escape sequence in the

emulator window.

W-I-WETOL E macro identifier too

long

A macro identifier name longer

than 79 characters was entered

in the emulator window.

W-I-WILM E negative line number Line numbers must be greater or

equal to zero.

W-I-WINA E no ASSEMBLER

window displayed

The assembler window is not

displayed at the moment.

W-I-WINE E no EVALUATION

window displayed

The evaluation window is not

displayed at the moment.

W-I-WINH E no HISTORY window

displayed

The history window is not

displayed at the moment.

W-I-WINI E no terminal

associated

There is no terminal associated

with the job.

W-I-WINR E unresizable window This window has fixed geometry.

No resize is allowed.

W-I-WINT E no TRACE window

displayed

The trace window is not

displayed on the screen.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-01 3-33

CODE CLASS TEXT DESCRIPTION

W-I-WIRE E can't move The requested positions would

move the window border to

invalid positions.

W-I-WIRS E not enough lines for

REGISTERS

The register window cannot be

displayed because the screen is

occupied by other windows. Use

the RESIZE command.

W-I-WISF E can't open source file The source file which name is

stored in the debug information,

cannot be opened. Check your

permission and the path name.

Use the -D option to add

alternative path names.

W-I-WISL E can't access line The line cannot be read from the

source file.

W-I-WISM E can't set scrollmode

for

The scroll mode (continue/page)

is not selectable for all windows.

Look at the manual for a list of

allowed windows.

W-I-WISU E window setup The basic window setup failed.

Look at your configuration files.

W-I-WRLR E resize left/right only This window border can be

moved left or right only.

W-I-WRUD E resize up/down only This window border can be

moved up or down only.

W-W-HIID E illegal history-id The shown number is an illegal

id-number.

W-W-WAED E editor: The command line editor has

encountered an error.

Organon XDB Error Messages

Debugging C Programs
C79000-G7076-C520-013-34

	Title
	Preface
	1 Organon XDB User Interface
	1.1 Starting Organon XDB
	1.1.1 Start-up Dialog
	1.1.2 Starting problems

	1.2 Description of the Main Window
	1.2.1 Menu Panel
	1.2.1.1 File
	1.2.1.2 Display
	1.2.1.3 Run
	1.2.1.4 Debug
	1.2.1.5 Language
	1.2.1.6 Options
	1.2.1.7 Windows
	1.2.1.8 Help

	1.2.2 Browsers
	1.2.2.1 The Windows File Browser
	1.2.2.2 The Organon XDB Symbol Browser

	1.2.3 Buttons
	1.2.3.1 Load
	1.2.3.2 Search
	1.2.3.3 Step
	1.2.3.4 Next
	1.2.3.5 Run
	1.2.3.6 Recapture
	1.2.3.7 Set Scope Up
	1.2.3.8 Set Scope Down
	1.2.3.9 Set Scope Here
	1.2.3.10 Display/Hide Source Window
	1.2.3.11 Display/Hide Assembler Window
	1.2.3.12 Display/Hide Register Window
	1.2.3.13 Display/Hide Task Window
	1.2.3.14 Display/Hide Remote System Window
	1.2.3.15 Evaluate
	1.2.3.16 Create Memory Window
	1.2.3.17 Display Callstack
	1.2.3.18 Break

	1.3 Description of the Subwindows
	1.3.1 Command Window
	1.3.1.1 Command Window Editor

	1.3.2 Source Window
	1.3.3 Assembler Window
	1.3.4 Register Window
	1.3.5 Task Window
	1.3.6 Remote System Window
	1.3.7 Evaluation Windows
	1.3.8 Memory Windows
	1.3.8.1 Memory Window Context Menu

