
Preface, Table of Contents

Function Groups 1

Type Identifiers 2

Data Structures 3

Error Codes and Messages 4

M7 API 5

RMOS API 6

Index

C79000–G7076–C852–02

System Software
for M7-300 and M7-400
System and Standard
Functions, Volume 1

Reference Manual

This manual is part of the documentation
package with the order number:

6ES7802–0FA14–8BA0

SIMATIC

Index-2
System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

!
Danger

indicates that death, severe personal injury or substantial property damage will result if proper precau-
tions are not taken.

!
Warning

indicates that death, severe personal injury or substantial property damage can result if proper precau-
tions are not taken.

!
Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a
particular part of the documentation.

Qualified Personnel
Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys–
tems in accordance with established safety practices and standards.

Correct Usage
Note the following:

!
Warning

This device and its components may only be used for the applications described in the catalog or the
technical description, and only in connection with devices or components from other manufacturers which
have been approved or recommended by Siemens.

This product can only function correctly and safetly if it is transported, stored, set up and installed cor-
rectly, and operated and maintained as recommended.

Trademarks
SIMATIC�, SIMATIC HMI� and SIMATIC NET� are registered trademarks of SIEMENS AG.

Some of the other designations used in these documents are also registered trademarks; the owner’s
rights may be violated if they are used by third parties for their own purposes.

Safety Guidelines
This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be preclu-
ded entirely, we cannot guarantee full agreement. However, the data in
this manual are reviewed regularly and any necessary corrections inc-
luded in subsequent editions. Suggestions for improvement are welco-
med.

Disclaimer of LiabilityCopyright Siemens AG 1998 All rights reserved

The reproduction, transmission or use of this document or its contents is not
permitted without express written authority. Offenders will be liable for
damages. All rights, including rights created by patent grant or registration of
a utility model or design, are reserved.

Siemens AG
Automation and Drives Group
Industrial Automation Systems
P.O.Box 4848, D- 90327 Nuremberg

� Siemens AG 1998
Technical data subject to change.

Siemens Aktiengesellschaft C79000–G7076–C852–02

iii
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Preface

This manual supports you when programming M7 300 and M7 400 automa-
tion computers in C under the M7 RMOS32 operating system. It provides
you with detailed information on the range of functions for the call interface
of M7 RMOS32. The information contained in the manual includes:

� Notations and data types

� Functional classification of the various calls

� Data structures used

� Error codes and messages

� Detailed information on the function calls

This manual is intended primarily for C programmers of M7 300 and M7 400
automation computers.

This manual is valid for M7 300 and M7 400 automation computers with the
system software M7–SYS RT from V 4.0.

The system software for automation computers M7 300 and M7 400 with M7
RMOS32 is documented in several manuals, which can be ordered separately
from each product. The manuals are listed in the following table.

Manual Contents

System Software for M7-300/400
Installation and Operation, User
Manual

Installation and operation of M7-300/400 automation
computers.

System Software for M7-300/400
Program Design,
Programming Manual

Design and creation of C/C++ programs

System Software for M7-300/400
System and Standard
Functions, Reference Manual

Detailed information for programming with M7
RMOS32.

System Software for M7-300/400
Writing Loadable Drivers
Electronic Manual

Designing and writing loadable device drivers for
M7 RMOS32, programming and reference informa-
tion.

Purpose

Audience

Scope of this Ma-
nual

Scope of the
Documentation
Package

iv
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

This Reference Manual supports you primarily when programming applica-
tions for M7 RMOS32. It is your main reference document for programming,
testing and checking the source code. The manual is divided into two volu-
mes containing the following:

Volume 1

Function groups

Chapter 1 provides an introduction and presents the programming functions
in logical order. If you are looking for a function to perform a specific task,
you can find it here.

This chapter also describes the conditions required for the use of the individ-
ual groups of calls. You will find a detailed description of the individual
functions in Chapters 5 and 6 of Volume 1 and Chapters 1 to 3 of Volume 2 .

Type identifiers

The second chapter contains the main type identifiers used when program-
ming. It lists the identifiers for the system messages, S7 objects and data
types used.

Data structures

The third chapter describes the data structures used in the RMOS API, M7
API and socket calls.

Error codes and messages

The fourth chapter explains the error codes and messages returned by the M7
RMOS32 kernel and the individual function calls.

Description of the function calls

Chapters 5 and 6 provide a detailed description, in alphabetical order, of the
M7 API and RMOS API calls.

Volume 2

Libraries

Chapters 1, 2 and 3 provide a detailed description, in alphabetical order, of
the C runtime librarycalls, the socket library calls and miscellaneous function
calls.

Index

Each volume contains an index which helps you to find text relating to im-
portant topics quickly.

This manual is available both in printed form and in electronic format as part
of the SIMATC Manual Collection. Its contents is also available in the on-
line help file M7SYS40B.HLP in the S7BIN directory of STEP 7. You can
include this file in the search range of the OpenHelp function of the Borland
IDE for context–sensitive support during programming.

How to Use this
Manual

Manual and Online
Help

Preface

v
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

We need your help to enable us to provide you and future M7-SYS users with
optimum documentation. If you have any questions or comments on this
manual or the online help, please fill in the remarks form at the end of the
manual and return it to the address shown on the form. We would be grateful
if you could also take the time to answer the questions giving your personal
opinion of the manual.

Contactable worldwide round the clock:

Johnson City

Nuremberg

Singapore

Simatic Basic Hotline

Nuremberg

SIMATIC BASIC Hotline

Johnson City

SIMATIC BASIC Hotline
Local time: Mo.-Fr. 8:00 to 18:00

Phone: +49 (911) 895-7000

Fax: +49 (911) 895-7002

E-Mail: simatic.support@
nbgm.siemens.de

Local time: Mo.-Fr. 8:00 to 17:00

Phone: +1 423 461-2522

Fax: +1 423 461-2231

E-Mail: simatic.hotline@
sea.siemens.com

SIMATIC Premium Hotline
(Calls billed, only with
SIMATIC Card)

Time: Mo.-Fr. 0:00 to 24:00

Phone: +49 (911) 895-7777

Fax: +49 (911) 895-7001

Singapore

SIMATIC BASIC Hotline
Local time: Mo.-Fr. 8:30 to 17:30

Phone: +65 740-7000

Fax: +65 740-7001

E-Mail: simatic@
singnet.com.sg

Feedback

SIMATIC Customer
Support Hotline

Preface

vi
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The SIMATIC Customer Support team provides you with comprehensive
additional information on SIMATIC products via its online services:

� You can obtain general current information:

– On the Internet at http://www.ad.siemens.de/simatic

– Using fax polling no. 08765-93 02 77 95 00

� Current Product Information leaflets and downloads which you may find
useful for your product are available:

– On the Internet at http://www.ad.siemens.de/support/
html–00/

– Via the Bulletin Board System (BBS) in Nuremberg (SIMATIC Cus-
tomer Support Mailbox) at the number +49 (911) 895-7100.

To access the mailbox, use a modem with up to V.34 (28.8 kbps),
whose parameters you should set as follows: 8, N, 1, ANSI, or dial in
using ISDN (x.75, 64 kbps).

Siemens also offers a number of training courses to introduce you to the SI-
MATIC S7 and M7 automation systems. Please contact your regional training
center or the central training center in Nuremberg, Germany for details:

D-90327 Nuremberg, Tel. (+49) (911) 895 3154.

If you have any further questions about SIMATIC products, please contact
your Siemens partner at your local Siemens representative’s or regional of-
fice. You will find the addresses in our catalogs and in Compuserve (go
autforum) .

SIMATIC Customer
Support Online
Services

SIMATIC Training
Center

Further Support

Preface

vii
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Table of Contents

1 Function Groups 1-1.

1.1 Overview 1-2.

1.2 RMOS API Functions 1-3.
1.2.1 Information on RMOS API Functions 1-3.
1.2.2 Brief Description of the RMOS API Functions 1-5.
1.2.3 RMOS API Calls in MS-DOS Applications 1-9.

1.3 M7 API Functions 1-12.
1.3.1 Information on M7 API Functions 1-12.
1.3.2 Brief Description of the M7 API Functions 1-12.

1.4 DOS Interface Functions 1-22.

1.5 Functions of the C Runtime Library 1-23.
1.5.1 Overview 1-23.
1.5.2 I/O Operations 1-24.
1.5.3 Character Management Functions 1-29.
1.5.4 String Operations 1-30.
1.5.5 Memory Operations 1-31.
1.5.6 Memory Allocation 1-31.
1.5.7 Mathematical Functions 1-32.
1.5.8 Time and Date Functions 1-33.
1.5.9 Control Functions 1-34.
1.5.10 Error Handling 1-34.
1.5.11 Other Functions 1-35.

1.6 Functions of the Socket Interface 1-36.

1.7 Serial Interface Functions 1-37.

1.8 Other Functions 1-38.
1.8.1 Functions for interrupt working 1-38.
1.8.2 Functions for hardware–orientated I/O–operations 1-38.

2 Type Identifiers 2-1.

2.1 System Messages of the M7 Server 2-2.

2.2 Identifiers for S7 Objects and Data Types 2-5.

3 Data Structures 3-1.

3.1 Data Types of the RMOS API 3-2.

3.2 Data Structures of the RMOS API 3-2.

3.3 Data Types of the M7 API 3-21.
3.3.1 General Data Types of the M7 API 3-21.
3.3.2 FRB – Data Types of the M7 Server 3-22.
3.3.3 Other Data Types of the M7 Server 3-23.

viii
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

3.4 Data Structures of the M7 API 3-23.

3.5 Data Structures of the Socket Interface 3-34.

3.6 Parameter Data Records for the IF 961-AIO/DIO Interface Modules 3-38. . . .

4 Error Codes and Messages 4-1.

4.1 Error Messages of the M7 RMOS32 Kernel 4-2.

4.2 M7 RMOS32 Exception Handler 4-5.

4.3 Error Codes of RMOS API Calls 4-6.

4.4 Error Codes of M7 API Calls 4-10.

4.5 Error Codes for Loadable Drivers 4-15.

4.6 Error codes of C Runtime Library 4-17.

4.7 Error Codes of the Socket Interface 4-19.

5 M7 API 5-1.

6 RMOS API 6-1.

Index

Tables

1-1 Overview of Function Groups 1-2.
1-2 General Data Types of C 1-4.
1-3 Functions for Memory Management 1-5.
1-4 Functions for Task Control 1-6.
1-5 Functions for Cataloging Resources 1-7.
1-6 Functions for Message Exchange 1-7.
1-7 Functions for Message Exchange via Mailboxes 1-7.
1-8 Functions for Coordination with Event Flags 1-8.
1-9 Functions for Semaphore Handling 1-8.
1-10 Functions for Interrupt Handling 1-8.
1-11 Functions for loadable drivers 1-9.
1-12 Other Functions 1-9.
1-13 RMOS API Calls Which are Not Supported 1-10.
1-14 Special Properties of RMOS API Calls 1-11.
1-15 Function for Initialization 1-12.
1-16 Functions for Access to Process I/Os 1-13.
1-17 Functions for FRB Handling 1-14.
1-18 Functions for Alarm Processing (Slave Functions) 1-14.
1-19 Functions for the Management of S7 Objects 1-14.
1-20 Calls for the Management of Callback Functions 1-15.
1-21 Functions for Alarm Handling 1-16.
1-22 Functions for Time Handling 1-17.
1-23 Functions for Operating State Handling 1-17.
1-24 Functions for Cycle Control Point and “Free Cycle” 1-18.
1-25 Functions for Controlling the User LED 1-18.
1-26 Functions for Application Link Management 1-18.
1-27 Communikations Functions 1-19.
1-28 MMI Functions 1-19.

Table of Contents

ix
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

1-29 Object Management Functions 1-20.
1-30 Functions for Reading/Setting the Time 1-20.
1-31 Functions for the Diagnostics Server 1-21.
1-32 Other Functions 1-21.
1-33 Functions for DOS Communication 1-22.
1-34 Input/Output Operations 1-26.
1-35 Character Management Functions 1-29.
1-36 String Operations 1-30.
1-37 Memory Operations 1-31.
1-38 Memory Allocation Operations 1-31.
1-39 Mathematical Functions 1-32.
1-40 Time and Date Functions 1-33.
1-41 Control Functions 1-34.
1-42 Error Handling Functions 1-34.
1-43 Other Functions 1-35.
1-44 Functions of the Socket Interface 1-36.
1-45 Serial Interface Functions 1-37.
1-46 Functions for interrupt working 1-38.
1-47 Functions for hardware–orientated I/O–operations 1-38.
2-1 Messages of the OST Server 2-2.
2-2 Messages of the S7 Object Server 2-3.
2-3 Message of the Time-Servers 2-3.
2-4 Message of the FC Server 2-3.
2-5 Messages of the Alarm Server 2-4.
2-6 Messages of the K Bus Subsystem 2-4.
2-7 Objects Supported on the M7 2-5.
2-8 Subarea Numbers for S7 Objects 2-6.
2-9 Data Type Identifiers for Accessing S7 Objects 2-6.
2-10 Block Type Identifiers 2-7.
3-1 GeneralData Type Definitions of the RMOS API 3-2.
3-2 General Data Types of the M7 API 3-21.
3-3 FRB Definitions for M7 API 3-22.
3-4 Other Data Types of the M7 API 3-23.
3-5 Parameters for the IF 961-AIO Interface Module 3-38.
3-6 Parameters for the IF 961-DIO Interface Module 3-39.

Table of Contents

x
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Table of Contents

1-1
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Function Groups

Section Contents Page

1.1 Overview 1-2

1.2 RMOS API Functions 1-3

1.3 M7 API Functions 1-12

1.4 DOS Interface Functions 1-22

1.5 Functions of the C Runtime Library 1-23

1.6 Functions of the Socket Interface 1-36

1.7 Serial Interface Functions 1-37

1.8 Other Functions 1-38

In this Chapter

1

1-2
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

1.1 Overview

The following sections describe the functions used when programming with
M7-SYS RT. The individual calls are subdivided into logical function groups.

If functions from a group are to be used in M7 RMOS32 tasks, the header file
belonging to the group must be included and the corresponding library linked,
as specified in the following table:

Table 1-1 Overview of Function Groups

Function Group Header File Library

RMOS API functions RMAPI.H RMFHLI.LIB

M7 API functions M7API.H M7APIBL.LIB

MS-DOS Interface functions RM3DOS.H RMFDOSIB.LIB

C Library functions ANSI-compliant RMFCRIFB.LIB

Socket Interface functions SOCKET.H RMFSK2IB.LIB

Serial Interface functions SERIAL.H RMFSER.LIB

Other functions MISC86.H RM3BCC.LIB

What is Described
in this Chapter?

Libraries and Hea-
der Files

Function Groups

1-3
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

1.2 RMOS API Functions

1.2.1 Information on RMOS API Functions

M7 RMOS32 presents a pure function interface for accessing the services of
the M7 RMOS32 kernel. The functions return values which indicate whether
or not the functions have been successfully executed. Special calls also return
additional information.

RMAPI.H is included as the header file with the prototypes for the API. The
file is automatically included when creating M7 RMOS32 applications in the
integrated development environment. RMAPI.H in turn includes the files
RMTYPES.H (RMOS-API-specific type definitions) and RMDEF.H (general
definitions such as error codes, etc.)

Note

M7 RMOS32 applications are created in the FLAT memory model, that is all
pointers consist only of a 32-bit offset.

There is no protection in the FLAT memory model for address areas of exter-
nal tasks or tasks of the M7 RMOS32 kernel. Special care should therefore be
exercised when using pointers, if problems are to be avoided.

Examples of code in C are used to illustrate the RMOS API calls.

The C interface is described by RMAPI.H in the INC directory. All the func-
tion prototypes of the RMOS API are contained there. The files RMDEF.H and
RMTYPES.H are also included. RMDEF.H contains the define constants and
RMTYPES.H contains the data types and structures for programming the sys-
tem calls.

In order to prevent problems arising from parameter errors, the defined
constants from RMDEF.H should be used.

The parameters are always passed on the stack; the return value contains the
error code of the RMOS API call. If no error occurs, RM_OK (=0) is returned.
In the event of an error, a value greater than 0 is returned. Certain RMOS API
calls also have negative return values; these are used for additional informa-
tion. For example, RmSetFlag returns RM_FLAG_ALREADY_SET if the flag
was already set.

General
Information

Information for
Programming in C

Function Groups

1-4
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

This call allocates a memory area of 1000 bytes which is not freed automati-
cally and is thus not allocated to a specific task. If insufficient memory is avail-
able, the system does not wait for memory to be released.

main()
{

int Error;
void *Pointer;
...
Error = RmAlloc(RM_CONTINUE, RM_NOAUTOFREE, 1000ul, &Pointer)
...

}

The following data types can be used for programming RMOS API calls.

Table 1-2 General Data Types of C

Data Type Description

char Character : 8 bits

short Integer: 16 bits

int Integer: 32 bits

long Integer: 32 bits

void * Pointer (FLAT): 32 bits

enum Enumerator type: 32 bits

float Floating-point number: 32 bits

double Floating-point number: 64 bits

The RMOS API-specific data types (which are shown in Table 3-1 and defined
in header file RMTYPES.H) should be used, in addition to the general C data
types, for RMOS API calls.

In all RMOS API calls for checking, installing and deinstalling interrupt han-
dlers, the interrupt number can be specified in two different ways:

1. Number between 0 and 255
The interrupt is treated as a software interrupt.

2. IRQ<n>
The number <n> is entered directly, e.g. IRQ1, IRQ2. The interrupt is inter-
preted as a hardware interrupt.
The values IRQ1, IRQ2, etc. are defined in an include file. The IRQ(x)
macro can be used to pass the IRQ number to a variable. The value of (x)
can be between 0 and the highest available interrupt. The value range of
0..15 is valid on the PC.

Example of an
RMOS-API-Call

General Data
Types

Interrupt Numbers

Function Groups

1-5
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

If you use timeout values in your program, these are entered in the timer queue
according to their execution time (in the order of the timer ticks). If several
timeout requests are registered for the same timer tick, these are executed ac-
cording to the Last In First Out principle.

If a timer tick lies between two timeout requests of the same length, these re-
quests are distributed across different timer ticks.

Example:
Timeout requests 1, 2, 3 within one timer tick; timeout requests 4, 5, 6 within
the next timer tick. The order in the timer queue is 3, 2, 1, 6, 5, 4.

In order to ensure that all timer calls occur within one timer tick, you should
proceed as follows:

1. Set a very high priority for the task (the highest system priority), to prevent
it from being interrupted by other tasks.

2. Initiate a pause call with 0 for synchronization with the next timer tick.

3. Inititate timeout requests.

4. Reset the task priority to the initial value.

Please note that the entire process must be executed completely within a timer
tick.

1.2.2 Brief Description of the RMOS API Functions

In the form of a C interface, the RMOS API provides M7 RMOS32 applica-
tions with all the functions necessary to implement a multitasking system.
RMOS API functions present the interface to the M7 RMOS32 kernel.

You will find a detailed description of these functions in Chapter 6.

The following table lists all the functions for memory management, together
with a brief description.

Table 1-3 Functions for Memory Management

Function Brief Description

RmAlloc Allocate memory from heap

RmCreateMemPool Create memory pool from heap

RmDeleteMemPool Delete memory pool

RmFree Free memory area

RmFreeAll Free all memory areas of a task

RmGetMemPoolInfo Get memory pool information

RmGetSize Get the size of a memory area

RmMapMemory Map physical memory

Information for
Timer
Programming

Overview

Memory
Managament

Function Groups

1-6
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Table 1-3 Functions for Memory Management

Function Brief Description

RmMemPoolAlloc Allocate memory area from memory pool

RmReAlloc Increase size of memory area

The following table 1-4lists all the functions you can use for task control, to-
gether with a brief description.

Table 1-4 Functions for Task Control

Function Brief Description

RmActivateTask Set task to READY state

RmCreateTask Create task

RmCreateTaskEx Create task

RmCreateChildTask Create child task

RmDeleteTask Terminate calling task (and delete)

RmDisableScheduler Disable scheduler

RmEnableScheduler Enable scheduler

RmEndTask End calling task (without deletion)

RmGetTaskID Get the ID of a task

RmGetTaskPriority Get task priority

RmGetTaskState Get task state

RmKillTask Set task to DORMANT or NOTEXISTENT state

RmPauseTask Pause calling task

RmQueueStartTask Add task to queue.
The task is started immediately it switches to the
DORMANT state

RmRestartTask Terminate the calling task and automatically start
it again after a given interval

RmResumeTask Resume task execution after an interval com-
mencing with RmPauseTask

RmSetTaskPriority Change the priority of a task

RmStartTask Request the start of a task currently in the DOR-
MANT state

RmSuspendTask Set task to BLOCKED state

Task Control

Function Groups

1-7
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following table lists all the functions you can use for the management of
resources, together with a brief description.

Table 1-5 Functions for Cataloging Resources

Function Brief Description

RmCatalog Enter resources in resource catalog

RmGetEntry Get entry (ID) in resource catalog

RmGetName Get name in resource catalog

RmList List entries in resource catalog

RmUncatalog Delete entries from resource catalog

RmGetAbsTime Get absolute system time

The following table lists all the functions you can use for message exchange,
together with a brief description.

Table 1-6 Functions for Message Exchange

Function Brief Description

RmCreateMessageQueue Create message queue

RmDeleteMessageQueue Delete message queue

RmReadMessage Read message from message queue

RmSendMessage Store message in message queue

RmSetMessageQueueSize Limit the length of the message queue

The following table lists all the functions you can use for message exchange
via mailboxes, together with a brief description.

Table 1-7 Functions for Message Exchange via Mailboxes

Funktion Brief Description

RmCreateMailbox Create mailbox

RmDeleteMailbox Delete mailbox

RmReceiveMail Read message from mailbox

RmSendMail Store message in mailbox

RmSendMailCancel Cancel delayed message storage

RmSendMailDelayed Delayed message storage in mailbox

RmSetMailboxSize Limit length of mailbox

Resource
Management

Message
Exchange

Mailboxes

Function Groups

1-8
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The following table lists all the functions you can use for coordination with
event flags, together with a brief description.

Table 1-8 Functions for Coordination with Event Flags

Function Brief Description

RmCreateFlagGrp Create flag group

RmDeleteFlagGrp Delete flag group

RmGetFlag Test bit in flag group

RmResetFlag Reset bit in flag group

RmSetFlag Set bit in flag group

RmSetFlagDelayed Set bits in flag group after interval

The following table lists all the functions you can use for semaphore handling,
together with a brief description.

Table 1-9 Functions for Semaphore Handling

Function Brief Description

RmCreateBinSemaphore Create semaphore

RmDeleteBinSemaphore Delete semaphore

RmGetBinSemaphore Assign semaphore

RmReleaseBinSemaphore Release semaphore

The following table lists all the functions you can use for interrupt handling,
together with a brief description.

Table 1-10 Functions for Interrupt Handling

Function Brief Description

RmGetIntHandler Get current interrupt handler

RmSetIntDefHandler Deinstall interrupt handler

RmSetIntISHandler Install interrupt handler for I and S states

RmSetIntMailboxHandler Install mailbox interrupt handler

RmSetIntTaskHandler Install interrupt handler for task start

Event Flags

Semaphore
Handling

Interrupt Handling

Function Groups

1-9
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following table lists all functions for loadable drivers with a brief descrip-
tion.

Table 1-11 Functions for loadable drivers

Function Brief Description

RmIOClose Close Unit

RmIOControl Control functions for loadable drivers

RmIOOpen Open Unit

RmIORead Read from Unit

RmIOWrite Write on Unit

RmLoadDevice Load driver

The following table lists all other RMOS API calls, together with a brief de-
scription.

Table 1-12 Other Functions

Function Brief Description

get2ndparm Read EBX start parameter of task

getdword Read start parameter of task in long format

getparm Read start parameter of task as pointer

1.2.3 RMOS API Calls in MS-DOS Applications

RMOS also provides an API which can be used by MS-DOS applications. This
enables DOS applications to issue system calls to the RMOS kernel (not to M7
servers!), to start an RMOS task, for example, or send messages to a mailbox
or the message queue of a task.

The RMOS API for MS-DOS applications is not for further development!

MS-DOS programs which use the interface must include the prototypes of hea-
der file RMAPI.H .

MS-DOS can only use the 16-bit real mode call interface under M7 RMOS32.
The definition of data formats, types and structures conforms to the real mode
programming of MS-DOS.

C prototypes and macros of the RMOS API interface are defined in the file
RMAPI.H or the files RMDEF.H and RMTYPES.H. The RM3 switch is used
to select whether the file for M7 RMOS32 or for MS-DOS applications is
used.

Loadable Drivers

Other Calls

General
Information

Header Files and
Conventions

Function Groups

1-10
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Consequently, the switches must be set, as shown below, before the RMAPI.H
include statement in an MS-DOS program:

#define RM3 0
#include “RMAPI.H”

An appropriate interface library must be included in the link statement for the
program. This is the library DOSHLIB.LIB for MS-DOS programs.

M7 RMOS32 converts the parameters internally to the M7 RMOS32 format on
an RMOS API call from a DOS program.

Data types which are 16 bits wide, and 32 bits wide with M7 RMOS32, are
“zero extended”, that is bits 31 to 16 are set to 0 and transmitted to the RMOS
kernel.

An RMOS API call is invoked from an MS–DOS program using a software
interrupt. The interrupt vector used is configured permanently as 79H. This
interrupt may therefore not be reassigned by MS–DOS applications.

The following table lists the RMOS API calls which may not be used in MS-
DOS programs. If they are used, the call returns an error message.

Table 1-13 RMOS API Calls Which are Not Supported

RMOS API Calls Cause

RmAlloc, RmMemPoolAlloc,
RmFree, RmFreeAll,
RmReAllocMem,
RmMapMemory

It is not permitted for RMOS to manage a
memory pool within the memory area addressed
by MS-DOS. Therefore each RMOS memory
pool must be situated above this area.

RmSetISHandler,
RmSetIntTaskHandler,
RmSetIntMailboxHandler,
RmSetIntDefHandler

The RMOS-API calls for interrupt management
are used to set interrupt vectors in the RMOS
environment

The functions available under MS-DOS must be
used in order to change or enter an interrupt vec-
tor in the MS-DOS environment.

RmEndTask,
RmRestartTask

An MS-DOS program cannot terminate itself
with these calls.

RmCreateTask An MS-DOS program cannot create another
task, since no task can be created within the
memory area managed by MS-DOS.

RmReadMessage,
RmSendMessage,
RmCreateMessageQueue,
RmDeleteMessageQueue,

Using these calls, specifical operating system
pointers are transmited , which may be not con-
verted automatically, Instead of this the commu-
nication may be effected by mailboxes (see table
1–7)

Including in DOS-
Programs

Libraries

Data Conversion

Interrupt Number

RMOS API Calls
Which are Not
Supported

Function Groups

1-11
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following table shows the special properties of RMOS API calls in an MS-
DOS environment. Failure to handle these calls correctly will cause system
errors.

Table 1-14 Special Properties of RMOS API Calls

RMOS API Call Cause

RmDeleteTask Although an MS-DOS program can delete another
RMOS task with this call, it cannot delete itself.

Calls with Task_ID equal to RM_OWN_TASK are
illegal.

RmSetTaskPriority Although an MS-DOS program can change the prior-
ity of another RMOS task with this call, it cannot
change its own priority.

Calls with Task_ID equal to RM_OWN_TASK are
illegal.

Please also note the following points for communication between RMOS and
MS-DOS programs via mailboxes (see Table 1-7):

The mailbox call RmSendMail transfers the contents of a “3-word buffer”
(message). This buffer is 12 bytes long in M7 RMOS32.

If the RmSendMail call is issued by an RMOS task under M7 RMOS32, a
12-byte data area is also transferred internally to the mailbox addressed.

If an MS-DOS program now reads the message from the mailbox, 12 bytes are
also transferred to the memory area of the MS-DOS program. You should
therefore make sure that the “3-word buffer” in an MS-DOS program is also
12 bytes in length.

A pointer in a message is not converted by the RMOS kernel, that is a flat
pointer (linear address under M7 RMOS32) is not converted to a real mode
pointer (physical address under MS-DOS).

Note

If a blocking call is issued within the MS-DOS program, the DOS task, that is
the entire DOS machine, is blocked (task state: BLOCKED).

Special Properties
of RMOS API Calls

Communication
using Mailbox
Services

Function Groups

1-12
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

1.3 M7 API Functions

1.3.1 Information on M7 API Functions

M7 RMOS32 programs must include header filei M7API.H as the header file
for the prototypes of the functions.

You will also find all the data type and structure definitions and the error codes
in M7API.H.

In order to facilitate future porting of programs to other systems, the M7 API
environment also uses its own type definitions instead of machine-specific data
type identifiers such as int or long. The data types are defined in header file
M7API.H (see Table 3-2)

1.3.2 Brief Description of the M7 API Functions

The M7 API provides all the functions necessary for solving an automation
task to the M7 RMOS32 applications in the shape of a C interface.

As well as access to the process I/Os, the M7 API presents functions for the
management of internal S7 objects, calls for communication with other au-
tomation components, and further functions for the transparent integration of
your M7 automation computer in an S7 programmable controller system.

You will find a detailed description of these functions in Section 5.

The following table shows the function for task-specific initialization of the
M7 API.

Table 1-15 Function for Initialization

Function Brief Description

M7InitAPI Initialize M7 API

Conventions and
Header Files for
M7 RMOS32
Applications

General Data Ty-
pes of the M7 API

Overview

Initialization

Function Groups

1-13
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following table lists all the functions you can use to access process I/Os,
together with a brief description.

Table 1-16 Functions for Access to Process I/Os

Function Brief Description

M7ClearPI Clear process image

M7LoadBit Load bit from process image

M7LoadByte Load byte from process image

M7LoadDWord Load doubleword from process image

M7LoadDirect Read data direct from I/O area

M7LoadDirectByte Read byte direct from I/O

M7LoadDirectDWord Read doubleword direct from I/O

M7LoadDirectWord Read word direct from I/O

M7LoadISAByte Read byte from ISA bus I/O

M7LoadISADWord Read doubleword from ISA bus I/O

M7LoadISAWord Read word from ISA bus I/O

M7LoadPII Update process image of inputs

M7LoadRecord Read data record from signal module

M7LoadRecordEx Read data record from signal module

M7LoadWord Load word from process image

M7StoreBit Overwrite bit in process image

M7StoreByte Overwrite byte in process image

M7StoreDWord Overwrite doubleword in process image

M7StoreDirect Transfer data direct to I/O area

M7StoreDirectByte Write byte direct to I/O

M7StoreDirectDWord Write doubleword direct to I/O

M7StoreDirectWord Write word direct to I/O

M7StoreISAByte Write byte to ISA bus I/O

M7StoreISAWord Write word to ISA bus I/O

M7StoreISADWord Write doubleword to ISA bus I/O

M7StorePIQ Update I/O from process image of outputs

M7StoreRecord Transfer data record to signal module

M7StoreWord Overwrite word in process image

Access to Process
I/Os

Function Groups

1-14
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The following table lists the calls for the general handling of FRBs (Function
Request Blocks).

Table 1-17 Functions for FRB Handling

Function Brief Description

M7GetFRBErrCode Get error code from FRB header

M7GetFRBTag Get tag from FRB header

M7SetFRBTag Set tag in FRB header

The following table lists all the functions for sending alarms and checking the
alarm handling status, together with a brief description.

Table 1-18 Functions for Alarm Processing (Slave Functions)

Function Brief Description

M7GetDiagAlarmBusy Check status of a diagnostics alarm

M7GetIOAlarmBusy Check status of a process alarm

M7SendDiagAlarm Send diagnostics alarm to CPU

M7SendIOAlarm Send process alarm to CPU

The following table lists all the functions you can use for the management of
S7 objects, together with a brief description.

Table 1-19 Functions for the Management of S7 Objects

Function Brief Description

M7CreateObject S7-Objekt erzeugen

M7DeleteObject Delete S7 object from working memory and “per-
manent load memory”

M7GetFlags Get access type for S7 object from OBJFRB

M7GetObjectInfo Read information on data structure of S7 object

M7GetObjType Get type identifier of S7 object from OBJFRB

M7GetPart Get subarea number of S7 object from OBJFRB

M7LinkDataAccess Link OBJFRB for access to S7 object

M7LocateObject Move S7 object in working memory

M7Read Read S7 data area

M7ReadBit Read byte from S7 object

FRB Handling

Alarm Handling
(Slave Functions)

Management of S7
Objects

Function Groups

1-15
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Table 1-19 Functions for the Management of S7 Objects

Function Brief Description

M7ReadByte Read word from S7 object

M7ReadWord Read doubleword from S7 object

M7ReadDWord Read doubleword from S7 object

M7ReadReal Read floating point number from S7 object

M7RelocateObject Transmit S7 object to object server

M7RemoveObject Delete S7 object from “read-only” or “permanent
load memory”

M7StoreObject Store S7 object in “read-only” or “permanent
load memory”

M7UnLinkDataAccess Unlink OBJFRB for access to S7 object

M7Write Copy user data to S7 data area

M7WriteBit Overwrite bit in S7 object

M7WriteByte Overwrite byte in S7 object

M7WriteWord Overwrite word in S7 object

M7WriteDWord Overwrite doubleword in S7 object

M7WriteReal Overwrite floating point number in S7 object

The following table lists all the functions you can use for linking callback
functions and evaluating the access information within the callback function,
together with a brief description.

Table 1-20 Calls for the Management of Callback Functions

Function Brief Description

M7GetCBBitOffset Get bit offset from CBFRB

M7GetCBBuffer Get read or write buffer from CBFRB

M7GetCBByteOffset Byte Offset aus CBFRB ermitteln

M7GetCBCount Get number of elements from CBFRB

M7GetCBDataType Get data type from CBFRB

M7GetCBFlags Get access type from CBFRB

M7GetCBObjType Get type identifier of S7 object from CBFRB

M7GetCBPart Get subarea number of S7 object from CBFRB

M7LinkDataAccessCB Link callback function for S7 object access

M7UnLinkDataAccessCB Unlink callback function for S7 object access

Callback Function
Calls for S7 Object
Access

Function Groups

1-16
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The following table lists all the functions you can use for alarm handling as
master, together with a brief description.

Table 1-21 Functions for Alarm Handling

Function Brief Description

M7ConfirmDiagAlarm Confirm diagnostics alarm

M7ConfirmIOAlarm Confirm process alarm

M7ConfirmSAlarm Confirm of drawing/ streching

M7DPNormDiagnose Get DP standard diagnostics for a DP station

M7GetDiagAlarmAddr Get base address of module from DIAGFRB

M7GetDiagAlarmInfo Get alarm information from DIAGFRB

M7GetDiagAlarmPType Get I/O type of module from DIAGFRB

M7GetIOAlarmAddr Get base address of module from IOFRB

M7GetIOAlarmMask Get alarm mask from IOFRB

M7GetIOAlarmState Get alarm information from IOFRB

M7GetIOAlarmPType Get I/O type of module from IOFRB

M7GetPIErrorAddr Get address of I/O type with transfer error

M7GetPIErrorPIType Get I/O type with transfer error

M7GetZSAlarmAddr Get base address of module from ZSFRB

M7GetZSAlarmIdent Get identifier of a module

M7GetZSAlarmIMRBaddr Get base address of IMR module, which was
signed on for the alarm of drawing/ streching

M7GetZSAlarmMode Get mode of module from ZSFRB

M7GetZSAlarmPType Get I/O type of module from ZSFRB

M7GetZSAlarmRackNo Get rack number from ZSFRB

M7LinkDiagAlarm Link diagnostics alarm for handling

M7LinkIOAlarm Sign on process alarm for working

M7LinkPIError Initializise FRB for transfer of I/O type

M7LinkZSAlarm Link ZS alarm for handling

M7UnLinkDiagAlarm Unlink diagnostics alarm

M7UnLinkIOAlarm Unlink process alarm

M7UnlinkPIError Unlink FRB for transfer of I/O type

M7UnlinkZSAlarm Unlink ZS alarm

Alarm Handling
(Master Functions)

Function Groups

1-17
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following table lists all the functions you can use for time handling, toge-
ther with a brief description.

Table 1-22 Functions for Time Handling

Function Brief Description

M7ConfirmPeriodicTimer Confirm periodic time signal

M7GetLostPeriods Check lost periodic time messages

M7GetPeriod Get multiple of time base from TFRB

M7GetTime Read out date/time

M7GetTimeBase Get time base from TFRB

M7LinkDate Link time-controlled time message

M7LinkOneShotTimer Link one-shot time message

M7LinkPeriodicTimer Link periodic time message

M7SetTime Set date/time

M7UnLinkDate Unlink time-controlled time message

M7UnLinkOneShotTimer Unlink one-shot time message

M7UnLinkPeriodTimer Unlink periodic time message

The following table lists all the functions you can use for monitoring the ope-
rating state, together with a brief description.

Table 1-23 Functions for Operating State Handling

Function Brief Description

M7ConfirmTransition Confirm operating state transition message

M7GetState Check operating state

M7GetTSReason Get reason for transition from TSFRB

M7GetTSType Get operating state from TSFRB

M7LinkBatteryFailure Link a BAFFRB for battery alarm

M7LinkState Request a message on a specific operating state

M7LinkTransition Request a message on a specific operating state
transition

M7RequestState Request operating state change

M7UnLinkBatteryFailure Unlink BAFFRB for battery alarm

M7UnLinkState Unlink a TSFRB linked with M7LinkState

M7UnLinkTransition Unlink a TSFRB linked with M7LinkTransi-
tion

Time Handling

Operating State
Handling

Function Groups

1-18
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The following table lists all the functions you can use for linking and unlinking
the start-up, cycle control point, “free cycle” and cycle timeout, together with a
brief description.

Table 1-24 Functions for Cycle Control Point and “Free Cycle”

Function Brief Description

M7ConfirmCycle Confirm a message

M7GetFSCTyp Get type of message from FSCFRB

M7LinkCycle Request message for start-up, cycle control point,
“free cycle” and cycle timeout

M7RetriggerCycle Retrigger cycle monitoring

M7UnLinkCycle Unlink message for start-up, cycle control point,
“free cycle” and cycle timeout

The following table shows the function for controlling the user LEDs on the
M7:

Table 1-25 Functions for Controlling the User LED

Function Brief Description

M7SetUserLED Set user LED

The following table lists the functions for initiating, aborting and legitimizing a
communication bus application link, together with a brief description.

Table 1-26 Functions for Application Link Management

Function Brief Description

M7GetConnStatus Interrogate state of application link

M7KAbort Close an application link

M7KInitiate Set up application link

M7KPassWord Password for functions with special protection
level

M7GetPduSize Get PDU size

Free Cycle

User LED Control

Application
Link Management

Function Groups

1-19
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following table lists the communications functions, together with a brief
description.

Table 1-27 Communikations Functions

Function Brief Description

M7PBKBrcv Receive data from partner
(double-ended communication function)

M7PBKBsend Send data to partner
(double-ended communication function)

M7PBKCancel Cancel M7PBKBsend or M7PBKBrcv job

M7PBKGet Request data from partner
(single-ended communication function)

M7PBKIAbort Close an application link

M7PBKIGet Start asynchronous reading with a variable

M7PBKIPut Sart asynchronous writing with a variable

M7PBKPrint Send dates with a description of format

M7PBKPut Send data to partner
(single-ended communication function)

M7PBKResume Request resume all user programs

M7PBKStart Request start all user programs

M7PBKStatus Check “virtual device status”

M7PBKStop Request stop all user programs

M7PBKUrev Uncoordinated receiving by planning connections

M7PBKUsend Uncoordinated sending by planning connections

M7PBKXAbort Close an application link

M7PBKXCancel Stop actual job of receiving from M7PBKXrv

M7PBKXGet Start asynchronous reading of a variable

M7PBKXPut Start asynchronous writing of a variable

The following table lists the MMI functions, together with a brief description.

Table 1-28 MMI Functions

Function Brief Description

M7BUBCycRead Set up MMI job for cyclical read

M7BUBCycReadDelete Delete MMI job for cyclical read

M7BUBCycReadStart Start MMI job for cyclical read

M7BUBCycReadStop Stop cyclical read

Communications
Functions

MMI Functions

Function Groups

1-20
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Table 1-28 MMI Functions

Function Brief Description

M7BUBRead One-shot MMI variable read

M7BUBWrite One-shot MMI variable write

The following table lists the functions of the object management system
(OVS), together with a brief description.

Table 1-29 Object Management Functions

Function Brief Description

M7OVSCompress Compress load memory

M7OVSDelete Delete a block

M7OVSFindFirst Read out first entry from block directory

M7OVSFindNext Read out next entry from block directory

M7OVSLinkln Link a block

M7OVSMemMode Set memory mode

M7OVSRead Load a block

M7OVSSetObjectHeader Set an S7 object header

M7OVSWrite Copy a block

The following table lists the functions for reading and setting the time, together
with a brief description.

Table 1-30 Functions for Reading/Setting the Time

Function Brief Description

M7KReadTime Read time via K bus

M7KWriteTime Set time via K bus

Object Manage-
ment Functions

Time Functions

Function Groups

1-21
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following table lists the functions for the diagnostics server, together with
a brief description.

Table 1-31 Functions for the Diagnostics Server

Function Brief Description

M7DiagMode Link for sending diagnostics events via K bus

M7SZLRead Read out system state list via K bus

M7WriteDiagnose Write user entry to local diagnostics server

The following table lists the other functions, together with a brief description.

Table 1-32 Other Functions

Function Brief Description

M7GetCommRequest Get job number from COMMFRB

M7GetCommStatus Get data communication status from COMMFRB

M7KEvent Fetch data after a message

Diagnostics Server

Other Functions

Function Groups

1-22
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

1.4 DOS Interface Functions

A memory area shared by M7 RMOS32 and MS-DOS is provided for fast ex-
change of large volumes of data. Attention should be paid, however, to the
memory allocation between the MS-DOS and M7 RMOS32 operating systems
and the different interpretation of address pointers (real-mode versus flat).

The DOS interface functions are not for further development!

Because MS-DOS applications can generally only access the address area be-
low 1 Mbyte, but the private memory area of M7 RMOS32 tasks always lies
over the 1 Mbyte threshold, M7 RMOS32 provides a special memory manage-
ment system.

The TSR program RM3_TSR is used to create a transfer buffer below 1
Mbyte, from which RMOS tasks can allocate or release memory areas.

In order to use the memory management functions of the transfer buffer in M7
RMOS32 applications, you have to include the RM3DOS.H header file in
your C programs.

You should also include the corresponding library RMFDOSIB.LIB in the
link statement.

The following table lists all the functions that can be used by M7 RMOS32
tasks for communication with MS-DOS applications, together with a brief de-
scription.

You will find a detailed description of these functions in Chapter 6.

Table 1-33 Functions for DOS Communication

Function Brief Description

x_dos_cpyin Allocate a memory area from the transfer buffer
and copy data to it.

x_dos_cpyout Copy data from a previously allocated area in the
transfer buffer and then release the area.

Introduction

Memory Manage-
ment

Header Files and
Libraries

Brief Description
of Functions

Function Groups

1-23
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

1.5 Functions of the C Runtime Library

1.5.1 Overview

The preconfigured C runtime support presents all functions in compliance with
the ANSI Draft International Standard ISO/IEC DIS 9899 (published in 1990).

The following memory capacity is required for any task which requests C run-
time support:

� Approximately 1.3 Kbytes when calling the initialization function xi-
nitt . This request is also made implicitly if a task uses C functions, but
does not call xinitt .

� Approximately 1 Kbyte for each stream opened, if the size of the buffer for
this stream has not been redimensioned with the functions setvbuf or

The memory required for initialization and the stream buffers is taken from
the heap.

� Each task which uses C functions from the runtime library also needs an
additional stack area of approximately 1 Kbyte.

 The function xinitt must also be called at the beginning of each task, in
order to initialize task-specific data. Only then are the functions of the C li-
brary actually available.

Note

If the xinitc is missing, the initialization is performed automatically.

Introduction

Memory Manage-
ment Require-
ments

Initialization of the
C Runtime Support

Function Groups

1-24
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The C library includes functions and macros organized according to the follo-
wing criteria or function classes (these function classes are mainly identical to
those used in technical documentation currently available):

� I/O operations, e.g. hard disk, terminal, printer, etc.

� Character management

� String operations

� Memory operations

� Memory allocation

� Mathematical functions

� Time and date functions

� Control functions

� Error handling

� Other functions

1.5.2 I/O Operations

The largest function class of the C library is devoted to I/O operations. It con-
tains functions used to perform input and output from C programs.

It also contains functions for checking and formating input/output and for file
management. The functions are declared in the header files IO.H and
STDIO.H.

The functions for opening, renaming and deleting files require the specification
of a file or directory name.

This name always refers to a current working directory (CWD), whose alloca-
tion is task-specific. At first, however, the CWD is not initialized for a task.
The initialization of the CWD is performed with the function chdir .

The following rules apply to the specification of file or directory names:

� The colon ’:’ is used to separate the drive name and the file or directory
name. It may only be entered as the second or third character in a path
name, and may not be entered at any other point. This means that drive
names may only be one or two characters in length.
Example: R:TEST

� The characters ’\’ and ’/’ are inserted between different directory names or
between a directory and a file name.
Example: R:TEST\DIR1/DIR2\FILE

Functions of the
C Library

Introduction

Current Working
Directory

Rules for File and
Directory Names

Function Groups

1-25
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

� Path names that begin with a drive name (that is the second or third charac-
ter is a colon ’:’ preceded by the name of a drive) are absolute path names.
Example: R:TEST\DIR1\DIR2\FILE

� Path names that begin with a ’\’ or ’/’ are a special form of absolute path
name. In this case, the drive letter only is taken from the CWD and placed
in front of the specified path name.
The CWD must always be initialized when using this type of path name.
Example:
R:TEST (CWD)
\TEST2\DIR1\DIR2\FILE (Specified path name)
R:TEST2\DIR1\DIR2\FILE (Resultant path name)

One variant is to specify the path “\” or “/”. This addresses the core direc-
tory of the drive specified in the CWD, and can be used with the function
chdir(“\\”) or chdir(“/”) .

� Path names that begin neither with ’\’ nor ’/’ are relative path names refer-
ring to the CWD.
Example:
R:TEST (CWD)
DIR2\FILE (Specified path name)
R:TEST\DIR2\FILE (Resultant path name)

� Path names that begin with . .<delimiter> are a special form of relative path
name. In this case, the path refers to the parent directory of the CWD.
Example:
R:TEST\DIR1 (CWD)
..\DIR2\FILE (Specified path name)
R:TEST\DIR2\FILE (Resultant path name)

One variant is to specify the path “.. ”. This addresses the directory which
is one level closer to the drive name than the CWD, and can be used with
the function chdir(“..”) .

Note

If the CWD has not been initialized for a task, absolute path names must be
used.

As in the MS-DOS file system, it is not necessary to distinguish between up-
per and lower case letters.

With the function fopen , fduopen , freopen , fdureopen and open ,
you specify whether a stream or a handle is to be opened in text mode or bi-
nary mode.

Text Mode/Binary
Mode

Function Groups

1-26
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

If a stream or handle is opened in text mode, all ’\n’ references (New Line) are
converted to ’\r\n’ (Carriage Return - New Line) for write operations, and the
opposite is performed for read operations (that is all ’\r\n’ references are con-
verted to ’\n’).

No conversion takes place for streams or handles that are opened in binary
mode.

A NUL file can be opened which does not actually exist physically. All opera-
tions permitted with normal files can be performed when the NUL file is ope-
ned.

The difference is that read and write calls are terminated immediately without
performing input/output operations.

All write operations on the NUL file are terminated without signaling an error
(errno, errno2, etc.). Read operations always return EOF (End of File).

The NUL file is addressed if NUL (in any combination of upper and lower
case letters) is specified for file or path names, (e.g. fopen(“NUL”,“w”)).

Table 1-34 Input/Output Operations

Call Meaning Header File

access Check file access rights of user IO.H

changevib Change description block on a data storage de-
vice

IO.H

chdir Change the CWD DIRECT.H

checkpoint Write back the (HSFS) buffer of a file IO.H

chmod Change the attributes of a file IO.H

clearerr Clear the error status of a stream STDIO.H

close Close an open file, a unit of a loadable driver or
a socket

IO.H

createvib Create new description block on a data storage
device

IO.H

dismount Dismount an HSFS device IO.H

duread Read character via RMOS driver IO.H

duwrite Write character via RMOS driver IO.H

efsstop Cancel connection between network unit and
server unit

IO.H

efsuse Set up connection between network unit and
server unit

IO.H

fclose Close a stream STDIO.H

fduopen Open a stream via RMOS driver STDIO.H

fdureopen Redirect stream to RMOS driver STDIO.H

NUL File

Function Groups

1-27
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Table 1-34 Input/Output Operations

Call Header FileMeaning

feof Check whether end of file has been reached STDIO.H

ferror Check stream status STDIO.H

fflush Empty the buffer of a stream STDIO.H

fgetc Read character from a stream STDIO.H

fgetpos Get position in file STDIO.H

fgets Read string from a stream STDIO.H

fileno Return the file descriptor assigned to the speci-
fied stream

STDIO.H

fopen Open stream STDIO.H

fprintf Write formatted output to a stream STDIO.H

fputc Write a character to a stream STDIO.H

fputs Write string to a stream STDIO.H

fread Read from a stream STDIO.H

freopen Change the file assigned to a stream STDIO.H

fscanf Read formatted input from a stream STDIO.H

fseek Position file pointer in a stream STDIO.H

fsetpos Set position in a file STDIO.H

ftell Return the distance from the file pointer to the
start of file

STDIO.H

fwrite Write to a stream STDIO.H

getc Read a character from a stream STDIO.H

getchar Read a character from stdin STDIO.H

getcwd Get CWD DIRECT.H

gets Read a string from a stream STDIO.H

getvolumestatus Get status information for a data storage deviceIO.H

getw Read a word from a stream STDIO.H

ioctl Execute control function for a socket or a unit
of a loadable driver

IO.H

lseek Position file pointer IO.H

mkdir Make directory DIRECT.H

mount Mount HSFS device IO.H

open Open file for reading and/or writing IO.H

printf Write formatted output to stdout STDIO.H

putc Write character to a stream STDIO.H

putchar Write a character to stdout STDIO.H

puts Write a string to a stream STDIO.H

putw Write a word to a stream STDIO.H

Function Groups

1-28
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Table 1-34 Input/Output Operations

Call Header FileMeaning

read Read from a file IO.H

remap Format a data storage device IO.H

remove Delete a file STDIO.H

rename Change the name of a file STDIO.H

rewind Position file pointer at start STDIO.H

rmdir Remove directory DIRECT.H

scanf Read formatted input from stdin STDIO.H

search Find files IO.H

setbuf Allocate buffer to stream STDIO.H

setvbuf Allocate buffer to stream STDIO.H

sprintf Write formatted output to a string STDIO.H

sscanf Read formatted input from a string STDIO.H

tmpfile Create temporary file STDIO.H

tmpnam Create name for temporary file STDIO.H

ungetc Write character back to stream STDIO.H

unlink Delete file IO.H

vfprintf Output formatted varargs argument list STDIO.H

vprintf Output formatted varargs argument list STDIO.H

vsprintf Output formatted varargs argument list STDIO.H

write Write to file IO.H

Function Groups

1-29
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

1.5.3 Character Management Functions

The character management system provides functions for the conversion and
classification of character types. It is declared in header file CTYPE.H.