	1.3.9 Trace Windows
	1.3.10 Copy and Paste

	1.4 Descriptor and Register Tables
	1.4.1 Descriptor Tables
	1.4.1.1 Modify
	1.4.1.2 Reload Table
	1.4.1.3 Set Range

	1.4.2 Control Registers
	1.4.2.1 Modify
	1.4.2.2 Update

	1.4.3 Register Window
	1.4.3.1 General Registers
	1.4.3.2 Segment Registers

	2 Organon XDB Command Set
	2.1 BATCH
	2.2 BREAK
	2.3 CLOSE
	2.4 CONTINUE
	2.5 DEFINE Commands
	2.6 DEFINE BUTTON
	2.7 DEFINE KEY
	2.8 DEFINE MACRO
	2.9 DEFINE SYMBOL
	2.10 DELETE Commands
	2.11 DELETE BREAKPOINT
	2.12 DELETE BUTTON
	2.13 DELETE DEBUG
	2.14 DELETE DIRECTORY
	2.15 DELETE EVALUATE
	2.16 DELETE KEY
	2.17 DELETE MACRO
	2.18 DELETE MODULE
	2.19 DELETE TRACEPOINT
	2.20 DELETE WATCHPOINT
	2.21 DISABLE Commands
	2.22 DISABLE BREAKPOINT
	2.23 DISABLE EVALUATE
	2.24 DISABLE TRACEPOINT
	2.25 DISABLE WATCHPOINT
	2.26 DISPLAY
	2.27 DISPLAY Descriptor Table
	2.28 DISPLAY SYSREG
	2.29 ENABLE Commands
	2.30 ENABLE BREAKPOINT
	2.31 ENABLE EVALUATE
	2.32 ENABLE TRACEPOINT
	2.33 ENABLE WATCHPOINT
	2.34 ERASE
	2.35 ERASE SYSREG
	2.36 EVALUATE
	2.37 EXIT
	2.38 GOTO
	2.39 HELP
	2.40 IF
	2.41 Label
	2.42 LINE
	2.43 LOAD
	2.44 MESSAGE
	2.45 NEXT
	2.46 PAGE
	2.47 PRINT
	2.48 REMOTE
	2.49 RUN
	2.50 SCAN
	2.51 SEARCH
	2.52 SET Commands
	2.53 SET BREAKPOINT
	2.54 SET DEBUG
	2.55 SET DESCRIPTOR
	2.56 SET DIRECTORY
	2.57 SET ESCAPE
	2.58 SET EVALUATE
	2.59 SET INTERFACE
	2.60 SET LANGUAGE
	2.61 SET LOGFILE
	2.62 SET MODULE
	2.63 SET OPTION
	2.64 SET PROTFILE
	2.65 SET REGISTER
	2.66 SET SCOPE
	2.67 SET SCROLL
	2.68 SET TASK
	2.69 SET TRACEPOINT
	2.70 SET VALUE
	2.71 SET WATCHPOINT
	2.72 SHOW Commands
	2.73 SHOW ACTIVE
	2.74 SHOW BREAKPOINT
	2.75 SHOW BUTTON
	2.76 SHOW CALLS
	2.77 SHOW DBVAR
	2.78 SHOW DEBUG
	2.79 SHOW DECLARATOR
	2.80 SHOW DESCRIPTOR
	2.81 SHOW DIRECTORY
	2.82 SHOW ESCAPE
	2.83 SHOW EVALUATE
	2.84 SHOW INFO
	2.85 SHOW KEY
	2.86 SHOW LANGUAGE
	2.87 SHOW LEVEL
	2.88 SHOW LOGFILE
	2.89 SHOW MACRO
	2.90 SHOW MEMORY
	2.91 SHOW MODULE
	2.92 SHOW OPTION
	2.93 SHOW PROTFILE
	2.94 SHOW REGISTER
	2.95 SHOW SCOPE
	2.96 SHOW SEGMENT
	2.97 SHOW SOURCE
	2.98 SHOW STATUS
	2.99 SHOW SYMBOL
	2.100 SHOW TASK
	2.101 SHOW TRACEPOINT
	2.102 SHOW TYPE
	2.103 SHOW VERSION
	2.104 SHOW WATCHPOINT
	2.105 SPAWN
	2.106 STEP
	2.107 WHILE

	3 Error Messages
	Retournez
	Atrás
	Indietro