Table 1-35 Character Management Functions

Call Meaning Header File

_tolower Convert upper case to lower case CTYPE.H

_toupper Convert lower case to upper case CTYPE.H

isalnum Specify character type (alphanumeric) CTYPE.H

isalpha Specify character type (alpha character) CTYPE.H

isascii Specify character type (ASCII code 0-127)CTYPE.H

iscntrl Specify character type
(ASCII-Code > 127 or < 32)

CTYPE.H

isdigit Specify character type (decimal number
(0 - 9)

CTYPE.H

isgraph Specify character type (decimal number
(0 - 9)

CTYPE.H

islower Specify character type (printable character,
no Space characters)

CTYPE.H

isprint Specify character type
(ASCII-Code 32 - 126)

CTYPE.H

ispunct Specify character type (punctuation) CTYPE.H

isspace Specify character type
(Space character, Tab character,...)

CTYPE.H

isupper Specify character type (upper case letter) CTYPE.H

isxdigit Specify character type
(hexadecimal number 0 – 9, A – F, a – f)

CTYPE.H

toascii Mask all non-ASCII bits CTYPE.H

tolower Convert upper case to lower case CTYPE.H

toupper Convert lower case to upper case CTYPE.H

Function Groups

1-30
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

1.5.4 String Operations

The string operations can be used to check, handle and process character or
byte strings. They are declared in header files STRING.H and STDLIB.H .

Table 1-36 String Operations

Call Meaning Header File

atof Convert string to double number STDLIB.H

atoi Convert string to integer number STDLIB.H

atol Convert string to long number STDLIB.H

strcat Concatenate two strings STRING.H

strchr Get a character in a string STRING.H

strcmp Compare two strings STRING.H

strcpy Copy one string into another STRING.H

strcspn Indicate to what extent one string matches
another

STRING.H

strlen Indicate to what extent one string matches
another

STRING.H

strncat Return the number of characters in a stringSTRING.H

strncmp Append up to n characters from one string
to another

STRING.H

strncpy Copy one string into another, up to n char-
acters

STRING.H

strpbrk Search a string for the first appearance of a
character

STRING.H

strrchr Search a string for the last appearance of a
character

STRING.H

strspn Return the length of the substring in String
1 consisting exclusively of the characters
specified in String 2

STRING.H

strstr Find the first match between String 1 and
String 2

STRING.H

strtod Convert string to a double number STDLIB.H

strtok Search a string for the first of several char-
acter sequences

STRING.H

strtol Convert a string to a long number STDLIB.H

strtoul Convert string to an unsigned long numberSTDLIB.H

Function Groups

1-31
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

1.5.5 Memory Operations

Memory operations are used to copy characters, and to compare or write
memory areas. The memory operations are declared in header files
STRING.H and MEMORY.H.

Table 1-37 Memory Operations

Call Meaning Header File

memccpy Copy character from source area to destina-
tion area

STRING.H,
MEMORY.H

memchr Find a character in a memory area STRING.H,
MEMORY.H

memcmp Compare two memory areas STRING.H,
MEMORY.H

memcpy Copy character from source area to destina-
tion area

STRING.H,
MEMORY.H

memmove Move character from source area to destina-
tion area

STRING.H,
MEMORY.H

memset Write a character to a memory area n timesSTRING.H,
MEMORY.H

1.5.6 Memory Allocation

These functions can be used to allocate memory from the heap. You will find
the function declarations in header files MALLOC.H and STDLIB.H .

Table 1-38 Memory Allocation Operations

Call Meaning Header File

calloc Allocate memory for a number n elements
of a specified size

MALLOC.C,
STDLIB.H

free Free memory MALLOC.C,
STDLIB.H

malloc Allocate memory MALLOC.C,
STDLIB.H

realloc Change the size of a previously allocated
memory area

MALLOC.C,
STDLIB.H

Function Groups

1-32
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

1.5.7 Mathematical Functions

The functions declared in header file STDLIB.H can only be used on integers.
Floating-point functions are declared in header file MATH.H.

Table 1-39 Mathematical Functions

Call Meaning Header File

abs Get absolute value of an integer STDLIB.H

acos Calculate arc cosine of a double number MATH.H

asin Calculate arc sine of a double number MATH.H

atan Calculate arc tangent of a double number MATH.H

atan2 Calculate arc tangent of two double num-
bers allowing for all four quadrants

 MATH.H

ceil Round up to the nearest whole double num-
ber

 MATH.H

cos Calculate the cosine of a double number MATH.H

cosh Calculate the hyperbolic cosine of a double
number

 MATH.H

div Divide two integers STDLIB.H

exp Calculate ex of a double number MATH.H

fabs Calculate the absolute value of a double
number

 MATH.H

floor Round down to the nearest whole double
number

 MATH.H

fmod Calculate the remainder from the division of
two double numbers

 MATH.H

frexp Return the mantissa and binary exponent MATH.H

labs Get the absolute value of a long number STDLIB.H

ldexp Calculate double number*2 integer MATH.H

ldiv Divide two integers STDLIB.H

log Calculate the natural logarithm of a double
number

 MATH.H

log10 Calculate the logarithm to base 10 of a
double number

 MATH.H

matherr User-specific function for error handling in
numeric functions

 MATH.H

modf Subdivides a double number into mantissa
and exponent

 MATH.H

Function Groups

1-33
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Table 1-39 Mathematical Functions

Call Header FileMeaning

pow Calculate the power of two double numbers MATH.H

rand Generate a random integer STDLIB.H

sin Calculate the sine of a double number MATH.H

sinh Calculate the hyperbolic sine of a double
number

 MATH.H

sqrt Calculate the square root of a double num-
ber

 MATH.H

srand Initialization value for pseudorandom num-
bers

 STDLIB.H

tan Calculate the tangent of a double number MATH.H

tanh Calculate the hyperbolic tangent of a double
number

 MATH.H

1.5.8 Time and Date Functions

These functions can be used to convert time and date parameters, for example
to adapt them to different time zones. The functions are declared in header file
TIME.H.

Table 1-40 Time and Date Functions

Call Meaning Header File

asctime Convert a time parameter to a string TIME.H

ctime Convert date and time to a string TIME.H

difftime Find the difference between two times TIME.H

gmtime Convert time to Greenwich Mean Time
(GMT)

 TIME.H

localtime Correct local time according to time zone
differences

 TIME.H

mktime Convert time TIME.H

strftime Formatted output of date and time TIME.H

time Get system time TIME.H

tzset Calculate time zone conversion TIME.H

Function Groups

1-34
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

1.5.9 Control Functions

The control functions are needed in order to terminate tasks. They are declared
in header file STDLIB.H .

Table 1-41 Control Functions

Call Meaning Header File

abort Send SIGABRT signal to calling task STDLIB.H

assert Check a condition and abort task if not ful-
filled

 ASSERT.H

atexit Define routines to be called at the end of a
task

 STDLIB.H

exit Resolve task and terminate with defined sta-
tus

 STDLIB.H

x_cr_killtsk Delete task TASK.H

1.5.10Error Handling

errno and errno2 (RMOS extension) are both available.

Table 1-42 Error Handling Functions

Call Meaning Header File

errno, errno2 Error number ERRNO.H

perror Output operating system error messages STDIO.H

strerror Return a pointer to an error text STRING.H

sys_nerr Return the number of error messages in
sys_errlist

ERRNO.H

sys_errlist Return a string array with error messages ERRNO.H

Function Groups

1-35
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

1.5.11Other Functions

The following functions are not allocated to any specific class.

Table 1-43 Other Functions

Call Meaning Header File

bsearch Binary search in a sorted table STDLIB.H

getenv Get contents of an environment variable STDLIB.H

longjmp Perform a non-local jump SETJMP.H

putenv Change an environment variable or add a
new one

STDLIB.H

qsort Sort data elements in the specified order STDLIB.H

raise Pass control to a signal handler SIGNAL.H

setjmp Set the label for a subsequent non-local
jump

SETJMP.H

signal Install a signal handler for exception han-
dling

SIGNAL.H

sleep Stop task for a specified time TIME.H

x_cr_gettaskid Get the ID of the calling task TASK.H

x_cr_gettaskparam Get stdin , stdout , stderr and task
environment

TASK.H

x_cr_initenv Initialize task environment TASK.H

x_cr_setexit Set task-specific exit handler TASK.H

xinitc Initialize C library TASK.H

xinitt Perform task-specific initialization of C li-
brary

TASK.H

Function Groups

1-36
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

1.6 Functions of the Socket Interface

M7-SYS RT presents the Socket Interface functions for TCP/IP communica-
tions. In order to use these functions you have to include the SOCKET.H
header file in your M7 RMOS32 applications. You should also include the
library RMFSK2IB.LIB in the link statement.

Table 1-44 Functions of the Socket Interface

Call Meaning

accept Accept a connection on a socket

bind Bind a name to a socket

connect Request a connection on a socket

endhostent Close the HOSTS file

endnet Release the task–related resources of sockets

endservent Close the SERVICES file

gethostbyaddr Read a communication host entry from the HOSTS file

gethostbyname Read a communication host entry from the HOSTS file

gethostent Read an entry from the HOSTS file

getpeername Read the name of the peer associated with the socket

getservbyname Read communication service entry from SERVICES file

getservbyport Read a communication service entry from the SERVICES
file

getservent Read an entry from SERVICES file

getsockname Read socket name

getsockopt Read socket options

htons Convert a value from host byte order to network byte order

listen Prepare a socket to establish a passive connection

nselect Wait for events simultaneously on several sockets

ntohs Convert a value from network byte order to host byte order

recv Receive a message from a socket

recvfrom Receive a datagram

send Send a message to a connected socket

sendto Send a message to a socket with a specific address

sethostent Open the HOSTS file

setservent Open the SERVICES file

setsockopt Set socket options

shutdown Close a socket for sending messages

socket Create an end point for communication

General Informa-
tion

Function Groups

1-37
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

1.7 Serial Interface Functions

RMOS presents an API for serial functions. In order to use these functions you
have to include the SERIAL.H header file in your M7 RMOS32 applications.
You should also include the library RMFSER.LIB in the link statement.

Table 1-45 Serial Interface Functions

Call Meaning

SerialCheckChar Read in single character from unit

SerialCheckString Read string from unit

SerialClose Close a connection to a unit of a order

SerialGetChar Read in single character from unit

SerialGetString Read string from unit

SerialInit Initialize unit

SerialInitEx Extended initialization of unit

SerialOpen Establish a connection to a unit of a driver

SerialPutChar Write a single character to a unit

SerialPutString Write characters to the unit

General Informa-
tion

Function Groups

1-38
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

1.8 Other Functions

RMOS presents other functions for hardware–orientated I/O–operations and
interrupt working. The header file MISC86.H must be included from M7
RMOS32–programmes as an header file for prototyps of the functions.

1.8.1 Functions for interrupt working

The following functions are available for interrupt working

Table 1-46 Functions for interrupt working

Call Meaning

causeinterrupt Generate Software–Interrupt

geniinterrupt Generate Software–Interrupt

1.8.2 Functions for hardware–orientated I/O–operations

The following functions are available for hardware–orientated I/O–operations.

Table 1-47 Functions for hardware–orientated I/O–operations

Call Meaning

disable Disable hardware–interrupts

enable Enable hardware–interrupts

inbyte Read byte from a hardware port

inp Read byte from a hardware port

inport Read word from a hardware port

inport b Read byte from a hardware port

inpw Read a word from a hardware port

inword Read a word from a hardware port

outbyte Output a byte to a hardware port

outp Output a byte to a hardware port

outport Output a word to a hardware port

outportb Output a byte to a hardware port

outpw Output a word to a hardware port

outword Output a word to a hardware port

General Informa-
tion

Function Groups

2-1
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Type Identifiers

Section Contents Page

2.1 System Messages of the M7 Server 2-2

2.2 Identifiers for S7 Objects and Data Types 2-5

In this chapter

2

2-2
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

2.1 System Messages of the M7 Server

The identifiers for the system messages of the M7 servers are listed below in
ascending numerical order. The M7 RMOS32 tasks can register themselves
on M7 servers, so that they can receive a message when an event occurs.

The M7 servers send the messages with the accompanying identifier to the
task message queue. The tasks read the message using the function RmRead-
Message , and evaluate the message identifier passed in the Message vari-
able, for example using a “switch” statement.

In the parameter pMessageParam, all messages also contain the address of
the FRB referenced on registration with the M7Link... (..) call.

The constants listed below are defined in the M7API.H file. All numeric
constants in the header file are “cast” explicitly in the C type unsigned int.
The following list shows the numeric constants without this cast.

The following table shows the message identifiers passed in the Message pa-
rameter for messages sent from the OST (Operating State Transition) server
to M7 RMOS32 tasks.

Table 2-1 Messages of the OST Server

Identifier Description

M7MSG_TRANSITION The message is sent from the OST server before the transition to a new operating
state. The pMessageParam variable references the M7TSFRB passed on registra-
tion with M7LinkTransition .

M7MSG_STATE The message is sent from the OST server immediately after the transition to a
new operating state. The pMessageParam variable references the M7TSFRB
passed on registration with M7LinkState .

M7MSG_REQ_FINISHED The message is sent from the OST server immediately after the transition to or
denial of the new operating state requested. The pMessageParam variable refer-
ences the M7TSFRB passed on registration with M7RequestState.

M7MSG_BATTERY_FAILURE The message is sent from the OST server immediately after the battery voltage
drops below the threshold limit. The pMessageParam variable references the
M7TSFRB passed on registration with M7LinkBatteryFailure .

Notes

OST Server

Type Identifiers

2-3
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following table shows the message identifiers sent from the S7 object
server to M7 RMOS32 tasks.

Table 2-2 Messages of the S7 Object Server

Identifier Description

M7MSG_DATA_ACCESS_R The message is sent from the S7 object server immediately after the read
access to an S7 object. The pMessageParam variable references the
M7OBJFRB passed on registration with M7LinkDataAccess .

M7MSG_DATA_ACCESS_W The message is sent from the S7 object server immediately after the write
access to an S7 object. The pMessageParam variable references the
M7OBJFRB passed on registration with M7LinkDataAccess.

M7MSG_DATA_ACCESS_CREATE The message is sent from the S7 object server immediately after the cre-
ation of a new S7 object. The pMessageParam variable references the
M7OBJFRB passed on registration with M7LinkDataAccess.

M7MSG_DATA_ACCESS_DEL The message is sent from the S7 object server immediately after the dele-
tion of an S7 object. The pMessageParam variable references the
M7OBJFRB passed on registration with M7LinkDataAccess.

M7MSG_DATA_ACCESS_LINK The message is sent from the S7 object server immediately after the link-
ing of an S7 object. The pMessageParam variable references the
M7OBJFRB passed on registration with M7LinkDataAccess .

The following table shows the message identifiers sent from the time server
to M7 RMOS32 tasks.

Table 2-3 Message of the Time-Servers

Identifier Description

M7MSG_TIMESERVER The message is sent from the S7 object server immediately after the time
event. The pMessageParam variable references the M7TFRB passed on
registration with M7Link.. .

The following table shows the message identifiers sent from the FC (Free
Cycle) server to M7 RMOS32 tasks.

Table 2-4 Message of the FC Server

Identifier Description

M7MSG_CYCLE The message is sent from the FC server at the beginning of a state
(STARTUP, FREECYCLE, ZKP).

M7MSG_PI_ERROR The message is sent from the FC server after the appearing of an I/O type
transfer error.

S7 Object Server

Time Server

FC Server

Type Identifiers

2-4
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The following table shows the message identifiers sent from the alarm server
to M7 RMOS32 tasks.

Table 2-5 Messages of the Alarm Server

Identifier Description

M7MSG_IO_ALARM The message is sent from the alarm server immediately after an I/O alarm is sig-
naled by the corresponding module. The pMessageParam variable references the
M7IOFR B passed on registration with M7LinkIOAlarm .

M7MSG_DIAG_ALARM The message is sent from the alarm server immediately after a diagnostics alarm is
signaled by the corresponding module. The pMessageParam variable references
the M7DIAGFRB passed on registration with M7LinkDiagAlarm .

M7MSG_ZS_ALARM The message is sent from the alarm server immediately after an insert/remove mo-
dule alarm is signaled by the corresponding module. The pMessageParam variable
references the M7ZSFRB passed on registration with M7LinkZSAlarm .

The following list shows the message identifiers sent from the communica-
tion bus subsystem to M7 RMOS32 tasks.

Table 2-6 Messages of the K Bus Subsystem

Identifier Description

M7MSG_DIAG_MSG The message from the K BUS subsystem indicates the receipt of a diagnostics mes-
sage, which can be read out by the M7 RMOS32 task with the M7KEvent call.

M7MSG_BUB_NDR The message from the K BUS subsystem indicates the receipt of new MMI data,
which can be read out by the M7 RMOS32 task with the M7KEvent call.

M7MSG_PBK_NDR The message from the K BUS subsystem indicates the receipt of new data after an
M7PBKBrcv call.

M7MSG_PBK_DONE The message from the K BUS subsystem indicates the completion of a
M7PBKBsend call.

Alarm Server

K Bus Subsystem

Type Identifiers

2-5
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

2.2 Identifiers for S7 Objects and Data Types

The S7 objects listed in the following table are supported by the S7 object
server on an M7 automation computer. The type identifiers listed below are
defined in header file M7API.H , and are required in the corresponding M7
API function calls, in order to address S7 objects.

The accompanying numerical values are cast in M7API.H in the M7 data
type UBYTE.

Table 2-7 Objects Supported on the M7

S7 Object Type Identifier Initialization

I/O area M7D_IO Automatic

Process image of inputs M7D_PII Automatic

Process image of outputs M7D_PIQ Automatic

Flag area M7D_M C user program

Data block M7D_DB C user program

Data records, read *
(for communication only for
MMI functions)

M7D_PAR_READ C user program

Data records, write *
(for communication only for
MMI functions)

M7D_PAR_WRITE C user program

* The attributes “Read” and “Write” for data records are considered on a FM
from the view of the CPU. The FM read the data records – for example data
records of parameter – which were written by the CPU (Type Identifier
M7D_PAR_WRITE). On the other side the FM write data records – for ex-
ample data records of diagnosis – which shall be read by the CPU (Type
Identifier M7D_PAR_READ).

Type Identifiers

Type Identifiers

2-6
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The following table lists the subarea numbers for the individual S7 objects.
The listed subarea numbers are required in the corresponding M7 API func-
tion calls, in order to address S7 objects of an S7 CPU or an M7.

Table 2-8 Subarea Numbers for S7 Objects

S7 Object Type Identifier Subarea
Number

Value Range

I/O area M7D_IO 0 0...0xFFFF

Process image of inputs M7D_PII 0 0 ... 255 or 511

Process image of outputs M7D_PIQ 0 0 ... 255 or 511

Flag area M7D_M 0 0 ... 65 535

Data block M7D_DB DB number 0 ... 65 535 for
M7

Data records, read M7D_PAR_R
EAD

No. of data
record

0 ... 255 for
M7

Data records, write M7D_PAR_W
RITE

No. of data
record

0.... 255 for
M7

The identifiers in the following table specify the possible data types of vari-
ables within S7 objects. The identifiers are used in all M7 calls which access
a variable area within an S7 object.

The corresponding M7 data types are listed in the following table.

Table 2-9 Data Type Identifiers for Accessing S7 Objects

M7 Data Type Type Identifier

BOOL M7DT_BOOL

UBYTE M7DT_BYTE

UBYTE M7DT_CHAR

UWORD M7DT_WORD

SWORD M7DT_INT

UDWORD M7DT_DWORD

SDWORD M7DT_DINT

REAL M7DT_REAL

UBYTE M7DT_OCTET

Subarea Number

Data Type Identi-
fiers

Type Identifiers

2-7
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The identifiers in the table specify the possible block types which can be
stored in the working memory of an S7 CPU or M7. The identifiers are used
in M7 calls to the object management system.

Table 2-10 Block Type Identifiers

Block Type Type Identifier Remarks

OB organization block M7BLKTYP_OB S7-CPU only

Data block M7BLKTYP_DB M7 and S7-CPU

Function call M7BLKTYP_FC S7-CPU only

System function call M7BLKTYP_SFC S7-CPU only

Function block M7BLKTYP_FB S7-CPU only

System function block M7BLKTYP_SFB S7-CPU only

Block Type Identi-
fiers

Type Identifiers

2-8
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Type Identifiers

3-1
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Data Structures

Section Contents Page

3.1 Data Types of the RMOS API 3-2

3.2 Data Structures of the RMOS API 3-2

3.3 Data Types of the M7 API 3-21

3.4 Data Structures of the M7 API 3-23

3.5 Data Structures of the Socket Interface 3-34

3.6 Parameter Data Records for the IF 961-AIO/DIO Interface
Modules

3-38

In this chapter

3

3-2
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

3.1 Data Types of the RMOS API

The following general data types are defined in header file RMTYPES.H of
the RMOS API. These data types should be used instead of the general C
data types for the appropriate RMOS API calls.

Table 3-1 GeneralData Type Definitions of the RMOS API

Name Type Definition Meaning

uchar unsigned char Unsigned char
(value range: 0 ... 255)

ushort unsigned short Unsigned 16-bit integer
(value range: 0 ... 65 535)

uint unsigned int Unsigned 32-bit integer
(value range: 0 ... 2^32 - 1)

ulong unsigned long Unsigned 32-bit integer
(value range: 0 ... 2^32 - 1)

rmproc void(*rmproc)(void) Pointer to function with no input or return
parameters

3.2 Data Structures of the RMOS API

The following general data structures are defined in header file
RMTYPES.H of the RMOS API. These data structures are used in the
corresponding RMOS API calls.

Notes

Notes

Data Structures

3-3
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Rm3964InitStruct

#include <drv3964.h>
typedef struct tagRm3964InitStruct
 {

ushort irq;
ushort base;
ulong mode_baud;
uchar mode_parity;
uchar mode_data;
uchar mode_stop;
uchar mode_fill;
int prot3964r;
int master;

 } Rm3964InitStruct;

The Rm3964InitStruct structure contains the configuration data for the
initialization of a unit for 3964(R) communication. The configuration is
performed with the RmIOControl control function RM_IOCTL_INIT.

Field Type Meaning

irq ushort IRQ number of the interface (e.g. 4 for COM1)
The IRQ parameter is only evaluated the first time the
unit is initialized. It is ignored on further calls of control
function RM_IOCTL_INIT.

base ushort I/O base address of the 8250 chip (e.g. 0x3F8 for COM1)
The base address is only evaluated the first time the unit
is initialized. It is ignored on further calls of control func-
tion RM_IOCTL_INIT.

mode_baud ulong Baud rate (numeric value, e.g. 19200)

mode_parity uchar Control of the parity bit. The following are permitted:

RM_IOCTL_MODE_PARITYNONE
No parity check

RM_IOCTL_MODE_PARITYEVEN
Even parity

RM_IOCTL_MODE_PARITYODD
Odd parity

RM_IOCTL_MODE_PARITY0
Parity bit always 0

RM_IOCTL_MODE_PARITY1
Parity bit always 1

mode_data uchar Number of data bits (possible values: 5,6,7,8)

mode_stop uchar Number of stop bits.

RM_IOCTL_MODE_STOP1 1 stop bit

RM_IOCTL_MODE_STOP2 2 stop bits

RM_IOCTL_MODE_STOP15 1.5 stop bits

Syntax

Description

Data Structures

3-4
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Field MeaningType

mode_fill uchar Reserved

prot3964r int Protocol selection

0 3964–Protokoll

1 3964R–Protokoll

master int Master/slave definition

0 Slave

1 Master

int iostatus;
int status;
Rm3964InitStruct parameter;
parameter.irq = 4;
parameter.base = 0x3F8;
parameter.mode_baud = 19200;
parameter.mode_parity = RM_IOCTL_MODE_PARITY-
NONE;
parameter.mode_data = 8;
parameter.mode_stop = RM_IOCTL_MODE_STOP1;
parameter.prot3964r = 1;
parameter.master = 1;
status = RmIOControl(RM_WAIT, 0, handle,
RM_IOCTL_INIT,

¶meter, &iostatus);

RmIOControl

Example

See Also

Data Structures

3-5
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmAbsTimeStruct

#include <rmtypes.h>
typedef struct _RmAbsTimeStruct
{

 ulong lotime;
ulong hitime;

}RmAbsTimeStruct;

This structure contains the absolute system time in milliseconds since the last
complete restart and it is used by the RmGetAbsTime function call.

Field Type Meaning

lotime ulong Low-order part of the absolute time

hitime ulong High-order part of the absolute time

RmGetAbsTime

Syntax

Description

See Also

Data Structures

3-6
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmEntryStruct

#include <rmtypes.h>
typedef struct _RmEntryStruct
 {

uchar slen;
char string[16];
uchar type;
ulong ide;
ushort id;

 }RmEntryStruct;

The RmEntryStruct structure is used in RMOS API calls RmList and
RmGetEntry , in order to read items from the resource catalog.

Field Type Meaning

slen uchar Length of following character string.

string char[16] Character string containing the name of a resource.

type uchar Specifies the type of source.
The following values are possible:

Value Define Meaning

0 RM_CATALOG_TASK Task

1 RM_CATALOG_DEVICE Device driver

2 RM_CATALOG_POOL Memory pool

3 RM_CATALOG_SEMAPHORE Semaphore

4 RM_CATALOG_EVENTFLAG Global event flag

5 RM_CATALOG_CNTRL Monitored program
access

6 RM_CATALOG_
LOCALMAILBOX

Local mailbox

7 RM_CATALOG_MISC Reserved

8 RM_CATALOG_USER User-defined type

10 RM_CATALOG_UNIT Unit

11 RM_CATALOG_MESSAGE Messages

255 RM_CATALOG_ALL

ide ulong Specifies the extended ID of the resource. The value range de-
pends on the type and the maximum values configured.

id ushort Specifies the ID of the resource. The value range depends on the
type and the maximum values configured.

Resource type RM_CATALOG_USER is not reserved for specific RMOS
resources, and can be used by the programmer for any purposes of his own. It

Syntax

Description

Note

Data Structures

3-7
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

could be used, for example, to display the availability of specific library
modules by cataloging them under the library name and the RM_CAT-
ALOG_USER type.

RmCatalog, RmList, RmGetEntry, RmGetNameSee Also

Data Structures

3-8
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmIntrhandMailStruct

#include <rmtypes.h>
typedef struct _RmIntrhandMailStruct
 {
 uint int_no ;
 uint int_vec :8 ;
 uint int_kind :1 ;
 uint lost_int_overflow :1 ;
 uint dummy_2 :22 ;
 ushort lost_int;
 ushort dummy_3;
 }RmIntrhandMailStruct;

The RmSetIntMailboxHandler call of the RMOS API can be used to
define interrupt handlers for sending a message to a mailbox. The
RmIntrhandMailStruct structure defines the format of this message,
which is stored in the mailbox when the interrupt is triggered. The structure
incorporates a total of three 32-bit words.

Field Typ Meaning

int_no uint Identifies the number of current interrupt received.

int_vec 8 bits Specifies the interrupt vector.

int_kind 1 bit Identifiers the type of interrupt:

Value Meaning

0 Hardware interrupt

1 Software interrupt

lost_int_
overflow

1 bit This bit is enabled (= 1) if interrupts are lost.

dummy_2 22 bits Reserved

lost_int ushort Specifies the number of lost interrupts.

dummy_3 ushort Reserved

RmSetIntMailboxHandler

Syntax

Description

See Also

Data Structures

3-9
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmIOCTLModeSerialStruct

#include <rmapi.h>
typedef struct tagRmIOCTLModeSerialStruct
 {

ulong baud;
uchar parity;
uchar data;
uchar stop;

 }RmIOCTLModeSerialStruct;

The RmIOCTLModeSerialStruct structure contains the configuration
data for drivers for serial interfaces (e.g. 8250). It is required with the
RmIOControl control function RM_IOCTL_MODE in order to reconfigure
the unit.

Field Type Meaning

baud ulong Transmission rate (numeric value, e.g. 19200)

parity uchar Control of the parity bit. The following are permitted:

RM_IOCTL_MODE_PARITYNONE No parity check

RM_IOCTL_MODE_PARITYEVEN Even parity

RM_IOCTL_MODE_PARITYODD Odd parity

RM_IOCTL_MODE_PARITY0 Parity bit always 0

RM_IOCTL_MODE_PARITY1 Parity bit always 1

data uchar Number of data bits (numeric value, e.g. 8)

stop uchar Number of stop bits. The following are permitted:

RM_IOCTL_MODE_STOP1 1 stop bit

RM_IOCTL_MODE_STOP2 2 stop bits

RM_IOCTL_MODE_STOP15 1.5 stop bits

int iostatus;
int status;
RmIOCTLModeSerialStruct param;
param.baud = 19200ul;
param.parity = RM_IOCTL_MODE_PARITYNONE;
param.data = 8;
param.stop = RM_IOCTL_MODE_STOP1;
status = RmIOControl(RM_WAIT, 0, handle, RM_IOCTL_MODE,

 (void *) ¶m, &iostatus);

RmIOControl

Syntax

Description

Example

See Also

Data Structures

3-10
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmIOCTLPropertiesStruct

#include <rmapi.h>
typedef struct tagRmIOCTLPropertiesStruct
 {

uint block_device : 1;
uint convert : 1;
uint protocol : 1;
uint terminal : 1;
uint hsfs : 1;
uint serial : 1;
uint buffer : 1;

 uint reserved1 : 9;
uint reserved2 : 16;

 uint ioctl_lock : 1;
uint ioctl_get_status : 1;

 uint ioctl_verify : 1;
 uint ioctl_linemode : 1;
 uint ioctl_readterm : 1;

uint ioctl_writeterm : 1;
uint ioctl_readstop : 1;

 uint ioctl_writestop : 1:
 uint ioctl_readtout : 1:
 uint ioctl_writetout : 1;
 uint ioctl_echo : 1;

uint ioctl_line_feed : 1;
uint ioctl_form_feed : 1;

 uint ioctl_abortchar : 1;
 uint ioctl_terminal : 1;

uint reserved3 : 1;
uint reserved4 : 16;

 ulong block_size;
 ulong number_of_blocks;

ulong reserved5;
 ulong reserved6;
 ulong reserved7;
 }RmIOCTLPropertiesStruct ;

The RmIOCTLPropertiesStruct structure contains information about
the function scope of the loadable driver.

Field Type Meaning

block_device 1 bit Type of driver

0: Character–oriented driver

1: Block–oriented driver

convert 1 bit Reserved

Syntax

Description

Data Structures

3-11
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Field MeaningType

protocol 1 bit Protocol driver (e.g. 3964R)

1 = yes, 0 = no

terminal 1 bit Terminal driver

1 = yes, 0 = no

hsfs 1 bit Mass storage driver (e.g. for hard disk)

1 = yes, 0 = no

serial 1 bit Driver for serial interface

1 = yes, 0 = no

buffer 1 bit Background buffer exists?

1 = yes, 0 = no

reserved1 9 bits Reserved

reserved2 16 bits Reserved

ioctl_lock 1 bit Lock function (RM_IOCTL_LOCK) exists

1 = yes, 0 = no

ioctl_get_status 1 bit RM_IOCTL_GET_STATUS exists

1 = yes, 0 = no

ioctl_verify 1 bit Verify function (RM_IOCTL_VERIFY_ON /
OFF)

1 = yes, 0 = no

ioctl_linemode 1 bit Line–oriented reading
(RM_IOCTL_LINEMODE_ON / OFF)

1 = yes, 0 = no

ioctl_readterm 1 bit Terminator character for reading
(RM_IOCTL_READTERM_ON / OFF)

1 = yes, 0 = no

ioctl_writeterm 1 bit Terminator character for writing
(RM_IOCTL_WRITETERM_ON / OFF)

1 = yes, 0 = no

ioctl_readstop 1 bit Stop character for reading
(RM_IOCTL_READSTOP) and maximum num-
ber of characters (RM_IOCTL_READLEN)

1 = yes, 0 = no

ioctl_writestop 1 bit Stop character for writing
(RM_IOCTL_WRITESTOP)

1 = yes, 0 = no

ioctl_readtout 1 bit Timeout for reading
(RM_IOCTL_READTIMEOUT)

1 = yes, 0 = no

ioctl_writetout 1 bit Delay for writing
(RM_IOCTL_WRITEDELAY)

1 = yes, 0 = no

Data Structures

3-12
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Field MeaningType

ioctl_echo 1 bit Activate/deactivate echo function
(RM_IOCTL_ECHO_ON / OFF)

1 = yes, 0 = no

ioctl_line_feed 1 bit Line feed (RM_IOCTL_LINE_FEED)

1 = yes, 0 = no

ioctl_form_feed 1 bit Form feed (RM_IOCTL_FORM_FEED)

1 = yes, 0 = no

ioctl_abort_char 1 bit Abort character
(RM_IOCTL_ABORTCHAR_ON / OFF)

1 = yes, 0 = no

ioctl_terminal 1 bit Select terminal/transparent mode
(RM_IOCTL_TERMINAL_ON / OFF)

1 = yes, 0 = no

reserved3 1 bit Reserved

reserved4 16 bits Reserved

block_size ulong Block size for block–oriented drivers (Bytes)

number_of_blocks ulong Number of blocks for block–oriented drivers

reserved5 ulong Reserved

reserved6 ulong Reserved

reserved7 ulong Reserved

RmIOControlSee Also

Data Structures

3-13
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmIOCTLVersionStruct

#include <rmapi.h>
typedef struct tagRmIOCTLVersionStruct
 {

int MajorVersion;
int MinorVersion;
int DriverInfo1;
int DriverInfo2;
char Name[RM_MAXCATALOGLEN+1];

 }RmIOCTLVersionStruct;

The structure RmIOCTLVersionStruct is used to find out the version of
a loadable driver.

Feld Typ Bedeutung

MajorVersion int Version of the driver (value before the point). For
example for Version 1.0 is the MajorVersion 1

MinorVersion int Version of the driver (value after the point). For
example for Version 1.0 is the MinorVersion 0

DriverInfo1 int Dependent information of the driver (For
SER8250.DRV and 3964.DRV always 0)

DriverInfo2 int Dependent Information of the driver (For
SER8250.DRV and 3964.DRV always 0)

Name char Array Name of the driver, which is registered in the cata-
log (SER8250 or. 3964).

RmIOControl

Syntax

Description

See Also

Data Structures

3-14
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmMailboxStruct

#include <rmtypes.h>
typedef struct _RmMailboxStruct
 {

void *adr;
ushort adr_res;
ushort pad;
uint len;

 }RmMailboxStruct;

RmMailboxStruct is used to send a message indirectly via the mailbox by
passing the memory address and length of the message to the mailbox,
instead of the message itself.

Field Type Meaning

adr void * Contains a pointer to the memory address of the mes-
sage

adr_res ushort Padding word for FLAT model

pad ushort Is padded up to 64 bits

len uint Specifies the length of the message

RmSendMail, RmReceiveMail

Syntax

Description

See Also

Data Structures

3-15
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmMailIDStruct

#include <rmtypes.h>
typedef struct _RmMailIDStruct
 {

ulong low;
ulong high;

 }RmMailIDStruct;

Return value of the RmSendMailDelayed function. This return value is
required, for example, to delete send-delayed mail.

Field Type Meaning

low ulong Least-significant part of mail ID

high ulong Most significant part of mail ID

RmSendMailCancel, RmSendMailDelayed

Syntax

Description

See Also

Data Structures

3-16
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmMemPoolInfoStruct

#include <rmtypes.h>
typedef struct _RmMemPoolInfoStruct
 {

ulong pool_size;
ulong avail_mem_size;
ulong max_block_size;
ulong reserved[5]

 }RmMemPoolInfoStruct;

Return value of RmGetMemPoolInfo function. The return value contains
information on the specified memory pool.

Field Type Meaning

pool_size ulong Total size of memory pool

avail_mem_size ulong Total size of memory available

max_block_size ulong Size of the largest block of memory available
(always –1)

RmGetMemPoolInfo

Syntax

Description

See Also

Data Structures

3-17
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Ser8250InitStruct

#include <ser8250.h>
typedef struct tagSer8250InitStruct
 {

ushort irq;
ushort base;
ulong mode_baud;
uchar mode_parity;
uchar mode_data;
uchar mode_stop;
uchar mode_fill;
ulong buffer_size;

 } Ser8250InitStruct;

The Ser8250InitStruct structure contains the configuration data for
initializing a unit for the driver of a serial interface. The configuration is
performed with the RmIOControl control function RM_IOCTL_INIT.

Field Type Meaning

irq ushort IRQ number of the interface (e.g. 4 for COM1)
The IRQ parameter is only evaluated the first time the unit
is initialized. It is ignored on further calls of control func-
tion RM_IOCTL_INIT.

base ushort I/O base address of the 8250 chip (e.g. 0x3F8 for COM1)
The base address is only evaluated the first time the unit is
initialized. It is ignored on further calls of control function
RM_IOCTL_INIT.

mode_baud ulong Baud rate (numeric value, e.g. 19200)

mode_parity uchar Control of the parity bit. The following are permitted:

RM_IOCTL_MODE_PARITYNONE
No parity check

RM_IOCTL_MODE_PARITYEVEN
Even parity

RM_IOCTL_MODE_PARITYODD
Odd parity

RM_IOCTL_MODE_PARITY0
Parity bit always 0

RM_IOCTL_MODE_PARITY1
Parity bit always 1

mode_data uchar Number of data bits (possible values 5,6,7,8)

mode_stop uchar Number of stop bits.

RM_IOCTL_MODE_STOP1 1 stop bit

RM_IOCTL_MODE_STOP2 2 stop bits

RM_IOCTL_MODE_STOP15 1.5 stop bits

Syntax

Description

Data Structures

3-18
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Field MeaningType

mode_fill uchar Ignored

buffer_size ulong Size of the background buffer of the driver (number of
characters)

int iostatus;
int status;
Ser8250InitStruct parameter;
parameter.irq = 4;
parameter.base = 0x3F8;
parameter.mode_baud = 19200;
parameter.mode_parity = RM_IOCTL_MODE_PARITY-
NONE;
parameter.mode_data = 8;
parameter.mode_stop = RM_IOCTL_MODE_STOP1;
parameter.buffer_size = 256;
status = RmIOControl(RM_WAIT, 0, handle,
RM_IOCTL_INIT,

¶meter, &iostatus);

RmIOControl

Example

See Also

Data Structures

3-19
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

STDSTRUCT

#include <task.h>
struct std_struct
 {

int stdin_dev;
int stdin_unit;
int stdout_dev;
int stdout_unit;
int stderr_dev;
int stderr_unit;
char *stdin_fname;

 unsigned short stdin_fill;
 char *stdout_fname;

unsigned short stdout_fill;
char *stderr_fname;
unsigned short stderr_fill;
char *tmp_path;
unsigned short tmp_fill;

 };
typedef struct std_struct STDSTRUCT;

The STDSTRUCT structure defines the input and output channels stdin,
stdout, and the error output channel stderr of a program. A channel can be
defined by specifying either a device/unit number combination or a file
name.

Field Type Meaning

stdxx_dev int A value >= 0 defines the number of an I/O driver (de-
vice number). Values < 0 have the following meaning:

Value Meaning

-1 The file name specified in stdxx_fname is
used. In the case of stdout and stderr, a new
file is created stdxx_unit is not used.

-2 The file name specified in stdxx_fname is
used. In the case of stdout and stderr, the out-
puts are appended to the end of the file if it
already exists. stdxx_unit is not used.

-3 Users should treat this value in exactly the
same way as the value stdxx_dev = -2 , be-
cause it only has the following meaning for
the interactive CLI command START: The
output file was inherited by the calling job
and may not be passed down further.

Syntax

Description

Data Structures

3-20
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Field MeaningType

stdxx_unit int If stdxx_dev has a value >= 0, stdxx_unit defines
the number of an I/O device (unit number). If
stdxx_dev has a value < 0, stdxx_unit is ignored.

stdxx_fname char * Pointer to a file name character string. The file identi-
fied by the file name is used if stdxx_dev has a value
< 0, as described above.

stdxx_fill unsigned
short

Reserved, padding word for FLAT model

tmp_path char * Pointer to a file name character string which specifies a
file for temporary data.

tmp_fill unsigned
short

Reserved, padding word for FLAT model

The values –2 and –3 described above for stdxx_dev , are only relevant to
CLI. The x_cr_gettaskparam function always returns values >= –1 for
stdxx_dev .

The file name defined by the tmp_path field is identical to the name speci-
fied for the temporary file in the xinitt function.

Note

Data Structures

3-21
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

3.3 Data Types of the M7 API

3.3.1 General Data Types of the M7 API

The following general data types are defined in header file M7API.H of the
M7 API. These data types should be used instead of the general C data types
for the appropriate RMOS API calls.

The following table lists the names of the basic M7 data types used in the M7
API environment. Their definitions can be found in the M7API.H header
file.

Table 3-2 General Data Types of the M7 API

Name Type Definition Meaning

UBYTE unsigned char Unsigned character
(value range: 0 ... 255)

UWORD unsigned short Unsigned 16-bit integer
(value range: 0 ... 65535)

UDWORD unsigned long Unsigned 32-bit integer
(value range: 0...2^32 – 1)

SBYTE signed char Signed character
(value range: –128...127)

SWORD signed short Signed 16-bit integer
(value range:
 –32 768...32 767)

SDWORD signed long Signed 32-bit integer
(value range:
–2^31...2^31 – 1)

BOOL unsigned int Boolean value

REAL float 32-bit floating point number

BYTE UBYTE Unsigned character
(value range: 0...255)

UBYTE_PTR UBYTE * Pointer to UBYTE

WORD UWORD Unsigned 16-bit integer
(value range: 0...32 767)

DWORD UDWORD Unsigned 32-bit integer
(value range: 0... 2^32 –1)

M7ERR_CODE int Error return value

M7ERR_CODE_PTR M7ERR_CODE * Pointer to M7ERR_CODE vari-
able

M7IO_LOGADDR UWORD Logical address of a signal

M7IO_BASEADDR UWORD Base address of an I/O module

M7CONNID UWORD ID of an application connection

Notes

Data Structures

3-22
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

3.3.2 FRB – Data Types of the M7 Server

The following FRB (Function Request Block) structures are defined in
header file M7API.H of the M7 API. The FRBs are required when register-
ing on the corresponding M7 servers. The following table lists the FRB struc-
tures and the accompanying pointer definitions.

Information in the FRBs is accessed exclusively by means of macros. These
are also defined in header file M7API.H.

Table 3-3 FRB Definitions for M7 API

Type Definition Meaning

M7FRBHEADER Header of any FRB. Contains general manage-
ment information

M7FRBHEADER_PTR Pointer to an FRB header

M7CBFRB FRB for registering a callback function on the
S7 object server

M7CBFRB_PTR Pointer to an FRB of type M7CFRB

M7OBJFRB FRB for registering the access message from
the S7 object server

M7OBJFRB_PTR Pointer to an FRB of type M7OBJFRB

M7IOALARM_FRB FRB for registering the message for an I/O
alarm from the alarm server

M7IOALARM_FRB_PTR Pointer to an FRB of type
M7IOALARM_FRB

M7DIAGALARM_FRB FRB for registering the message for a diagnos-
tics alarm from the alarm server

M7DIAGALARM_FRB_PTR Pointer to an FRB of type M7SDIAGA-
LARM_FRB

M7ZSALARM_FRB FRB for registering the message for an insert/
remove alarm from the alarm server

M7ZSALARM_FRB_PTR Pointer to an FRB of type
M7ZSALARM_FRB

M7TFRB FRB for registering the message for time
events from the time server

M7TFRB_PTR Pointer to an FRB of type M7TFRB

M7TSFRB FRB for registering the message for new oper-
ating states or operating state transitions from
the OST server

M7TSFRB_PTR Pointer to an FRB of type M7TSFRB

M7FSCFRB FRB for registering the message for free cycle,
cycle control point, STARTUP and cycle time
monitoring from the FC (Free Cycle) server

M7FSCFRB_PTR Pointer to an FRB of type M7FSCFRB

Notes

Data Structures

3-23
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Table 3-3 FRB Definitions for M7 API

Type Definition Meaning

M7COMMFRB Required when calling single-ended PBK
functions

M7COMMFRB_PTR Pointer to an FRB of type M7COMMFRB

3.3.3 Other Data Types of the M7 Server

The table lists other data types of the M7 API. The structures for the data
types are not described in detail here, because the individual items are ac-
cessed exclusively by means of macros.

Table 3-4 Other Data Types of the M7 API

Type Definition Meaning

M7IO_DESC Data structure for recording the descriptor information
for access to ISA modules

M7IO_DESC_PTR Pointer to an ISA module descriptor

3.4 Data Structures of the M7 API

The following general data structures are defined in header file M7API.H of
the M7 API. These data structures are used in the corresponding M7 API
calls.

Notes

Notes

Data Structures

3-24
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7BLKINFO

#include <m7api.h>
typedef struct tagM7BlkInfo
 {

UWORD Language
UWORD Blktyp;
UWORD Blknum;
UBYTE Bitmap;
UBYTE filler ;

 }M7BLKINFO;

typedef M7BLKINFO * M7BLKINFO_PTR

The M7BLKINFO structure is used by object management functions when
reading the block directory from an S7 CPU or M7. The call uses the struc-
ture to return information about a block.

Field Type Meaning

Language UWORD The field returns the identifier of the language in which a
block has been created from the block header.

Blktyp UWORD Block type: The identifiers of the possible block types are
listed in Table .

Blknum UWORD Number of the block

Bitmap UBYTE The individual bits can be “rounded” using predefined
constants, and checked if not equal to zero.

M7BLKINFO_PASSIV
Block is copied (passive), that is in the temporary load
memory

M7BLKINFO_ACTIVE
Block is linked (active), that is in the working memory

M7BLKINFO_RAM
Block is in RAM memory or RAM mode

M7BLKINFO_EPROM
Block is in EPROM memory or EPROM mode

M7BLKINFO_BESY
Block is in operating system

filler UBYTE Reserved

M7OVSFindFirst, M7OVSFindNext

Syntax

Description

See Also

Data Structures

3-25
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7BLKLIST

#include <m7api.h>
typedef struct tagM7BlkList
 {

UWORD Blktyp;
UWORD Blknum;

 }M7BLKLIST;

typedef M7BLKLIST * M7BLKLIST_PTR

The M7BLKLIST structure is used by object management functions for the
simultaneous linking or deletion of multiple blocks.

Field Type Meaning

Blktyp UWORD Type of block. The identifiers of the possible block types
are listed in Table .

Blknum UWORD Number of the block

M7OVSLinkIn, M7OVSDelete

Syntax

Description

See Also

Data Structures

3-26
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7CBRet

#include <m7api.h>
typedef struct tagM7CBRet
 {

UBYTE process;
UBYTE result;
UBYTE errcls;
UBYTE errcode;

 }M7CBRet;

A callback function which is registered by a task through an M7LinkDa-
taAccessCB call must pass the M7CBRet structure back to the M7 API in
the return parameter.

The callback function uses the return value to determine whether or not fur-
ther processing is desired on the S7 object server.

Field Type Meaning

process UBYTE TRUE: Object server performs further processing

FALSE: Processing by callback function completed

result UBYTE Error number if process =FALSE

errcls UBYTE Not relevant

errcode UBYTE Not relevant

Processing by the object server takes place both if process = FALSE and if
result ≠ 0.

M7LinkDataAccessCB

Syntax

Description

Note

See Also

Data Structures

3-27
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7KTIME

#include <m7api.h>
typedef struct tagM7KTime
 {

UWORD TimeState;
UBYTE Year;
UBYTE Month;
UBYTE Day;
UBYTE Hour;
UBYTE Minute;
UBYTE Second;
unsigned int m_sec_10:4;
unsigned int m_sec_100:4;
unsigned int Weekday:4;
unsigned int m_sec_1:4;

 }M7KTIME;

typedef M7KTIME * M7KTIME_PTR

The M7KTIME structure is used by the M7 API functions to read and write
the time on the K bus.

Field Type Meaning

TimeState UWORD Time state.

The use of TimeState with the following prede-
fined constants and evaluation for not equal to zero
produces the following state values:

M7KTIME_SYA
Time synchronization performed

M7KTIME_ESY
Substitute time synchronization performed on LAN

M7KTIME_UZS
Time jump performed

M7KTIME_ZNA
Time value is not up-to-date

M7KTIME_KMASK
Mask for correction value for summer, winter and
world time in 1/2 hours

If TimeState is used with the mask
M7KTIME_UA_MASK and subsequently
compared if equal to the following constants, the
time resolution is as follows:

Syntax

Description

Data Structures

3-28
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Field MeaningType

M7KTIME_UA_M_SEC_1
Resolution 1 msec

M7KTIME_UA_M_SEC_10
Resolution 10 msec

M7KTIME_UA_M_SEC_100
Resolution 100 msec

M7KTIME_UA_SECOND
Resolution 1 sec

Year UBYTE Specifies year: 00 ... 99 (BCD number)

Month UBYTE Specifies month: 01 ... 12 (BCD number)

Day UBYTE Specifies day: 01 ... 31 (BCD number)

Hour UBYTE Specifies hours: 00 ... 23 (BCD number)

Minute UBYTE Specifies minutes: 00 ... 59 (BCD number)

Second UBYTE Specifies seconds: 00 ... 59 (BCD number)

m_sec_10 unsigned int Specifies 1/100 seconds: 0 ... 9
When reading time only, during writing = 0

m_sec_100 unsigned int Specifies 1/10 seconds: 0 ... 9
When reading time only, during writing = 0

Weekday unsigned int Specifies weekday:

1: Sunday
2: Monday
3: Tuesday
4: Wednesday
5: Thursday
6: Friday
7: Saturday

m_sec_1 unsigned int Specifies 1/1000 seconds: 0...9
When reading time only, during writing = 0

M7KReadTime, M7KWriteTimeSee Also

Data Structures

3-29
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7OBJ_INFO

#include <m7api.h>
typedef struct tagM7ObjInfo
 {

UWORD Size;
UWORD Attrib;
unsigned long Data;
UBYTE External;

 }M7OBJ_INFO;

typedef M7OBJ_INFO * M7OBJ_INFO_PTR

The M7OBJ_INFO structure is used in the M7GetObjectInfo call to get
information on an S7 object.

Field Type Meaning

Size UWORD Length of S7 object in bytes

Attrib UWORD Object attributes

0x00 Object allocated by the user

0x01 Object allocated by the Object Server

0x02 Object in SRAM

0x10 Object in RAM–Mode

0x20 Object in ROM–Mode

0x40 Object in BESY–Mode

The value of Attrib can also contains a combination of
the values above.

For example the value 0x11 means, that the S7 Objekt is
in RAM–Mode and is allocated by the Objekt Server.

Data unsigned
long

Pointer to the data of an S7 object. The structure element
has to be casted to the required pointer type by the user.

External UBYTE TRUE: Memory for the S7 object was allocated
by M7 RMOS32 task.

FALSE: Memory for the S7 object was allocated
by S7 object server.

M7GetObjectInfo

Syntax

Description

See Also

Data Structures

3-30
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7PBKSTATUS

#include <m7api.h>
typedef struct tagM7PBKStatus
 {

UBYTE Logical_state;
UBYTE Physical_state;
UBYTE LocalSupplement[16];

 }M7PBKSTATUS;

typedef M7PBKSTATUS * M7PBKSTATUS_PTR

The structure is used by the M7 API M7PBKStatus function to specify the
virtual device.

Field Type Meaning

Logical_state UBYTE Specifies the logical state of the virtual device.
The following logical states are possible:

M7LSTATE_OK
Operating state changes are permitted

Physical_state UBYTE Specifies the physical state of the virtual device,
The following physical states are possible:

M7PSTATE_OPERATIONAL
Device operational

M7PSTATE_NEED_SERVICE
Device needs service

LocalSupplement UBYTE Supplementary information.
Within byte 0 of the supplementary information
the following state data is transmitted :

M7LSUPPL_STOP:
Device is in STOP operating state

M7LSUPPL_START
Device is in START operating state

M7LSUPPL_RUN
Device is in RUN operating state

M7LSUPPL_RESTART
Device is in RESTART operating state

M7LSUPPL_HALT
Device is in HALT operating state

M7LSUPPL_DEFECT
Device is non-operational

M7PBKStatus

Syntax

Description

See Also

Data Structures

3-31
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7TIME_DATE

#include <m7api.h>
typedef struct tagM7Time_Date
 {

UBYTE Hour;
UBYTE Minute;
UBYTE Second;
UBYTE HSecond;
UBYTE Day;
UBYTE Month;
UWORDYear;
UBYTE DayOfWeek;

 }M7TIME_DATE;

typedef M7TIME_DATE * M7TIME_DATE_PTR

The M7TIME_DATE structure is used by the M7 API functions to read and
set the internal system time.

Field Type Meaning

Hour UBYTE Specifies hours: 0 ... 23

Minute UBYTE Specifies minutes: 0 ... 59

Second UBYTE Specifies seconds: 0 ... 59

HSecond UBYTE Specifies seconds: 0 ... 99
When reading time only

Day UBYTE Specifies day: 1 ... 31

Month UBYTE Specifies month: 1 ... 12

Year UWORD Specifies year e.g.: 1997

DayOfWeek UBYTE Specifies weekday:

0: Sunday
1: Monday
2: Tuesday
3: Wednesday
4: Thursday
5: Friday
6: Saturday

M7GetTime, M7SetTime

Syntax

Description

See Also

Data Structures

3-32
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7VARADDR

#include <m7api.h>
typedef struct tagM7VarAddr
 {

UBYTE Syntax;
UBYTE DataType;
UWORD Length;
UWORD Part;
UBYTE Area;
UBYTE filler;
UDWORD Offset;

 }M7VARADDR;

typedef M7VARADDR * M7VARADDR_PTR

The M7VARADDR structure is used by PBK and MMI functions to address
a contiguous number of items within an S7 object.

Field Type Meaning

Syntax UBYTE Must always be set to value: 0x10 for this data structure

DataType UBYTE Specifies the data type of an item within the addressed
S7 object. The identifiers for the possible M7 data types
are listed in Table .

Length UWORD Number of items. For data type M7DT_BOOL is only
available the value 1 for the parameter LENGTH.

Part UWORD Specifies the subarea number (DB number, etc.) of an
S7 object. The possible subarea numbers for the indi-
vidual S7 objects are listed in Table .

Area UBYTE Specifies the type identifier of the S7 object. The pos-
sible type identifiers are listed in Table .

filler UBYTE Reserved; must be set to 0x00.

Offset UDWORD Specifies the address offset of the first item within the
S7 object. The address offset must always be a multiple
of the bit length of the specified data type (see Data-
Type).

For data records byte 0 and 1 (Intel format) specify the
logical module address, byte 2 specifies whether Input–
or Output address (0 for input, 1 for Output).

M7PBKPut, M7PBKGet, M7PBKBsend, M7PBKBrcv, M7BUBRead,
M7BUBWrite, M7BUBCycRead

Syntax

Description

See Also

Data Structures

3-33
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7VARDATA

#include <m7api.h>
typedef struct tagM7VarData
 {

UBYTE_PTR Buffer;
UDWORD Length;
UBYTE AccessResult;
UBYTE DataType;

 }M7VARDATA;

typedef M7VARDATA * M7VARDATA_PTR

The M7VARDATA structure is used by MMI functions to specify a buffer.

The specified buffer is used to hold either the values of the addressed vari-
ables (read access) or the data which overwrite the addressed variables (write
access).

Field Typ Meaning

Buffer UBYTE_PTR Pointer to the actual buffer. The user program
must allocate the buffer either in the global
data area or from the heap (remaining
memory pool)

Length UDWORD Length of the data buffer expressed in num-
ber of items

AccessResult UBYTE Specifies the result of the access (read or
write).

Possible error identifiers are:

M7RES_SUCCESS:
Transfer successfully completed

M7RES_HWERROR:
Hardware error

M7RES_NOACCESS:
No access authorization for object

M7RES_INVADDR:
Invalid item addressed in S7 object

M7RES_INVDTYP:
Invalid data type

M7RES_NOOBJECT:
No such object or invalid length

DataType UBYTE Specifies the data type of an item. The pos-
sible data types can be found in Table .

M7BUBRead, M7BUBCycRead, M7BUBWrite

Syntax

Description

See Also

Data Structures

3-34
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

3.5 Data Structures of the Socket Interface

The following data structures are defined in header file SOCKET.H of the
socket interface. These data structures are used in the corresponding socket
calls.

HOSTENT

#include <socket.h>
typedef struct hostent
{

char *h_name;
char **h_aliases;
short h_addrtype;
short h_length;
char *h_addr;

} HOSTENT;

The HOSTENT structure is used in the gethostent , gethostbyname
and getservbyaddr calls to querry entries in the \ETC\HOSTS file. It
contains the individual fields of the HOSTS file. The meaning of the fields is
as follows:

Field Type Meaning

h_name char * Official name of the host

h_aliases char ** Field with alternative (alias) names for the host (termi-
nated with NULL)

h_addrtype short Address type of the host; always AF_INET

h_length short Address length in bytes

h_addr char * Internet (IP) address of the host; (specified in network
byte order)

gethostent, gethostbyname, gethostbyaddr

Syntax

Description

See Also

Data Structures

3-35
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

SERVENT

#include <socket.h>
typedef struct servent
{

char *s_name;
char **s_aliases;
int s_port;
char *s_proto;

} SERVENT;

The SERVENT structure is used in the getservent , getservbyname
and getservbyport calls to querry entries in the SERVICES file. It con-
tains the individual fields of the SERVICES file. The meaning of the fields is
as follows:

Field Type Meaning

s_name char * Official name of the service

s_aliases char ** Field with alternative (alias) names for the service (termi-
nated with NULL)

s_port int Number of the port over which the service can be accessed

s_proto char * Protocol which must be used to address the service

The port number s_port is represented in host byte order; it must be con-
verted, if necessary, to network byte order with htons .

getservent, getservbyname, getservbyport

Syntax

Description

See Also

Data Structures

3-36
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

SOCKADDR

#include <socket.h>
typedef struct sockaddr
{

short sa_family;
short sin_port;
char sin_addr[4];

} SOCKADDR;

The SOCKADDR structure is used in socket interface calls to specify or
check the addresses of the communication hosts. The meaning of the fields is
as follows:

Field Type Meaning

sa_family short Address family

sin_port short Internet port number

sin_addr char [4] Internet (IP) address

accept, bind, connect, getpeername, getsockname, recvfrom, sendto

Syntax

Description

See Also

Data Structures

3-37
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

SOCKSEL

#include <socket.h>
typedef struct socksel
{

unsigned short se_inflags;
unsigned short se_outflags;
int se_fd;
int se_1reserved;
unsigned long se_user;
unsigned long se_2reserved;

} SOCKSEL;

The SOCKSEL structure is used in the nselect call to check events on a
specific socket. The meaning of the fields is as follows:

Field Type Meaning

se_inflags unsigned short Input/request flags

se_outflags unsigned short Output/reply flags

se_fd int Socket descriptor

se_1reserved int Reserved

se_user unsigned long Free for the user

se_2reserved unsigned long Reserved

nselect

Syntax

Description

See Also

Data Structures

3-38
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

3.6 Parameter Data Records for the IF 961-AIO/DIO Interface Modules

There are two ways to initialize the interface modules:

1. Using STEP 7

2. By calling the M7StoreRecord function in the user program

The table below contains the parameters which you may assign the IF
961-AIO interface module. The interface module has:

� 4 input channels and

� 2 output channels.

Table 3-5 Parameters for the IF 961-AIO Interface Module

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Parameter
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

Data Type
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Value Range
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

Coding
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

Default
Value

ÑÑÑ
ÑÑÑ
ÑÑÑ

Byte
ADD

ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

Bit
ADD

Data record DS0, 2 bytes long
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Conversion time
(scan cycle time)

ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

FIELD3 ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

{5.7 ms | 2.8 ms |
1.3 ms | 0.6 ms |
0.185 ms }

ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

{0|1|2|3|4}ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

0 ÑÑÑ
ÑÑÑ
ÑÑÑ
ÑÑÑ

0 ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

0

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Interrupt generation
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

FIELD1
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

{No | Yes }
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

{0|1}
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

0
ÑÑÑ
ÑÑÑ
ÑÑÑ

0
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

6

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Analog conversion
(method of sampling
the analog channels)

ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

FIELD1 ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

{ Selective | Cyclic } ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

{0|1} ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

0 ÑÑÑ
ÑÑÑ
ÑÑÑ

0 ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

7

... BIT[3] 0 0 3
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Interrupt selection ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

FIELD2 ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

{None | Process |
 Process +
Diagnostics }

ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

{0|1|2} ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

0 ÑÑÑ
ÑÑÑ
ÑÑÑ
ÑÑÑ

1 ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

0

... BIT[6] 0 1 2

If the IF 961-AIO interface module has been configured for cyclic conversion
(analog conversion = 1), it is possible to initiate process interrupts at the end
of the cycle. It is also possible to initiate a diagnostic interrupt in the event of
a lost process interrupt.

Options

Analog
Input/Output
Module IF 961-AIO

Process Interrupts
and Diagnostic
Interrupts

Data Structures

3-39
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following table 3-6contains the parameters which you may assign the IF
961-DIO interface module.

Figure 3-1 shows the structure of data record 1 of the parameters for the IF
961-DIO interface module.

Table 3-6 Parameters for the IF 961-DIO Interface Module

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Parameter
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

Data Type
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Value Range
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

Coding
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

Default
Value

ÑÑÑ
ÑÑÑ
ÑÑÑ

Byte
ADD

ÑÑÑ
ÑÑÑ
ÑÑÑ

Bit
ADD

Data record DS0, 2 bytes long
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Input delay ÑÑÑÑ
ÑÑÑÑ

FIELD1ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

{ 3 ms | 0,5 ms } ÑÑÑÑÑ
ÑÑÑÑÑ

{0|1} ÑÑÑÑ
ÑÑÑÑ
0 ÑÑÑ

ÑÑÑ
0 ÑÑÑ
ÑÑÑ

0

Data record DS1, 4 bytes long
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Interrupt enable (for pro-
cess interrupts)

ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

FIELD1
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

{ NO | YES }
ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

{ 0|1 }
ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

0
ÑÑÑ
ÑÑÑ
ÑÑÑ

0
ÑÑÑ
ÑÑÑ
ÑÑÑ

7

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Interrupt enable on
positive signal edge

ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

FIELD1ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

{ NO | YES } ÑÑÑÑÑ
ÑÑÑÑÑ
ÑÑÑÑÑ

{0|1} ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

0 ÑÑÑ
ÑÑÑ
ÑÑÑ

1 ÑÑÑ
ÑÑÑ
ÑÑÑ

0+IC

ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

Interrupt enable on
negative signal edge

ÑÑÑÑ
ÑÑÑÑ

FIELD1ÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑ

{ NO | YES } ÑÑÑÑÑ
ÑÑÑÑÑ

{0|1} ÑÑÑÑ
ÑÑÑÑ
0 ÑÑÑ

ÑÑÑ
2 ÑÑÑ
ÑÑÑ

0+IC

IC = Input channel: [0 .. 7]

Digital
Input/Output
Module IF 961-DIO

Data Structures

3-40
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

A parameter is activated by setting the respective bit to “1”. A “1” in bytes
1 and 2 means that the process interrupt is enabled.

Byte 0
7 0 Bit no.

Process interrupt enable

Byte 1
7 6 0

On channel 0
On channel 1

On channel 2
On channel 3

On channel 4
On channel 5

On channel 6
On channel 7

5 4 3 2 1

Byte 2
7 6 0

On channel 0
On channel 1

On channel 2
 On channel 3

On channel 4
On channel 5

On channel 6
On channel 7

5 4 3 2 1

Byte 3 Irrelevant

Process interrupt on positive edge

Process interrupt on negative edge

Figure 3-1 Parameter Data Record 1 for the IF 961-DIO Interface Module

Structure of Data
Record 1

Data Structures

4-1
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Codes and Messages

Section Contents Page

4.1 Error Messages of the M7 RMOS32 Kernel 4-2

4.2 M7 RMOS32 Exception Handler 4-5

4.3 Error Codes of RMOS API Calls 4-6

4.4 Error Codes of M7 API Calls 4-10

4.5 Error Codes of loadable drivers 4-15

4.6 Error Codes of the C Runtime Library 4-17

4.7 Error Codes of the Socket Interface 4-19

In this chapter

4

4-2
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

4.1 Error Messages of the M7 RMOS32 Kernel

The M7 RMOS32 kernel (nucleus) outputs error messages on the system con-
sole. The default setting for the system console is the serial COM2 interface,
but this can be reconfigured (see User Manual).

The M7 RMOS32 kernel requires system memory blocks for the management
of resources. These are allocated from the heap and are released again dynami-
cally.

The following error messages can be output when there are insufficient system
resources:

*** nuc: <date> <time> no SRBS, SYSTEM HALTED
There are no more system request blocks (SRB) available for the operating
system.

*** nuc: <date> <time> no SMRS, SYSTEM HALTED
There are no more system memory blocks (SMR) available for the operating
system (e.g. driver requests SMR).

*** nuc: <date> <time> SMRS increased
The kernel has increased the number of system memory blocks (SMRs) by 50.

*** nuc: <date> <time> SMRS reached 0
The number of system memory blocks (SMRs) could not be increased again;
the RMOS API call has been delayed. This state only occurs if no memory is
available in the heap, or if the data segment of the kernel could not be in-
creased because of the fragmentation of the heap.

Only tasks which request SMRs indirectly (e.g. through RMOS API calls) are
disabled. Other tasks – even those with lower priorities – continue to run. Dis-
abled tasks are continued immediately SMRs become available again.

The exception interrupt handler logs the processor exceptions of the 80x86
processor, and the unexpected interrupts.

The log output of the processor exception interrupts specifies the time and type
of interrupt in the first line. The second line outputs the error code passed by
the processor to the stack for exception interrupts 8, 10, 11, 12, 13, 14 and 17.
The fourth line provides more detailed information on the cause of the inter-
rupt. Finally, the current register values are shown. The decoded flag register
appears in the last line.

If, for example, an exception interrupt is initiated by a task in A state, the out-
put appears as follows.

Missing System
Resources

Exception
Interrupt Handler

Error Codes and Messages

4-3
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

*** nuc: 02–JAN–1980 10:39:44, GENERAL PROTECTION AT ADDRESS:

0270:0000027A

0270:0000027A 64C60000 MOV BYTE PTR FS:[EAX],00

 error code: 0

 caused by task id: 0x21: ’exep prot’

 eax: FFFFFFFF, ebx: 00000000, ecx: 00000280, edx: 00000068

 esi: AA55AA55, edi: 000002B8, ebp: FFFFFF78, esp: FFFFFF64

 ss: 0278, ds: 0280, es: 0280, fs: 0000, gs: 0228

 cr0: 7FFFFFE3, cr2: 00000000, cr3: 0000C000

 eflag: 00010282 (SIGN INTERRUPT IOPL(0) RESUME)

If the exception interrupt was initiated by an interrupt routine in the I state, the
fourth line appears as follows:

caused by interrupt handler in i state, SYSTEM HALTED

If the exception interrupt was initiated by an interrupt routine in the S state, the
fourth line appears as follows:

caused by interrupt handler in s state, SYSTEM HALTED

In both of the last two cases, the exception interrupt handler halts the system.

<Exception-Text> depends on the exception interrupt and represents the fol-
lowing character strings:

INT-NUM CHARACTER STRING

INT 0: DIVIDE ERROR AT ADDRESS:

INT 1: DEBUG EXCEPTION NEAR ADDRESS:

INT 3: BREAKPOINT EXCEPTION NEAR ADDRESS:

INT 4: OVERFLOW EXCEPTION NEAR ADDRESS:

INT 5: BOUNDS CHECK NEAR ADDRESS:

INT 6: INVALID OPCODE AT ADDRESS:

INT 7: NO COPROCESSOR AVAILABLE AT ADDRESS:

INT 8: DOUBLE FAULT EXCEPTION AT ADDRESS:

INT 9: NPX SEGMENT OVERRUN NEAR ADDRESS:

INT 10: INVALID TSS AT ADDRESS:

INT 11: SEGMENT NOT PRESENT AT ADDRESS:

INT 12: STACK FAULT AT ADDRESS:

INT 13: GENERAL PROTECTION AT ADDRESS:

INT 14: PAGE FAULT AT ADDRESS:

INT 16: FLOATING-POINT ERROR NEAR ADDRESS:

INT 17: ALIGNMENT CHECK NEAR ADDRESS:

Either AT ADDRESS or NEAR ADDRESS is output, depending on whether
the EIP register contains the address of the initiating command or the address
of the next command.

Error Codes and Messages

4-4
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The following character string is output with the NMI interrupt (INT 2):

*** nuc: <date> <time> NMI INTERRUPT

The following message is output for unexpected interrupts:

*** nuc: <date> <time> UNEXPECTED INTERRUPT

NMI Interrupt

Unexpected
Interrupts

Error Codes and Messages

4-5
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

4.2 M7 RMOS32 Exception Handler

An exception handler logs all RMOS API calls which are terminated with an
error on the system console. The exception handler is not activated in the de-
fault setting (see User Manual, System Software for M7-300/400, Installation
and Operation):

*** nuc: <date> <time>, svc <name> <state text>
failed: <error number> (<error text>)

The meanings of the above are as follows:

<name> Name of the decoded RMOS API call, e.g. RmGetFlag

<statetext> Depending on the system state, one of the following texts
is inserted when the RMOS exception handler is called.

1. from task: <name> id: 0xXX
2. during system startup
3. in monitor mode
4. in s–state
5. in i–state

<error nummer > Error number

<error text > Decoded error text

*** nuc: 14–FEB–1995 16:20:57, svc RmGetEntry from task:

RUN id: 0x29 failed: 36 (Invalid ID)

Example

Error Codes and Messages

4-6
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

4.3 Error Codes of RMOS API Calls

In certain circumstances, an RMOS API call can generate an error. Error codes
are therefore returned by all functions of the RMOS API. By checking the re-
turn value, you can determine whether or not the function was performed suc-
cessfully. The data type of the return value is int.

The error-free execution of an RMOS API call is indicated by the return value
RM_OK (=0).

RM_OK:
No error has occurred.

Certain RMOS API calls return values which, instead of indicating an error,
serve as memos for the caller. These memos always have a negative integer
value (< 0).

Unsuccessful RMOS API calls contain error codes whose integer value is posi-
tive (> 0).

The following return values are memos, not error numbers. They have negative
values.

RM_ENTRY_REMOVED:(–263)
The entry was removed from the catalog.

RM_ERROR_OUT_OF_RANGE:(–265)
Invalid error number.

RM_FLAG_ALREADY_SET:(–258)
A flag was already set.

RM_FLAG_RESET:(–260)
A flag was reset.

RM_FLAG_SET:(–259)
A flag was set.

RM_PRI_NOT_CHANGED:(–261)
The priority was not changed.

RM_TASK_RESUMED:(–256)
The task was resumed.

RM_TASK_WAITING:(–262)
The task had to wait for exception (for BLOCKED mode).

Return Values

Overview: Memos

Error Codes and Messages

4-7
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following list shows the error codes which can be returned by RMOS API
calls.

RM_ALL_DEBUGREGISTERS_USED:(45)
All debug registers are already being used.

RM_BOUND_REACHED:(27)
The boundary entered with RmSetMailboxSize has been exceeded.

RM_BREAKPOINT_ALREADY_SET:(29)
A breakpoint has already been set for the specified address.

RM_BREAKPOINT_ID_ALREADY_USED:(28)
The specified breakpoint ID has already been used.

RM_CATALOG_EXCEEDED:(100)
The configured number of possible catalog entries has been exceeded.

RM_GOT_TIMEOUT:(4)
An RMOS API call was aborted after the configured timeout.

RM_HEAP_NOT_REDEFINEABLE:(14)
The heap is already defined.

RM_INVALID_DESCRIPTOR:(5)
An invalid descriptor was used.

RM_INVALID_FUNCTION:(44)
An invalid or non-supported function number was passed.

RM_INVALID_ID:(36)
An invalid ID was passed.

RM_INVALID_INTERRUPT_NUMBER:(56)
The interrupt number was outside the valid range (0–255).

RM_INVALID_IRQ_NUMBER:(41)
An IRQ number was used for a PIC which has not been defined.

RM_INVALID_MEMORYBLOCK:(17)
An attempt was made to free an invalid memory area.

RM_INVALID_NULLPOINTER:(10)
A null pointer is not permitted at this point.

RM_INVALID_OFFSET:(39)
The offset was outside the valid range.

RM_INVALID_POINTER:(42)
A pointer was invalid.

RM_INVALID_SEGMENTLENGTH:(6)
An invalid segment length was specified.

Overview:
Error Codes

Error Codes and Messages

4-8
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RM_INVALID_SELECTOR:(21)
An invalid selector was used.

RM_INVALID_SIZE:(38)
A size parameter was invalid.

RM_INVALID_STRING:(37)
A string is not within the defined size.

RM_INVALID_TASK_ENTRY:(60)
Invalid task entry.

RM_INVALID_TASK_STATE:(22)
An illegal RmKillTask call was activated.

RM_INVALID_TYPE:(35)
An invalid parameter (mode, type, pri_type, etc.) was passed.

RM_IS_ALREADY_CATALOGED:(47)
The string to be cataloged has already been entered.

RM_IS_NOT_CATALOGED:(48)
The string is not cataloged.

RM_MEMORY_ALREADY_USED:(25)
The memory block to be reserved is already allocated.

RM_NO_MESSAGE:(43)
The mailbox (message queue) does not contain a message.

RM_NOT_HALTABLE:(46)
The task could not be halted.

RM_OUT_OF_FLAGGROUPS:(12)
The configured number of event flags has been exceeded.

RM_OUT_OF_MAILBOXES:(15)
The configured number of mailboxes has been exceeded.

RM_OUT_OF_MEMORY:(3)
No memory area of sufficient size is available.

RM_OUT_OF_MEMORYPOOLS:(13)
The configured number of memory pools has been exceeded.

RM_OUT_OF_SEMAPHORES:(16)
The configured number of semaphores has been exceeded.

RM_PARAMETER_ERROR:(2)
Incorrect parameters have been passed.

RM_QUEUE_EXIST:(59)
The message queue already exists.

Error Codes and Messages

4-9
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RM_QUEUE_NOT_EXIST:(58)
No message queue exists.

RM_RESOURCE_BUSY:(18)
The resource to be deleted is busy.

RM_RESOURCE_NOT_AVAILABLE:(23)
The desired resource is not available.

RM_SVC_NOT_CONFIGURED:(33)
An attempt was made to execute a non-configured RMOS API call. Check the
output of the RMOS exception handler to determine which RMOS API call is
meant.

RM_TASK_DORMANT:(7)
The task is in the DORMANT state.

RM_TASK_KILLED:(49)
The task was deleted with the RmKillTask RMOS API call.

RM_TASK_NOT_DORMANT:(20)
An attempt was made to delete or start a task in the DORMANT state.

RM_TASK_NOT_IN_BP_CONTEXT:(31)
The task was not interrupted by a breakpoint.

RM_TASK_NOT_IN_RTE_HALT:(32)
The task was not interrupted by a runtime error.

RM_TASK_NOT_PAUSED:(26)
The task to be resumed with RmResumeTask was not halted with
RmPauseTask.

RM_TEST_NOT_OK:(57)
A test was not successfully completed.

RM_TASK_NOT_READY:(30)
An attempt was made to halt a task which is not in the READY state.

Error Codes and Messages

4-10
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

4.4 Error Codes of M7 API Calls

Error codes are returned from the functions of the M7 API either in the return
value of the function or – unlike the RMOS API – via a pointer variable.

The data type of the returned error code is M7ERR_CODE and is defined in
the M7API.H file.

Since the functionality of the M7 API is presented by individual M7 servers,
the error codes are classified accordingly.

The following list shows the general error codes returned by M7 API calls. All
constants are defined in the M7API.H header file.

M7SUCCESS:(0)
Function was successfully performed, no error occurred.

M7E_NO_MEM:(–1)
Function must allocate memory dynamically for execution, no memory avail-
able.

M7E_PAR:(–100)
An incorrect parameter was passed in the function call.

M7E_PRIO:(–3)
The priority passed in the function call is outside the valid range.

M7E_RESSOURCE_LIMIT:(–2)
No resources available

The following list shows the error codes returned by P BUS I/O drivers.

M7E_ALARM_GEN_DISABLED:(–121)
Alarm generation was disabled in data record 0.

M7E_Alarm_Pending:(–128)
There is still an Alarm which must be confirmed

M7E_BSY:(–104)
Local bus is busy.

M7E_CMD:(–105)
Local bus command error

M7E_COM_ERROR:(–110)
Module has aborted communication.

M7E_D_ALARM_BUSY:(–117)
Diagnostics alarm was not confirmed by CPU.

M7E_D_ALARM_GEN_DISABLED:(–119)
Diagnostics alarm disabled in data record 0

Notes

General Errors

PSUB Interface

Error Codes and Messages

4-11
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7E_DP_SLAVE_STATE:(–123)
Action is not possible in the actual Slave–Status

M7E_DPX2_FAULT:(–124)
DPX2 call is stopped

M7E_GL_ALARM_DISABLED:(–122)
All alarms are disabled.

M7E_HWFAULT:(–101)
General hardware error

M7E_INVAL_DEV:(–126)
Error of Parameter

M7E_IO_DESC:(–109)
Incorrect I/O descriptor

M7E_NORM_DIAG:(–127)
Dates of diagnosis are not available

M7E_ODIS:(–120)
CPU has initiated ODIS (Output Disabled) signal.

M7E_P_ALARM_BUSY:(–116)
Process alarm has not yet been acknowledged by CPU.

M7E_P_ALARM_GEN_DISABLED:(–118)
Process alarm disabled in data record 0.

M7E_PARITY:(–106)
Local bus parity error

M7E_PEU:(–102)
Error in I/O expansion unit

M7E_QVZ:(–103)
Local bus timeout

M7E_REC_LENGTH:(–111)
Incorrect data record length

M7E_REC_NUMBER:(–112)
Incorrect data record number

Error Codes and Messages

4-12
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The following list shows the error codes returned by the S7 object server.

M7E_BIT_OFFSET:(–203)
The bit offset within a byte is incorrect.

M7E_BLOCK_ROMDIR:(–211)
Cannot read block in ROMDIR directory

M7E_LENGTH:(–208)
The length specified in the read, write or create operation is 0.

M7E_LINK_PAR:(–214)
Parameters passed in M7LinkDataAccess or
M7LinkDataAccessCB calls are incorrect.

M7E_NODIR:(–203)
The directory of S7 objects does not exist or cannot be read.

M7E_OBJ:(–200)
Object type is not supported by S7 object server.

M7E_OBJ_EXISTS:(–205)
The S7 object already exists.

M7E_OFFSET:(–202)
The offset specified in S7 object is incorrect.

M7E_OVS_WRONG_STATE:(–216)
Action is not allowed in the actual working state

M7E_PART:(–201)
The subarea specified for the object type is not available.

M7E_PART_INVALID:(–206)
Specified subarea number is invalid.

M7E_PER_BITS:(–213)
Bit addressing illegal in I/O area

M7E_SIZE:(–212)
The length information in the block header and the file length are different.

M7E_TYPE:(–207)
The specified data type is not supported.

M7E_WRITE_PROTECT:(–204)
The S7 object is write-protected.

S7 Object Server

Error Codes and Messages

4-13
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following list shows the error codes returned by the OST (Operating State
Transition) server.

M7E_OST_CPU_IN_STOP:(–306)
CPU is in STOP state.

M7E_OST_DENIED:(–308)
The requested operating state transition was denied by at least one task.

M7E_OST_ILLEGAL_PARAM_CPU:(–305)
Invalid CPU parameter

M7E_OST_MODE_SW_IN_STOP:(–304)
Operating mode selector of the module is set to STOP.

M7E_OST_NO_SUCH_FRB:(–301)
Specified TSFRB is not being processed.

M7E_OST_NO_SUCH_STATE:(–302)
Unknown operating state

M7E_OST_NO_SUCH_TRANSITION:(–300)
Unknown operating state transition

M7E_OST_TIMEOUT:(–307)
Requested operating state transition was cancelled with timeout.

M7E_OST_WRONG_STATE:(–303)
Operating state transition is not possible from present operating state.

The following list shows the error codes returned by the FC (Free Cycle) ser-
ver.

M7E_FSC_NO_SUCHCYCLE:(–400)
Unknown state

M7E_FSC_NO_SUCHFRB:(–401)
Specified FSCFRB is not being processed

The following list shows the returned Error Codes from the Diagnosis–Server.

M7E_DIAG_NUMBER:(–500)
Wrong class (only allowed 0x0a or 0x0b)

M7E_DIAG_STATE:(–501)
Wrong working state

OST Server

FC Server

Diagnosis Server

Error Codes and Messages

4-14
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The following list shows the error codes returned by the communication func-
tions.

M7E_KSUB_BLOCK_TOO_LARGE:(–604)
Specified buffer has insufficient capacity.

M7E_KSUB_CONN_ACTIVE:(–609)
The connection is active at the moment and may be not closed

M7E_KSUB_CONN_CLOSED:(–602)
Specified connection has already been closed.

M7E_KSUB_EOF:(–607)
End of file or end of directory.

M7E_KSUB_FILEIO:(–606)
Error during file handling.

M7E_KSUB_NO_SRV:(–603)
K BUS is not available.

M7E_KSUB_NO_SUCH_CONN:(–601)
Specified connection ID is invalid.

M7E_KSUB_NO_SUCH_FRB:(–605)
Specified COMMFRB is not being processed.

M7E_KSUB_PARAM:(–600)
Specified parameters are incorrect.

M7E_KSUB_REMOTE:(–608)
Execution error on remote server

M7E_KSUB_SDB_WAS_DELETED:(–611)
Connection deleted by STEP7, connection is no longer active

The following list shows the error codes which may occur during the general
processing of FRBs. The error code can be read out from the header of the
FRB using macro M7GetFRBErr .

M7E_FRB_NOT_BUSY:(–700)
Specified FRB is not being processed.

M7E_FRB_NOT_IN_LIST:(–701)
Specified FRB is not in the linked internal FRB list.

M7E_FRB_ALREADY IN_LIST:(–702)
FRB is already included

K BUS Interface

FRB Handling

Error Codes and Messages

4-15
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The following list shows the error codes which may occur during internal pro-
cessing.

M7E_INTERNAL_ERROR:(–9901)
Internal error has occurred.

M7E_NOT_IMPLEMENTED:(–9900)
Server does not exist.

4.5 Error Codes for Loadable Drivers

This section describes the error codes which can be returned by the calls for
loadable drivers. The corresponding numeric value and a brief explanation is
provided in addition to definition.

The following error codes can occur with all loadable drivers (SER8250.DRV,
3964.DRV).

RM_EIO_PARAMETER 0×0401
Parameter error

RM_EIO_INVALID_CONTROL 0×0402
The specified control function is not supported

RM_EIO_INVALID_ACCESS 0×0403
Descriptor is not open for type of access used (Read/Write)

RM_EIO_UNIT_RESERVED 0×0404
Unit is already reserved or unit was not reserved by the calling task

RM_EIO_CANCEL 0×0405
Request was canceled by RM_IOCTL_CANCEL

RM_EIO_LOCKED 0×0406
The unit has been locked by RM_IOCTL_LOCK

RM_EIO_IO_ERROR 0×0407
Request canceled due to I/O error

RM_EIO_PARITY_ERROR 0×0408
Request canceled due to parity error

RM_EIO_OVERRUN_ERROR 0×0409
Request canceled due to overrun error

RM_EIO_TIMEOUT 0×040A
Request canceled with timeout

RM_EIO_INVALID_STATE 0 ×040B
An error has occurred during status check of the controller (e.g. parity)

Internal Errors

Error Codes

Error Codes and Messages

4-16
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RM_EIO_NO_HARDWARE 0×040C
Hardware does not exist or is defective

RM_EIO_INIT_FAILED 0 ×040D
Initialization of the unit was not possible

RM_EIO_UNIT_RESET 0×040E
Request canceled by RM_IOCTL_RESET

The following messages can occur as return values

RM_IO_QUEUED��1024
Request appended to queue

RM_IO_IN_PROGRESS �1025
Request currently being processed

RM_IO_NO_DATA��1026
No data exist

The following errors can also occur with the 3964(R) driver (3964.DRV):

RM_EIO_3964_NO_TIMER 0x480
No timer could be started

RM_EIO_3964_BUFFER_OVERFLOW 0x481
More data were received than specified in the read request

RM_EIO_3964_UNEXPECTED_CHARACTER 0x482
Unexpected character received

RM_EIO_3964_CHECKSUM_ERROR 0x483
Error in checksum (with 3964R protocol)

RM_EIO_3964_REQUEST_SUSPENDED 0x484
The request was terminated because of an initiation conflict (master and slave
transmitting simultaneously)

RM_EIO_3964_CONNECTION_REFUSED 0x485
Reserved

RM_EIO_3964_TRANSFER_ABORT 0x486
The communication partner has canceled the transfer (send or receive) with
NACK

RM_EIO_3964_READ_CANCELED 0x487
Read request canceled with RM_IOCTL_CANCEL

RM_EIO_3964_WRITE_CANCELED 0x488
Write request canceled with RM_IOCTL_CANCEL

Notes

Error Codes for
3964(R) Driver

Error Codes and Messages

4-17
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

4.6 Error codes of C Runtime Library

Error messages of the C runtime library (CRUN) are output as follows:

*** crun: <date> <time>, <error message>
caused by task id: <taskid>: ’<taskname>’

<date> Date on which error occurred
<time> Time at which error occurred
<error message> Actual error message
<taskid> ID of task which caused error
<taskname> String used to enter the task which caused the error in the re-

source catalog

Example:

*** crun: 20–OCT–94 17:32:20, sin not configured – task aborted
caused by task id: 0x23: ’FLTTEST’

The error messages are also output on the system console.

Error messages of the C runtime library (CRUN)

<function>: cannot allocate memory
No more memory could be allocated for internal operations in CRUN function
<function>.

<function> not configured – task aborted
Function <function> was called by a downloadable task, but is not config-
ured for the interface for downloadable tasks. The calling task was terminated
with exit.

<function>: unknown hsfs return value xxxx
An HSFS call was terminated with the (unexpected) error code xxxx in CRUN
function <function> .

automatic xinitc failed – task aborted
The automatic initialization of CRUN (see also xinitc) failed. The task
which caused the automatic CRUN initialization was aborted with exit.

automatic xinitt failed – task aborted
The automatic initialization of a task within CRUN (see also xinitt) failed.
The task which caused the automatic CRUN initialization was aborted with
exit.

catalog entry “ERRLOG” not found
The “ERRLOG” entry was not found in the resource catalog. CRUN can there-
fore not use the error logger task for error output. Instead, it outputs error mes-
sages on the system console via the BYT driver.

Structure of Error
Messages

Error Messages

Error Codes and Messages

4-18
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

fclose: cannot delete temporary file
A temporary file created with tmpfile could not be deleted when closing with
fclose.

illegal function code xxxx – task aborted
The invalid function code xxxx was passed to the interface for downloadable
tasks. The calling task was terminated with exit.

reserved function code xxxx – task aborted
The reserved function code xxxx was passed to the interface for downloadable
tasks. The calling task was terminated with exit.

Error Codes and Messages

4-19
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

4.7 Error Codes of the Socket Interface

This section describes the error codes which can be returned by the calls of the
Socket Interface. The corresponding numeric value and a brief explanation is
provided in addition to definition. In addition standard error codes of the C
Runtime Library may be assigned to errno(see description of errno).

EWOULDBLOCK 61
The sockt is in nonblocking mode and the function cannot be executed

EINPROGRESS 62
The call is now in progress

EALREADY 63
Operation already in progress

EDESTADDRREQ 64
A destination address is required

EMSGSIZE 65
Message too long

EPROTOTYPE 66
Wrong protocol type for socket

ENOPROTOOPT 67
Protocol not available

EPROTONOSUPPORT 68
Protocol not ksupported

ESOCKNOSUPPORT 69
Socket type not supported

EOPNOTSUPP 70
Operation not supported on socket

EPFNOSUPPORT 71
Protocol family not supported

EAFNOSUPPORT 72
Address family not supported

EADDRINUSE 73
Port number or address already in use

EADDRNOTAVAIL 74
Wrong IP address

ENETDOWN 75
Driver not correctly initialised

ENETUNREACH 76
Network is unreachable

Error Codes and Messages

4-20
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

ENETRESET 77
Network has been reset and connection has been released

ECONNABORTED 78
Die Verbindung ist abgebaut.

ECONNRESET 79
Connection reset by peer

ENOBUFS 80
No more memory available for another socket or another connection

EISCONN 81
Socket is already connected.

ENOTCONN 82
Socket is not connected.

ESHUTDOWN 83
Can’t send after socket shutdown

ETOOMANYREFS 84
Too many references

ETIMEDOUT 85
Connection timed out

ECONNREFUSED 86
Connection refused

EBUFTOOSMALL 87
Buffer too small for this operation

ESMODEXISTS 88
Socket module already exists

ENOTSOCK 89
The socket operation on non-socket.

EDEADLOCK 90
Deadlock

EHOSTDOWN 91
Communication host not active

EHOSTUNREACH 92
Communication host unrachable

ENOURGENTDATA 93
No urgent data available

EMAYBEISO 95
Invalid protocol on peer

Error Codes and Messages

5-1
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7 API

Call Brief Description Page

M7_SWAP_DWORD Convert doubleword from Intel to SIMATIC
representation and vice-versa

5-7

M7_SWAP_WORD Convert word from Intel to SIMATIC represen-
tation and vice-versa

5-8

M7BUBCycRead Set up job for cyclical read 5-9

M7BUBCycReadDelete Delete job for cyclical read 5-12

M7BUBCycReadStart Start job for cyclical read 5-13

M7BUBCycReadStop Stop job for cyclical read 5-14

M7BUBRead Read MMI variable 5-15

M7BUBWrite Write MMI variable 5-17

M7CheckResource Check battery and SRAM 5-19

M7ClearPI Clear process image 5-20

M7ConfirmCycle Confirm FC server message 5-21

M7ConfirmDiagAlarm Confirm diagnostics alarm 5-22

M7ConfirmIOAlarm Confirm process alarm 5-24

M7ConfirmPeriodicTimer Confirm periodic time message 5-26

M7ConfirmTransition Confirm message for operating state transition 5-27

M7ConfirmZSAlarm Confirm message for ZS alarm 5-28

M7CreateObject Create an S7 object 5-29

M7DeleteObject Delete S7 object from working memory and
delete BACKDIR

5-31

M7DiagMode Link or unlink diagnostics 5-32

M7DPNormDiagnose Get standard diagnostics for a DP slave 5-34

M7GetCBBitOffset Get bit offset within a callback function 5-35

M7GetCBBuffer Get buffer address within a callback function 5-36

M7GetCBByteOffset Get byte offset within a callback function 5-37

M7GetCBCount Get number of elements within a callback func-
tion

5-38

M7GetCBDataType Get data type within a callback function 5-39

M7GetCBFlags Get access type within a callback function 5-40

In this chapter

5

5-2
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Call PageBrief Description

M7GetCBObjType Get type identifier of S7 object within a callback
function

5-41

M7GetCBPart Get the subarea number of the S7 object within
a callback function

5-42

M7GetCommRcvLen Get length of received data after M7PBKBrcv
call

5-43

M7GetCommRequest Get job number 5-44

M7GetCommStatus Check return state of an application link 5-45

M7GetConnStatus Scan status of an application link 5-47

M7GetDiagAlarmAddr Read logical base address for diagnostics alarm
from FRB

5-48

M7GetDiagAlarmBusy Check status of a diagnostics alarm from M7/S7
CPU

5-49

M7GetDiagAlarmInfo Read diagnostics information from FRB 5-50

M7GetDiagAlarmPType Read identifier for the signal module of a diag-
nostics alarm from FRB

5-51

M7GetFlags Read registered access type from FRB 5-52

M7GetFRBErrCode Read FRBs 5-53

M7GetFRBTag Read identifier of an FRB 5-54

M7GetFSCType Read type of FC server message from FRB 5-55

M7GetIOAlarmAddr Read logical base address for process alarm
from FRB

5-56

M7GetIOAlarmBusy Check status of a process alarm from M7/S7
CPU

5-57

M7GetIOAlarmMask Read alarm mask for a process alarm from FRB5-58

M7GetIOAlarmState Read supplementary information for a process
alarm from FRB

5-59

M7GetIOAlarmPType Read identifier for the signal module of a pro-
cess alarm from FRB

5-60

M7GetLostPeriods Check number of periodic time messages lost 5-61

M7GetObjectInfo Read information about data structure of an S7
object

5-62

M7GetObjType Get type identifier for S7 object access 5-63

M7GetPart Get subarea number for S7 object access 5-64

M7GetPduSize Check maximum PDU size 5-65

M7GetPeriod Get multiple of time base from TFRB 5-66

M7GetPIErrorAddr Get type of prozess image with transfer error 5-67

M7GetPIErrorPIType Get address of prozess type identifier with
transfer error

5-68

M7GetResetCause Query cause of reset 5-69

M7GetState Check operating state 5-70

M7 API

5-3
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Call PageBrief Description

M7GetTime Read out date/time 5-71

M7GetTimeBase Get time base from TFRB 5-72

M7GetTSReason Read reason for operating state/transition from
FRB

5-73

M7GetTSType Read operating state from an FRB 5-74

M7GetZSAlarmAddr Get base address of an I/O module 5-76

M7GetZSAlarmIdent Get identifier of an I/O module 5-77

M7GetZSAlarmIMRBaddr Get number of rack registered for a ZS alarm 5-78

M7GetZSAlarmMode Get mode of an I/O module 5-79

M7GetZSAlarmPType Get I/O type of an I/O module 5-80

M7InitAPI nitialize M7 API 5-81

M7InitISADesc Create I/O descriptor from logical address 5-82

M7KAbort Close an application link 5-83

M7KEvent Fetch data of asynchronous messages 5-84

M7KInitiate Set up application link for communication via
communication bus/MPI

5-86

M7KPassword Password for functions with special protection
level

5-87

M7KReadTime Read time 5-88

M7KWriteTime Set time 5-89

M7LinkBatteryFailure Initialize FRB for battery monitoring and regis-
ter on OST server

5-90

M7LinkCycle Initialize FRB and register on FC server 5-91

M7LinkDataAccess Link S7 object for access information via mes-
sage

5-92

M7LinkDataAccessCB Link callback function for S7 access 5-94

M7LinkDate Link time-controlled time message 5-96

M7LinkDiagAlarm Link diagnostics alarm for handling 5-97

M7LinkIOAlarm Link process alarm for handling 5-98

M7LinkOneShotTimer Link one-shot time message 5-100

M7LinkPeriodicTimer Link periodic time message 5-102

M7LinkPIError Initialize FRB for prozess image transfer error 5-104

M7LinkState Request message on specific operating state 5-105

M7LinkTransition Request message on specific operating state
transition

5-106

M7LinkZSAlarm Link message on insert/remove module event 5-108

M7LoadBit Load bit from process image 5-110

M7LoadByte Load byte from process image 5-111

M7LoadDirect Read I/O area directly 5-112

M7 API

5-4
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Call PageBrief Description

M7LoadDirectByte Read byte direct from I/O 5-114

M7LoadDirectDWord Read doubleword direct from I/O 5-115

M7LoadDirectWord Read word direct from I/O 5-116

M7LoadDWord Load doubleword from process image 5-117

M7LoadISAByte Read byte direct from ISA bus I/O 5-118

M7LoadISADWord Read doubleword direct from ISA bus I/O 5-119

M7LoadISAWord Read word direct from ISA bus I/O 5-120

M7LoadPII Update process image of inputs 5-121

M7LoadRecord Read data record from signal module 5-122

M7LoadRecordEx Read data record from signal module 5-124

M7LoadWord Load word from process image 5-126

M7LocateObject Change start address of an S7 object 5-127

M7OVSCompress Object management system compress 5-128

M7OVSDelete Delete blocks via object management system 5-129

M7OVSFindFirst Read out first entry from object management
system directory

5-131

M7OVSFindNext Resume reading of object management system
directory

5-134

M7OVSLinkIn Object management system link-in 5-135

M7OVSMemMode Object management system set memory mode 5-136

M7OVSRead Object management system load 5-137

M7OVSSetObjectHeader Set an S7 object header 5-139

M7OVSWrite Object management system copy 5-141

M7PBKBrcv Block-oriented receive data via configured con-
nections

5-143

M7PBKBsend Block-oriented send via configured connections5-145

M7PBKCancel Cancel running send or receive job via config-
ured connections

5-147

M7PBKGet Start asynchronous variable reading via config-
ured connections

5-148

M7PBKIAbort Close an application link 5-150

M7PBKIGet Start asynchronous variable reading 5-151

M7PBKIPut Start asynchronous variable writing 5-153

M7PBKPrint Send data with a format description 5-155

M7PBKPut Start asynchronous variable writing via PBK 5-157

M7PBKResume Resume PBK 5-159

M7PBKStart PBK start (cold start) 5-160

M7PBKStatus Get virtual device status 5-161

M7PBKStop Request PBK stop 5-162

M7 API

5-5
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Call PageBrief Description

M7PBKURcv Uncoordinated receive via configured connec-
tions

5-163

M7PBKUSend Uncoordinated send via configured connections5-165

M7PBKXAbort Close an application link 5-167

M7PBKXCancel Cancel running receive request 5-168

M7PBKXGet Asynchronous variable reading 5-169

M7PBKXPut Start asynchronous variable writing 5-171

M7PBKXRcv Receive data 5-173

M7PBKXSend Send data 5-175

M7Read Read S7 data area 5-178

M7ReadBit Read bit from S7 object 5-180

M7ReadByte Read byte from S7 object 5-181

M7ReadDWord Read doubleword from S7 object 5-182

M7ReadReal Read floating point number from S7 object 5-183

M7ReadWord Read word from S7 object 5-184

M7RelocateObject Pass S7 object to object server 5-185

M7RemoveObject Delete S7 object from BACKDIR or ROMDIR 5-186

M7RequestState Request operating state change 5-187

M7RetriggerCycle Retrigger cycle time 5-189

M7SendDiagAlarm Send diagnostics alarm to S7 CPU 5-190

M7SendIOAlarm Send process alarm to S7 CPU 5-191

M7SetFRBTag Set identifier of an FRB 5-192

M7SetTime Set date and time 5-193

M7SetUserLED Control user (USR) LEDs 5-194

M7StoreBit Set bit state in process image 5-195

M7StoreByte Overwrite byte in process image 5-196

M7StoreDirect Write data direct to I/O area 5-197

M7StoreDirectByte Write byte direct to I/O 5-198

M7StoreDirectDWord Write doubleword direct to I/O 5-199

M7StoreDirectWord Write word direct to I/O 5-200

M7StoreDWord Write doubleword to process image 5-201

M7StoreISAByte Write byte direct to ISA bus I/O 5-202

M7StoreISADWord Write doubleword direct to ISA bus I/O 5-203

M7StoreISAWord Write word direct to ISA bus I/O 5-204

M7StoreObject Store S7 object in BACKDIR or ROMDIR 5-205

M7StorePIQ Update output signals 5-206

M7StoreRecord Transfer data record to a signal module 5-207

M7 API

5-6
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Call PageBrief Description

M7StoreWord Overwrite word in process image 5-209

M7SZLRead Read system state list 5-210

M7UnLinkBatteryFailure Unlink FRB for battery alarm 5-212

M7UnLinkCycle Unlink FRB on FC server 5-213

M7UnLinkDataAccess Unlink S7 object for access information via
message

5-214

M7UnLinkDataAccessCB Unlink callback function call for S7 object ac-
cess

5-215

M7UnLinkDate Unlink time-controlled time message 5-216

M7UnLinkDiagAlarm Unlink diagnostics alarm 5-217

M7UnLinkIOAlarm Unlink process alarm 5-218

M7UnLinkOneShotTimer Unlink one-shot time message 5-219

M7UnLinkPeriodicTimer Unlink periodic time message 5-220

M7UnLinkPIError FRB für Prozeßabbildtransferfehler initialisieren5-221

M7UnLinkState Unlink message about specific operating state 5-222

M7UnLinkTransition Unlink message about specific operating state
transition

5-223

M7UnLinkZSAlarm Unlink message about insert/remove module
alarm

5-224

M7Write Write user data to S7 data area 5-225

M7WriteBit Set bit in S7 object 5-227

M7WriteByte Overwrite byte in S7 object 5-228

M7WriteDiagnose Write entry to diagnostics buffer 5-229

M7WriteDWord Overwrite doubleword in S7 object 5-230

M7WriteReal Overwrite floating point number in S7 object 5-231

M7WriteWord Overwrite word in S7 object 5-232

M7 API

5-7
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7_SWAP_DWORD

Convert doubleword from Intel to SIMATIC representation and vice-
versa

#include <m7api.h>
UDWORD M7_SWAP_DWORD(UDWORD x);

Parameter Name Meaning

x Doubleword (M7 data type DWORD, 32 bits) in Intel or
SIMATIC representation

The function converts a doubleword (M7 data type DWORD) from the Intel
representation to a doubleword in SIMATIC representation (Motorola format)
and vice-versa.

The call is implemented as a macro. No type checking is performed on the
input parameter.

Doubleword in Intel representation if input parameter in SIMATIC represen-
tation

Doubleword in SIMATIC representation if input parameter in Intel represen-
tation

M7_SWAP_WORD

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7_SWAP_DWORD

5-8
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7_SWAP_WORD

Convert word from Intel to SIMATIC representation and vice-versa

#include <m7api.h>
UWORD M7_SWAP_WORD(UWORD x);

Parameter Name Meaning

x Doubleword (M7 data type DWORD, 32 bits) in Intel or
SIMATIC representation

The function converts a doubleword (M7 data type DWORD) from the Intel
representation to a doubleword in SIMATIC representation (Motorola format)
and vice-versa.

The call is implemented as a macro. No type checking is performed on the
input parameter.

Doubleword in Intel representation if input parameter in SIMATIC represen-
tation

Doubleword in SIMATIC representation if input parameter in Intel represen-
tation

M7_SWAP_DWORD

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7_SWAP_WORD

5-9
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7BUBCycRead

Set up job for cyclical read

#include <m7api.h>
M7ERR_CODE M7BUBCycRead(

UDWORD flags,
M7CONNID ConnID,
M7COMMFRB_PTR pCommFRB,
UBYTE nVars,
M7VARADDR_PTR pAddrBuffer,
M7VARDATA_PTR pDataBuffer,
UDWORD CycTime,
UDWORD *pnRequest
unsigned int MPrio);

Parameter Name MeaningÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

flags
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Flags

A_IMMEDIATE If this flag is set, the job is started im-
mediately, otherwise the registered
job must be started explicitly with
M7BUBCycReadStart .

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pCommFRB ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to a function request block for asynchronous commu-
nication.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

nVars ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Number of variables to be read, that is items in the address
buffer.ÑÑÑÑÑÑÑ

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pAddrBuffer
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to an array with nVars elements. Each element is type
M7VARADDR and specifies a contiguous area of items
within an S7 object (see Chapter 3).

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pDataBuffer ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to an array with nVars elements. Each element is type
M7VARDATA and specifies a buffer (address, size, etc.)
for storing a variable (see Chapter 3).

The individual buffers must be initialized in the global data
or the heap before the above call is activated.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

CycTime ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Cycle time in ms. The following cycle times are possible:

0.1s, 0.2s, 0.3s, 0.4s, 0.5s, 0.6s, 0.7s, 0.8s, 0.9s,

1s, 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s,

10s, 20s, 30s, 40s, 50s, 60s, 70s, 80s, 90s.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pnRequest ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to the job number returned.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

MPrio ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Priority with which the message is dispatched (0–255).

Function

Syntax

Parameters

M7 API M7BUBCycRead

5-10
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The M7BUBCycRead function sets up an MMI job for cyclical reading. The
variable specification is stored in the address buffer and matches the specifi-
cation in M7BUBRead. The data are transmitted asynchronously to the ap-
plication.

The following conditions for the maximum user data length apply to the
M7BUBCycRead call:

�(4 � nBytes(i)) � maxpdusize –28
i=1

nVars

0 � maxpdusize –26 – 12 * nVars

and

maxpdusize is the maximum PDU size for the connection opened with M7KI-
nitiate and nBytes(i) is the number of bytes for the i-th variable, rounded to
the nearest even number.

The application is informed about new data by the M7MSG_BUB_NRD
message, and can fetch the data with M7KEvent .

= M7SUCCESS The function was successfully executed (see Note).

< M7SUCCESS An error occurred.

The return value M7SUCCESS does not guarantee that the whole read proce-
dure was executed successfully. Additional information on the reset of the
individual data transfer can be found in the component AccessResult in
the structure M7VARDATA .

Error Codes Meaning

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_BLOCK_TOO_LARGE Insufficient buffer capacity

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7E_LENGTH Incorrect length

M7E_NO_MEM No more memory available

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating
mode

M7E_PAR Parameter error

M7E_PART Subarea not available

Description

Return Value

Note

Error Codes

M7 APIM7BUBCycRead

5-11
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Codes Meaning

M7E_PER_BITS Bit addressing not permitted in I/O
area

M7E_PRIO Incorrect priority

M7E_TYPE Data type is invalid

M7BUBCycReadDelete, M7BUBCycReadStart, M7BUBCycReadStopSee Also

M7 API M7BUBCycRead

5-12
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7BUBCycReadDelete

Delete job for cyclical read

#include <m7api.h>
M7ERR_CODE M7BUBCycReadDelete(

M7CONNID ConnID,
UDWORD nRequest);

Parameter Name Meaning
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

nRequest
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Job number from M7BUBCycRead

The M7BUBCycReadDelete function deletes an MMI job for cyclical
reading set up with M7BUBCycRead.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7BUBCycRead, M7BUBCycReadStart, M7BUBCycReadStop

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7BUBCycReadDelete

5-13
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7BUBCycReadStart

Start job for cyclical read

#include <m7api.h>
M7ERR_CODE M7BUBCycReadStart(

M7CONNID ConnID,
UDWORD nRequest);

Parameter Name Meaning
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

nRequest
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Job number from M7BUBCycRead

The M7BUBCycReadStart function starts an MMI job for cyclical reading
set up with M7BUBCycRead.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7BUBCycRead, M7BUBCycReadDelete, M7BUBCycReadStop

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7BUBCycReadStart

5-14
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7BUBCycReadStop

Stop job for cyclical read

#include <m7api.h>
M7ERR_CODE M7BUBCycReadStop(

M7CONNID ConnID,
UDWORD nRequest);

Parameter Name Meaning
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

nRequest
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Job number from M7BUBCycRead

The M7BUBCycReadStop function stops an MMI job for cyclical reading
started with M7BUBCycRead or M7BUBCycReadStart .

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7BUBCycRead, M7BUBCycReadDelete, M7BUBCycReadStart

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7BUBCycReadStop

5-15
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7BUBRead

Read MMI variable

#include <m7api.h>
M7ERR_CODE M7BUBRead(

M7CONNID ConnID,
UBYTE nVars,
M7VARADDR_PTR pAddrBuffer,
M7VARDATA_PTR pDataBuffer,
UDWORD *pnBytes);

Parameter Name MeaningÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call.ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

nVars
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Number of variables to be read, that is items in the address
buffer.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pAddrBuffer
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to an array with nVars elements. Each element is type
M7VARADDR and specifies a contiguous area of items
within an S7 object (see Chapter 3).

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pDataBuffer ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to an array with nVars elements. Each element is type
M7VARDATA and specifies a buffer (address, size, etc.)
for storing a variable.

The individual buffers must be initialized in the global data
or the heap before the above call is initiated.

pnBytes Pointer to variable. This variable returns the number of bytes
actually read.

The M7BUBRead function starts a synchronous call for reading the variables
specified in the pAddrBuffer address array into the data buffer specified in
the pDataBuffer array.

The following conditions for the maximum user data length apply to the
M7BUBRead call:

�(4 � nBytes(i)) � maxpdusize –14
i=1

nVars

0 � maxpdusize –12 * (nVars � 1)

and

maxpdusize is the maximum PDU size for the connection opened with M7KI-
nitiate and nBytes(i) is the number of bytes for the i-th variable, rounded to
the nearest even number.

Function

Syntax

Parameters

Description

M7 API M7BUBRead

5-16
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

= M7SUCCESS The function was successfully executed (see Note).

< M7SUCCESS An error occurred.

The return value M7SUCCESS does not guarantee that the whole read proce-
dure was executed successfully. Additional information on the reset of the
individual data transfer can be found in the component AccessResult in
the structure M7VARDATA .

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_BLOCK_TOO_LARGE Insufficient buffer capacity

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7E_LENGTH Incorrect length

M7E_NO_MEM No more memory available

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating
mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O
area

M7E_TYPE Data type is invalid

M7BUBWrite

Return Value

Note

Error Codes

See Also

M7 APIM7BUBRead

5-17
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7BUBWrite

Write MMI variable

#include <m7api.h>
M7ERR_CODE M7BUBWrite(

M7CONNID ConnID,
UBYTE nVars,
M7VARADDR_PTR pAddrBuffer,
M7VARDATA_PTR pDataBuffer);

Parameter Name Meaning

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

nVars ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Number of variables to be written.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pAddrBuffer ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to an array with nVars elements. Each element is type
M7VARADDR and specifies the data type, the block type,
the block number and the start offset of the variables to be
overwritten in the data area of the S7 object server (M7) or in
the S7 CPU data area.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pDataBuffer ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to an array with nVars elements. Each element is type
M7VARDATA and specifies a buffer (address, size, etc.)
for storing a value with which the variable in the data area of
the S7 object server (M7) or in the S7 CPU data area is to be
overwritten.

The M7BUBWrite function starts a synchronous call for overwriting the
variables specified in the pAddrBuffer address array with the values specified
indirectly in the pDataBuffer data array.

The address and data specifications match those of M7BUBRead.

The following conditions for the maximum user data length apply to the
M7BUBWrite call:

maxpdusize is the maximum PDU size for the connection opened with M7KI-
nitiate and nBytes(i) is the number of bytes for the i-th variable, rounded to
the nearest even number.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Function

Syntax

Parameters

Description

�(4 � nBytes(i)) � maxpdusize –12 * (nVars� 1)
i=1

nVars

Return Value

M7 API M7BUBWrite

5-18
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The return value M7SUCCESS does not guarantee that the whole write pro-
cedure was executed successfully. Additional information on the reset of the
individual data transfer can be found in the component AccessResult in
the structure M7VARDATA .

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7E_LENGTH Incorrect length

M7E_NO_MEM No more memory available

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating
mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O
area

M7E_TYPE Data type is invalid

M7BUBRead

Note

Error Codes

See Also

M7 APIM7BUBWrite

5-19
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7CheckResource

Check battery and SRAM

#include <m7api.h>
M7ERR_CODE M7CheckResource (UWORD *pFlags);

Parameter Name BedeutungÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pFlags
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to flags.

M7SRAM_OK SRAM is free of er-
ror

M7BATTERY_OK There is at least one
battery free of error

M7BATTERY_CHARGE_OK All batteries are free
of error

If one of the bits is not set, the corresponding resource has an
error.

The M7CheckResource function is used to check the SRAM and battery.

The battery back–up for a M7 300 CPU/FM is on the module (one battery),
for a M7 400 CPU it is on the power supply of the central rack (two batter-
ies).

M7VARDATA The M7CheckResource function is not supplied on a FM
456–4. M7CheckResource returns on a FM 456–4 always BATTERY_OK.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Function

Syntax

Parameters

Description

Note

Return Value

M7 API M7CheckResource

5-20
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7ClearPI

Clear process image

#include <m7api.h>
M7ERR_CODE M7ClearPI(UWORD PIType);

Parameter Name Meaning

PIType Identifiers for process images:

M7IO_PII Process image of inputs

M7IO_PIQ Process image of outputs

The function resets the entire process image specified by the PIType parame-
ter to ’0’.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_PAR Incorrect PIType

M7LoadPII, M7StorePIQ

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7ClearPI

5-21
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7ConfirmCycle

Confirm FC server message

#include <m7api.h>
M7ERR_CODE M7ConfirmCycle(

M7FSCFRB_PTR pFSCFRB);

Parameter Name Meaning

pFSCFRB Pointer to the FRB which is to be confirmed.

The function confirms a message of the type M7MSG_CYCLE. The FC
server waits for all registered FRBs to be confirmed.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_FSC_NO_SUCH_CYCLE Unknown state

M7E_FSC_NO_SUCH_FRB FSCFRB is not registered

M7E_FRB_NOT_BUSY Specified FRB is not being processed

M7LinkCycle, M7UnLinkCycle

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7ConfirmCycle

5-22
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7ConfirmDiagAlarm

Confirm diagnostics alarm

#include <m7api.h>
M7ERR_CODE M7ConfirmDiagAlarm(

M7DIAGALARM_FRB_PTR pDAFRB);

Parameter Name Meaning

pDAFRB Pointer to the FRB of the diagnostics alarm to be confirmed.

The function confirms a diagnostics alarm.

When a diagnostics alarm has occurred, a new diagnostics alarm cannot be
received by the initiating module until the currently registered diagnostics
alarm has been confirmed. Diagnostics events which occur in the mean time
are stored on the module.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Addressed module does not exist or has not initia-
ted alarm

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DPX2_FAULT Error in DP job for alarm confirmation

M7E_SLAVE_TYPE Alarms from DP standard slaves do not have to be
confirmed

M7E_DP_SLAVE_STATE DP–SLAVE is not in DATA state

M7E_INVAL_DEV Module of a DP–Slaves is not available

Further error messages can be stored in the FRB of the registered diagnostics
alarm. These can be read out with the following C macro:

error = M7GetFRBErrCode(pDiagFrb);

Function

Syntax

Parameters

Description

Return Value

Error Codes

Additional Error
Messages in FRB

M7 APIM7ConfirmDiagAlarm

5-23
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The error variable must be of the type M7ERR_CODE.

The meaning of the FRB error messages is listed in the following table.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7LinkDiagAlarm, M7GetDiagAlarmAddr, M7GetDiagAlarmBusy,
M7GetDiagAlarmInfo,M7GetDiagAlarmPT ype, M7UnlinkDiagAlarm

Error Codes

See Also

M7 API M7ConfirmDiagAlarm

5-24
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7ConfirmIOAlarm

Confirm process alarm

#include <m7api.h>
M7ERR_CODE M7ConfirmIOAlarm(

M7IOALARM_FRB_PTR pPAFRB);

Parameter Name Meaning

pPAFRB Pointer to the FRB of the alarm to be confirmed.

The function confirms a process alarm.

When a process alarm has occurred, a new process alarm cannot be received
from the same module until the currently registered process alarm has been
confirmed. Process alarms which occur in the mean time are stored on the
module.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Addressed module does not exist or has not initia-
ted alarm

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DPX2_FAULT Error in DP job for alarm confirmation

M7E_DP_SLAVE_STATE DP–SLAVE is not in DATA state

M7E_INVAL_DEV Module of a DP–Slaves is not available

Further error messages can be stored in the FRB of the registered process
alarm. These can be read out with the following C macro:

error = M7GetFRBErrCode(pIOFrb);

The error variable must be of the type M7ERR_CODE.

The meaning of the FRB error messages is listed in the following table.

Function

Syntax

Parameters

Description

Return Value

Error Codes

Additional Error
Messages in FRB

M7 APIM7ConfirmIOAlarm

5-25
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7LinkIOAlarm, M7GetIOAlarmAddr, M7GetIOAlarmMask,
M7GetIOAlarmState, M7GetIOAlarmPType, M7UnLinkIOAlarm

Error Codes

See Also

M7 API M7ConfirmIOAlarm

5-26
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7ConfirmPeriodicTimer

Confirm periodic time message

#include <m7api.h>
VOID M7ConfirmPeriodicTimer(M7TFRB_PTR pTFRB);

Parameter Name Meaning

pTFRB Pointer to the FRB used to register the periodic time message.

The call confirms a periodic time message. If confirmation is configured
when registering an FRB for periodic time messages, the time server does not
send a new time message until the previous one has been confirmed.

The call is implemented as a C macro. The system does not check whether
the pointer pTFRB references a valid FRB.

The number of lost time messages can be checked with the M7GetLost-
Periods function.

M7LinkPeriodicTimer, M7UnLinkPeriodicTimer, M7GetLostPeriods

Function

Syntax

Parameters

Description

See Also

M7 APIM7ConfirmPeriodicTimer

5-27
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7ConfirmTransition

Confirm message for operating state transition

#include <m7api.h>
M7ERR_CODE M7ConfirmTransition(

M7TSFRB_PTR pTSFRB,
BOOL AllowTransition);

Parameter Name Meaning

pTSFRB Pointer to the FRB to be confirmed.

AllowTransition This flag can be used to inhibit the transition to STARTUP or
RUN. To suppress the transition after STARTUP or RUN,
pass FALSE, otherwise pass TRUE.

The function confirms a message of the type M7MSG_TRANSITION.

The OST server does not change to the new operating state until all tasks
registered by the FRB for the new operating state transition have been con-
firmed.

On request of all operating states except for STARTUP and RUN, the operat-
ing state transition is performed regardless of whether TRUE or FALSE was
specified in the AllowTransition parameter. Confirmation must always take
place, however.

When the STOP-to-STARTUP transition is rejected (M7ConfirmTransition(..
AllowTransition=FALSE), then no M7MSG_STATE message is issued upon
reaching the STARTUP state.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_OST_NO_SUCH_TRANSITION Unknown operating state transition
in FRB

M7E_OST_NO_SUCH_FRB FRB is not being processed

M7GetTSReason, M7GetTSType, M7LinkTransition, M7UnLinkTransi-
tion

Function

Syntax

Parameters

Description

Note

Return Value

Error Codes

See Also

M7 API M7ConfirmTransition

5-28
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7ConfirmZSAlarm

Confirm insert/remove–module alarm

#include <m7api.h>
M7ERR_CODE M7ConfirmZSAlarm(

M7ZSALARM_FRB_PTR pZSFRB);

Parameter Name Meaning

pZSFRB Pointer ro insert/remove FRB

M7ConfirmZSAlarm confirms an insert/remove–module alarm.

The M7ConfirmZSAlarm function must be called up by the user after eval-
uation of the insert/remove–module information, so that the FRB allocated
by the system with the insert/remove–module alarm can be released again.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_FRB_NOT_IN_LIST Specified FRB is not in the linked internal FRB list.

M7GetZSAlarmAddr, M7GetZSAlarmIdent,
M7GetZSAlarmIMRBaddr, M7GetZSAlarmMode,
M7GetZSAlarmPType, M7LinkZSAlarm, M7UnLinkZSAlarm

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7ConfirmZSAlarm

5-29
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7CreateObject

Create an S7 object

#include <m7api.h>
M7ERR_CODE M7CreateObject(

UBYTE ObjType,
UWORD Part,
UWORD Count,
VOID_PTR Ptr);

Parameter Name Meaning

ObjType Identifier for S7 object. which can be set up by the user pro-
gram on an M7 are listed in Table 2-7.

Part Subarea number. The permissible values are listed in Table
2-8.

Count Number of elements of which the S7 object is to consist;
indirectly defines the length of the S7 object., this value has
always to be even.

Ptr Pointer to the memory area for the execution-related part of
the object.

If the value NUL is specified for Ptr, the object server allo-
cates the memory for the object independently.

The function creates an S7 object described by the above parameters. The
object is subsequently linked automatically.

You can define the memory for the object yourself, or leave the memory al-
location to the object server. If you define the memory yourself, you should
make sure that there is sufficient capacity for the desired object.

When you create a data block, you can use the numbers (part parameter) 0 to
65535. The area for the numbers is not limited by the numeric range per-
mitted on the S7 CPU.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_LENGTH Incorrect length or even number of bytes.

M7E_NO_MEM Working memory allocated or error on me-
mory request.

Function

Syntax

Parameters

Description

Note

Return Value

Error Codes

M7 API M7CreateObject

5-30
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

M7E_OBJ Object type not supported.

M7E_OBJ_EXISTS Block already exists.

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PART Subarea does not exist.

M7E_RESOURCE_LIMIT Resources exceeded.

M7E_REM_OBJ Illegal action because the object is retentive

M7StoreObject, M7DeleteObject, M7RemoveObject, M7LocateObjectSee Also

M7 APIM7CreateObject

5-31
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7DeleteObject

Delete S7 object from working memory and delete BACKDIR

#include <m7api.h>
M7ERR_CODE M7DeleteObject(

UBYTE ObjType,
UWORD Part);

Parameter Name Meaning

ObjType Identifier for S7 object.
The identifiers of possible S7 objects are listed in Table 2-7.

Part Subarea number.
The subarea numbers of the S7 objects are listed in Table
2-8.

The function deletes an S7 object described by ObjType and Part from the
working memory and from the BACKDIR catalog.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_OBJ Object type not supported.

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PART Subarea does not exist.

M7E_REM_OBJ Illegal action because the object is retentive

M7E_WRITE_PROTECT Object write-protected.

M7CreateObject, M7LocateObject, M7RemoveObject, M7StoreObject

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7DeleteObject

5-32
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7DiagMode

Link or unlink diagnostics

#include <m7api.h>
M7ERR_CODE M7DiagMode(

UDWORD flags,
M7CONNID ConnID,
M7COMMFRB_PTR pCommFRB,
UBYTE_PTR pszUserName
unsigned int MPrio);

Parameter Name MeaningÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

flags
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Flags

A_BESYMSG Operating system diagnostics mes-
sage

A_SYSMSG System diagnostics message

A_USERMSG User-defined diagnostics message

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pCommFRB
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Function request block for asynchronous communication
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pszUserName
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

The application uses this string (max. 8 bytes) to identify
itself to the server

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

Mprio ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Priority with which the message was dispatched (0–255).

The M7DiagMode function is used to reset the diagnostics filter of the user.
An application can register itself for the appropiate diagnostics messages
using the flags A_BESYMSG, A_SYSMSG and A_USERMSG, which are
sum-totalled. Disabled flags indicate deregistration.

Incoming messages are indicated by M7MSG_DIAG_MSG.

When an M7MSG_DIAG_MSG is received, the job number for the current
message can be checked with M7GetCommRequest.

The following job numbers are possible:

Operating system messages have job number DIAG_BESYMSG.

System diagnostics messages have job number DIAG_SYSMSG.

User diagnostics messages have job number DIAG_USERMSG.

If both system and user messages are received, the job number is
DIAG_SYS_USER_MSG.

The message itself must be initiated with the M7KEvent call.

Function

Syntax

Parameters

Description

M7 APIM7DiagMode

5-33
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_NO_SUCH_FRB *M7COMMFRB not being processed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KEvent

Return Value

Error Codes

See Also

M7 API M7DiagMode

5-34
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7DPNormDiagnose

Get standard diagnostics for a DP slave

#include <m7api.h>
M7ERR_CODE M7DPNormDiagnose(

M7IO_BASEADDR Baddr,
VOID_PTR pBuffer);

Parameter Name Meaning
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

Baddr ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Base address of ET ER
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pBuffer
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to data buffer for standard diagnostics frame

The function returns the diagnostics for a DP slave coded according to the
DP standard.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_PAR Incorrect base address.

M7E_NORM_DIAG Diagnostics data is not available for the module.

M7E_NOT_IMPLEMENTED L2–DP server not available

M7GetDiagAlarmInfo

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7DPNormDiagnose

5-35
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetCBBitOffset

Get bit offset within a callback function

#include <m7api.h>
UBYTE M7GetCBBitOffset(

M7CBFRB_PTR pCBFRB);

Parameter Name Meaning

pCBFRB Pointer to the CBFRB passed by the M7 API when the
callback function is called.

The function determines the bit offset of a variable, which another applica-
tion is attempting to access via the S7 object server, from a CBFRB passed to
a callback function.

The call is implemented as a C macro.

The bit offset is returned.

M7GetCBBuffer, M7GetCBByteOffset, M7GetCBCount, M7GetCBDa-
taType, M7GetCBFlags, M7GetCBObjType, M7GetCBPart

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GETCBBitOffset

5-36
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetCBBuffer

 Get buffer address within a callback function

#include <m7api.h>
VOID_PTR M7GetCBBuffer(

M7CBFRB_PTR pCBFRB);

Parameter Name Meaning

pCBFRB Pointer to the CBFRB passed by the M7 API when the
callback function is called.

The function determines the address of the data buffer from a CBFRB passed
to a callback function.

If the task has been registered for a write access with a callback function, the
buffer contains the data with which variables of the S7 object server are to be
overwritten.

In read accesses, it is used to store the variables to be read from the S7 object
server.

The call is implemented as a C macro.

The return value is a pointer to the buffer.

M7GetCBBitOffset, M7GetCBByteOffset, M7GetCBCount, M7GetCB-
DataType, M7GetCBFlags, M7GetCBObjType, M7GetCBPart

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetCBBuffer

5-37
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetCBByteOffset

Get byte offset within a callback function

#include <m7api.h>
UDWORD M7GetCBByteOffset(

M7CBFRB_PTR pCBFRB);

Parameter Name Meaning

pCBFRB Pointer to the CBFRB passed by the M7 API when the
callback function is called.

The function determines the byte offset of a variable, which another applica-
tion is attempting to access via the S7 object server, from a CBFRB passed to
a callback function.

The call is implemented as a C macro.

The byte offset is returned.

M7GetCBBitOffset,M7GetCBBuffer , M7GetCBCount, M7GetCBData-
Type, M7GetCBFlags, M7GetCBObjType, M7GetCBPart

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetCBByteOffset

5-38
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetCBCount

Get number of elements within a callback function

#include <m7api.h>
UWORD M7GetCBCount(

M7CBFRB_PTR pCBFRB);

Parameter Name Meaning

pCBFRB Pointer to the CBFRB passed by the M7 API when the
callback function is called.

The function determines the number of elements, which another application
is attempting to access via the S7 object server, from a CBFRB passed to a
callback function.

The call is implemented as a C macro.

The number of elements is returned.

M7GetCBBitOffset,M7GetCBBuffer , M7GetCBByteOffset, M7GetCB-
DataType, M7GetCBFlags, M7GetCBObjType, M7GetCBPart

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetCBCount

5-39
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetCBDataType

Get data type within a callback function

#include <m7api.h>
UBYTE M7GetCBDataType(

M7CBFRB_PTR pCBFRB);

Parameter Name Meaning

pCBFRB Pointer to the CBFRB passed by the M7 API when the
callback function is called.

The function determines the data type of the variables, which another ap-
plication is attempting to access via the S7 object server, from a CBFRB
passed to a callback function.

The call is implemented as a C macro.

The data type is returned by the call.

The possible data types are listed in Table 2-9.

M7GetCBBitOffset, M7GetCBBuffer,M7GetCBByteOffset, M7GetCB-
Count, M7GetCBFlags, M7GetCBObjType, M7GetCBPart

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetCBDataType

5-40
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetCBFlags

Get access type within a callback function

#include <m7api.h>
UWORD M7GetCBFlags(

M7CBFRB_PTR pCBFRB);

Parameter Name Meaning

pCBFRB Pointer to the CBFRB passed by the M7 API when the
callback function is called.

The function determines, from a CBFRB passed to a callback function, the
actual access type (read, write, delete, etc.) with which another application is
attempting to access variables on the S7 object server.

The call is implemented as a C macro.

The actual access type is returned.

The possible data types are listed in the following table:

Access Type Type Identifier

Read S7 object variable M7READ_ACCESS

Write S7 object variable M7WRITE_ACCESS

Create S7 object variable M7CREATE_ACCESS

Delete S7 object variable M7DELETE_ACCESS

Link S7 object M7LINK_ACCESS

M7GetCBBitOffset, M7GetCBBuffer,M7GetCBByteOffset, M7GetCB-
Count, M7GetCBDataType, M7GetCBObjType, M7GetCBPart

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetCBFlags

5-41
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetCBObjType

Get type identifier of S7 object within a callback function

#include <m7api.h>
UBYTE M7GetCBObjType(

M7CBFRB_PTR pCBFRB);

Parameter Name Meaning

pCBFRB Pointer to the CBFRB passed by the M7 API when the
callback function is called.

The function determines the type identifier of the S7 object, which another
application is attempting to access, from a CBFRB passed to a callback func-
tion.

The call is implemented as a C macro.

The type identifier of the S7 object type is returned (see Table 2-7).

M7GetCBBitOffset, M7GetCBBuffer,M7GetCBByteOffset, M7GetCB-
Count, M7GetCBDataType, M7GetCBFlags, M7GetCBPart

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetCBObjType

5-42
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetCBPart

Get the subarea number of the S7 object within a callback function

#include <m7api.h>
UWORD M7GetCBPart(

M7CBFRB_PTR pCBFRB);

Parameter Name Meaning

pCBFRB Pointer to the CBFRB passed by the M7 API when the
callback function is called.

The function determines the subarea number of the S7 object, which another
application is attempting to access, from a CBFRB passed to a callback func-
tion.

The call is implemented as a C macro.

The type identifier of the S7 object type is returned (see Table 2-7).

M7GetCBBitOffset, M7GetCBBuffer,M7GetCBByteOffset, M7GetCB-
Count, M7GetCBDataType, M7GetCBFlags, M7GetCBObjType,
M7GetCBPart

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetCBPart

5-43
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetCommRcvLen

Get length of received data after M7PBKBrcv call

#include <m7api.h>
UDWORD M7GetCommRcvLen(

M7COMMFRB_PTR pFRB);

Parameter Name Meaning

pFRB Pointer to the FRB from which the length is to be read.

The M7GetCommRcvLen call determines the length of received data from
the FRB referenced by pFRB after receiving an M7MSG_PBK_NDR mes-
sage.

The call is implemented as a C macro.

The number of received bytes by a M7PBKBrcv call is returned.

Function

Syntax

Parameters

Description

Return Value

M7 API M7GetCommRcvLen

5-44
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetCommRequest

Get job number

#include <m7api.h>
UDWORD M7GetCommRequest(

M7COMMFRB_PTR pFRB);

Parameter Name Meaning

pFRB Pointer to the FRB from which the job number is to be read.

The M7GetCommRequest call determines the job number from the FRB
referenced by pFRB after receiving an M7MSG_PBK_DONE,
M7MSG_PBK_NDR, M7MSG_BUB_NDR or M7MSG_DIAG_MSG mes-
sage.

The messages are sent by the PBK, MMI and diagnostics calls.

The call is implemented as a C macro.

The job number is returned.

M7PBKBrcv, M7PBKBsend, M7PBKGet, M7PBKPut, M7BUBCy-
cRead, M7DiagMode, M7GetCommStatus

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetCommRequest

5-45
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetCommStatus

Check return status of application link

#include <m7api.h>
UWORD M7GetCommStatus(

M7COMMFRB_PTR pFRB);

Parameter Name Meaning

pFRB Pointer to the FRB from which the PBK status is to be read.

The M7GetCommStatus call evaluates the pFRB after receiving an
M7MSG_PBK_DONE or M7MSG_PBK_NDR message. These messages are
sent by the calls M7PBKPut, M7PBKGet, M7PBKBsend or M7PBKBrcv .

The call is implemented as a C macro.

Possible results are listed in the following table:

Status Meaning

M7COMMSTATE_OK Job terminated without error

M7COMMSTATE_NO_CONN Communication problems

M7COMMSTATE_NACK Negative acknowledgement, function
not executable

M7COMMSTATE_RID_UNKNOWN Unknown R_ID or Receive has not
been called.

M7COMMSTATE_WRONG_DATA Number of data areas or individual
data types do not match

M7COMMSTATE_RES_REQ Reset request detected

M7COMMSTATE_REM_BLCK_
DISABLED

Remote block DISABLED

M7COMMSTATE_REM_
WRONG_STATE

Remote partner in incorrect state

M7COMMSTATE_REM_
ACCESS_DENIED

Access error on remote partner

M7COMMSTATE_OVERRUN Receive data were overwritten by new
data

M7COMMSTATE_MEM_
ACCESS_DENIED

Access to local user memory denied

Function

Syntax

Parameters

Description

Return Value

M7 API M7GetCommStatus

5-46
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Status Meaning

M7COMMSTATE_NOT_
FINISHED

Previous job not yet finished

M7COMMSTATE_TERM_
BY_USER

Job was canceled by user

M7PBKBrcv, M7PBKBsend, M7PBKGet, M7PBKPut, M7GetCommRe-
quest

See Also

M7 APIM7GetCommStatus

5-47
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetConnStatus

Scan status of an application link

#include <m7api.h>
M7ERR_CODE M7GetConnStatus(

M7CONNID ConnID,
M7_CONN_STATE_PTR pConnState);

The M7GetConnStatus function permits determination of the status of an
application link specified with ConnID.

The following states have been defined (M7_CONN_STATE):

M7_CNST_CLOSED The application link is closed

M7_CNST_CONNECTING The application link is just being
established

M7_CNST_CONNECTED The application link is established

M7_CNST_DISCONNECTING The application link is just being
 closed

The K bus functions M7KAbort and M7GetConnStatus can be called up
via a valid ConnID irrespective of the status of an application link.

All other K bus functions specific to application link are processed in the
M7_CNST_CONNECTED state only. In other states, these calls are rejected
with M7E_KSUB_CONN_CLOSED.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_KSUB_NO_SUCH_CONN Specified connection ID is invalid.

M7KAbort, M7KInitiate

Function

Syntax

Description

Return Value

Error Codes

See Also

M7 API M7GetConnStatus

5-48
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetDiagAlarmAddr

Read logical base address for diagnostics alarm from FRB

#include <m7api.h>
M7IO_BASEADDR M7GetDiagAlarmAddr(

M7DIAGALARM_FRB_PTR pDiagFrb);

Parameter Name Meaning

pDiagFrb Pointer to FRB from which address is to be read.

The call returns the logical base address of the module that initiated the
alarm from the FRB referenced by pDiagFrb.

The call is implemented as a C macro.

The return value is the logical base address of the module that initiated the
alarm.

M7LinkDiagAlarm, M7UnLinkDiagAlarm, M7GetDiagAlarmBusy,
M7GetDiagAlarmInfo,M7GetDiagAlarmPT ype, M7ConfirmDiagAlarm

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetDiagAlarmAddr

5-49
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetDiagAlarmBusy

Check status of a diagnostics alarm from M7/S7 CPU

#include <m7api.h>
BOOL M7GetDiagAlarmBusy(

M7ERR_CODE_PTR pError);

Parameter Name Meaning

pError Pointer to a variable of the type M7ERR_CODE.

The function determines whether a diagnostics alarm sent to the M7/S7 CPU
has been acknowledged by the M7/S7 CPU.

If the function is executed successfully, it returns the identifier of the current
alarm state. The meaning of the state identifiers is listed in the following
table.

State Identifier Meaning

TRUE The alarm is still waiting.

FALSE The alarm was detected by the S7/M7 CPU and has
been processed.

*pError is always ’M7SUCCESS’

M7SendDiagAlarm

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7GetDiagAlarmBusy

5-50
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetDiagAlarmInfo

Read diagnostics information from FRB

#include <m7api.h>
void M7GetDiagAlarmInfo(

M7DIAGALARM_FRB_PTR pDiagFrb,
UBYTE_PTR *Info);

Parameter Name Meaning

pDiagFrb Pointer to the FRB from which the diagnostics information is
to be read.

Info Pointer to a buffer in which the 4 bytes containing the dia-
gnostics information are to be stored.

The call returns the 4 bytes containing the diagnostics information for a diag-
nostics alarm from the FRB referenced by pDiagFrb. The diagnostics infor-
mation is module-specific.

The call is implemented as a C macro.

The function stores the diagnostics information in the buffer referenced by
Info.

M7LinkDiagAlarm, M7UnLinkDiagAlarm, M7GetDiagAlarmBusy,
M7GetDiagAlarmAddr, M7GetDiagAlarmPType, M7ConfirmDiagAlarm

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetDiagAlarmInfo

5-51
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetDiagAlarmPType

Read identifier for the signal module of a diagnostics alarm from FRB

#include <m7api.h>
UBYTE M7GetDiagAlarmPType(

M7DIAGALARM_FRB_PTR pDiagFrb);

Parameter Name Meaning

pDiagFrb Pointer to the FRB from which the identifier is to be read.

The call returns the identifier of the signal module for a diagnostics alarm
from the FRB referenced by pDiagFrb when the M7LinkDiagAlarm func-
tion is called with the parameter pType.

The call is implemented as a C macro.

The identifier for the module type is returned.

I/O Type Meaning

M7IO_IN Module is input module

M7IO_OUT Module is output module

M7LinkDiagAlarm, M7UnLinkDiagAlarm, M7GetDiagAlarmBusy,
M7GetDiagAlarmAddr, M7GetDiagAlarmInfo, M7ConfirmDiagAlarm

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetDiagAlarmPType

5-52
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetFlags

Read registered access type from FRB

#include <m7api.h>
UWORD M7GetFlags(M7OBJFRB_PTR pOBJFRB);

Parameter Name Meaning

pOBJFRB Pointer to the OBJFRB passed on linking of communication
for S7 object access.

The call returns the flags parameter from the OBJFRB referenced when link-
ing with M7LinkDataAccess .

The call is implemented as a C macro.

The flags parameter is returned by the function. The flags parameter repre-
sents the access type specified on linking.

The possible access types are listed in the following table:

Type of Access Identifier

Read S7 objects M7READ_ACCESS

Write S7 objects M7WRITE_ACCESS

Create S7 objects M7CREATE_ACCESS

Delete S7 objects M7DELETE_ACCESS

Link S7 object M7LINK_ACCESS

M7LinkDataAccess, M7UnLinkDataAcess, M7GetObjType, M7GetPart

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetFlags

5-53
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetFRBErrCode

 Read FRBs

#include <m7api.h>
M7ERR_CODE M7GetFRBErrCode(

M7FRBHEADER_PTR pFRBHeader);

Parameter Name Meaning

pFrbHeader Pointer to FRB header whose error identifier is to be read.

The call returns the error identifier of the FRB referenced by pFrbHeader.
The error identifier indicates the general error code that can occur during
handling of the FRB.

The call is implemented as a C macro.

The function returns the error identifier of the referenced FRB.

The possible error identifiers depend on the type of FRB.

GetFRBTag, SetFRBTag

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetFRBErrCode

5-54
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetFRBTag

Read identifier of an FRB

#include <m7api.h>
UWORD M7GetFRBTag(

M7FRBHEADER_PTR pFRBHeader);

Parameter Name Meaning

pFRBHeader Pointer to FRB whose identifier is to be read.

The call returns the identifier of the FRB referenced by the pFrbHeader pa-
rameter.

The call is implemented as a C macro.

The function returns the identifier of the referenced FRB.

M7SetFRBTag, GetFRBErrCode

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetFRBTag

5-55
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetFSCType

Read type of FC server message from FRB

#include <m7api.h>
UWORD M7GetFSCType(

M7FSCFRB_PTR pFSCFRB);

Parameter Name Meaning

pFSCFRB Pointer to FRB from which the address is to be read.

This call can be used to determine, from an FC server message, the service
(scan cycle checkpoint, free cycle, etc.) for which the application has regis-
tered on the FC server. All messages sent by the FC server have the message
identifier M7MSG_CYCLE.

The call is implemented as a C macro.

The type of service is returned.

The possible services of the FC server are listed in the following table:

Services of FC Server Identifier

Scan cycle checkpoint M7S_CYCLECONTROLPOINT

Free cycle M7S_FREECYCLE

STARTUP M7S_STARTUPCYCLE

Cycle overflow M7S_CYCLEOVERFLOW

M7LinkCycle, M7ConfirmCycle, M7UnLinkCycle

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetFSCType

5-56
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetIOAlarmAddr

Read logical base address for process alarm from FRB

#include <m7api.h>
M7IO_BASEADDR M7GetIOAlarmAddr(

M7IOALARM_FRB_PTR pIOFrb);

Parameter Name Meaning

pIOFrb Pointer to FRB from which the address is to be read.

The call returns the logical base address of the module which initiated a pro-
cess alarm from the FRB referenced by pIOFrb.

The call is implemented as a C macro.

The function returns the logical base address of the module which initiated
the process alarm.

M7LinkIOAlarm, M7UnLinkIoAlarm, M7GetIOAlarmMask, M7Ge-
tIOAlarmState, M7GetIOAlarmPType, M7ConfirmIOAlarm

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetIOAlarmAddr

5-57
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetIOAlarmBusy

Check status of a process alarm from M7/S7 CPU

#include <m7api.h>
BOOL M7GetIOAlarmBusy(

M7ERR_CODE_PTR pError);

Parameter Name Meaning

pError Pointer to a variable of the type M7ERR_CODE.

The function detects whether a process alarm sent to the M7/S7 CPU has
been acknowledged by the M7/S7 CPU.

When the function is successful, it returns an identifier for the current alarm
state. The meaning of the state identifiers is shown in the following table.

State Identifier Meaning

TRUE The alarm is still waiting to be processed.

FALSE The alarm has been detected by the S7 CPU and proces-
sed.

*pError is always ’M7SUCCESS’

M7SendIOAlarm

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7GetIOAlarmBusy

5-58
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetIOAlarmMask

Read alarm mask for a process alarm from FRB

#include <m7api.h>
UDWORD M7GetIOAlarmMask(

M7IOALARM_FRB_PTR pIOFrb);

Parameter Name Meaning

pIOFrb Pointer to FRB from which the alarm mask is to be read.

The call returns the alarm mask for a process alarm from the FRB referenced
via pIOFrb.

The call is implemented as a C macro.

The return value is the alarm mask from the FRB.

M7LinkIOAlarm, M7GetIOAlarmAddr, M7UnLinkIOAlarm, M7Ge-
tIOAlarmState, M7GetIOAlarmPType, M7ConfirmIOAlarm

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetIOAlarmMask

5-59
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetIOAlarmState

Read supplementary information for a process alarm from FRB

#include <m7api.h>
UDWORD M7GetIOAlarmState(

M7IOALARM_FRB_PTR pIOFrb);

Parameter Name Meaning

pIOFrb Pointer to the FRB from which the state information is to be
read.

The call returns the supplementary information for a process alarm from the
FRB referenced by pIOFrb. The supplementary information is module-spe-
cific and is given in Intel representation.

The call is implemented as a C macro.

The return value is the supplementary information from the FRB.

M7LinkIOAlarm, M7GetIOAlarmAddr, M7GetIOAlarmMask, M7Un-
LinkIOAlarm, M7GetIOAlarmPType, M7ConfirmIOAlarm

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetIOAlarmState

5-60
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetIOAlarmPType

Read identifier for the signal module of a process alarm from FRB

#include <m7api.h>
UWORD M7GetIOAlarmPType(

M7IOALARM_FRB_PTR pIOFrb);

Parameter Name Meaning

pIOFrb Pointer to the FRB from which the identifier is to be read.

The call returns the identifier of the signal module from the FRB referenced
by pIOFrb and specified when calling the M7LinkIOAlarm function with
the pType parameter.

The call is implemented as a C macro.

The return value is the identifier for the I/O type.

I/O Type Meaning

M7IO_IN Module is input module

M7IO_OUT Module is output module

M7LinkIOAlarm, M7GetIOAlarmAddr, M7GetIOAlarmMask, M7Ge-
tIOAlarmState, M7UnLinkIOAlarm, M7ConfirmIOAlarm

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetIOAlarmPType

5-61
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetLostPeriods

Check number of periodic time messages lost

#include <m7api.h>
UDWORD M7GetLostPeriods(M7TFRB_PTR pTFRB);

Parameter Name Meaning

pTFRB Pointer to the FRB with which the periodic time messages
were linked.

This function detects the number of periodic time messages which were not
sent due to a missing acknowledement. The internal system counters for the
lost periods are subsequently cleared.

The function returns the number of periodic time messages lost.

M7LinkPeriodicTimer, M7ConfirmPeriodicTimer, M7UnLinkPeriodic-
Timer

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetLostPeriods

5-62
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetObjectInfo

Read information about data structure of an S7 object

#include <m7api.h>
M7ERR_CODE M7GetObjectInfo(

UBYTE ObjType,
UWORD Part,
M7OBJ_INFO_PTR pObjInfo);

Parameter Name Meaning

ObjType Type identifier of the desired S7 object (see Table 2-7.)

Part Subarea (DB number, etc.)
The permissible values for the subarea depend on the type of
S7 object.

pObjInfo Pointer to a memory area with the M7OBJ_INFO data
structure where the information about the S7 object is stored.

The function returns all information about the data structure of an S7 object
described by the parameters ObjType and Part. The memory for the informa-
tion must be provided by the calling program.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_PART Subarea not available.

M7E_OBJ Object type not supported.

M7CreateObject, M7DeleteObject, M7RemoveObject, M7LocateObject,
M7StoreObject

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7GetObjectInfo

5-63
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetObjType

Get type identifier for S7 object access

#include <m7api.h>
UBYTE M7GetObjType(

M7OBJFRB_PTR pOBJFRB);

Parameter Name Meaning

pOBJFRB Pointer to the OBJFRB referenced on linking for S7 object
access.

The call returns the type identifier of the object accessed from the OBJFRB
referenced on communication by the S7 object server.

The call is implemented as a C macro.

The return value is the type identifier of the S7 object type.

The possible type identifiers of the addressable S7 objects can be found in
Table 2-7.

M7LinkDataAccess, M7UnLinkDataAccess, M7GetPart, M7GetFlags

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetObjType

5-64
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetPart

Get subarea number for S7 object access

#include <m7api.h>
UBYTE M7GetPart(

M7OBJFRB_PTR pOBJFRB);

Parameter Name Meaning

pOBJFRB Pointer to the OBJFRB referenced on linking for S7 object
access.

The call returns the subarea number of the object accessed from the OBJFRB
referenced on communication by the S7 object server.

The call is implemented as a C macro.

The return value is the subarea number of the S7 object type.

The possible subarea numbers for the addressable S7 objects are listed in the
following table:

S7 Object Type Identifier Subarea Number

Data block M7D_DB DB number

Parameter data record, read M7D_PAR_READ DS number

Parameter data record, write M7D_PAR_WRITE DS number

M7LinkDataAccess, M7UnLinkDataAccess, M7GetOblType,
M7GetFlags

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetPart

5-65
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetPduSize

Check maximum PDU size

#include <m7api.h>
M7ERR_CODE M7GetPduSize (

M7CONNID ConnID,
UDWORD *pnPduSize);

Parameter Name Meaning
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate() call.
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pnPduSize
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Buffer for PDU size.

The function returns the maximum PDU size for a connection.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7PBKGet, M7PBKPut, M7BUBRead, M7BUBWrite

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7GetPduSize

5-66
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetPeriod

Get multiple of time base from TFRB

#include <m7api.h>
UDWORD M7GetPeriod

M7TFRB_PTR pTFRB);

Parameter Name Meaning

pTFRB Pointer to FRB from which the multiple (parameter: TimeBase)
of the time base is to be read.

The call returns the Period parameter from the TFRB referenced by a peri-
odic or one-shot time message. The Period parameter is specified when link-
ing the FRB.

The call is implemented as a C macro.

The call returns the Period parameter from the referenced TFRB.

M7LinkPeriodicTimer, M7LinkOneShotTimer, M7GetTimeBase

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetPeriod

5-67
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetPIErrorAddr

Get address of process image with transfer error

#include <m7api.h>
M7GetPIErrorAddr(
void *PIErrMsgBuf,
M7IO_LOGADDR Addr);

Parameter Name Meaning

PIErrMsgBuf Message buffer for the process image transfer error

Addr Address of the process image in which a transfer error oc-
curred.

The call accesses the process image transfer error message and returns the
address at which a transfer error occurred in the variable Addr.

The call is implemented as a C macro.

M7GetPIErrorPIType, M7LinkPIError, M7UnLinkPIError

Function

Syntax

Parameters

Description

See Also

M7 API M7GetPIErrorAddr

5-68
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetPIErrorPIType

Get type of process image with transfer error

#include <m7api.h>
M7GetPIErrorPIType(
void *PIErrMsgBuf
UBYTE PIType);

Parameter Name Meaning

PIType Type of process image in which an error occurred.

M7IO_PII Process image of inputs

M7IO_PIQ Process image of outputs

The call accesses the process image transfer error message and returns the
type of process image in which an error occurred in the variable PIType.

The call is implemented as a C macro.

M7GetPIErrorAddr, M7LinkPIError, M7UnLinkPIError

Function

Syntax

Parameters

Description

See Also

M7 APIM7GetPIErrorPIType

5-69
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetResetCause

Query cause of reset

#include <m7api.h>
M7ERR_CODE M7GetResetCause(

UDWORD *pState);

Parameter Name Bedeutung
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pState
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Shows the state. If one of the following bits is set the corre-
sponding state applies. Several bits can also be set at the same
time:

M7WD_RESET The system was previously reset by
the watchdog.

M7KEY_RESET The system was previously reset by
the key switch.

If neither of the above bits is set, then the system was reset by
a failure.

The function supplies the application with information on why the system
was last stored.

= M7SUCCESS: The function was succesfully executed

Function

Syntax

Parameters

Description

Return Value

M7 API M7GetResetCause

5-70
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetState

Check operating state

#include <m7api.h>
UWORD M7GetState(void);

The function returns the current operating state.

The return value is an identifier for the current operating state. The meaning
of the state identifiers is shown in the following table.

State Identifier Meaning

M7STATE_STOP STOP operating state

M7STATE_STARTUP STARTUP operating state

M7STATE_RUN RUN operating state

M7STATE_HALT HALT operating state

M7STATE_RESET RESET operating state

M7LinkState, M7UnLinkState, M7RequestState,

Function

Syntax

Description

Return Value

Parameters

See Also

M7 APIM7GetState

5-71
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetTime

Read out date/time

#include <m7api.h>
M7ERR_CODE M7GetTime(M7TIME_DATE_PTR pDateTime);

Parameter Name Meaning

pDateTime Pointer to memory area with date/time structure

The function reads the internal system time and date, and stores them in the
memory area specified by pDateTime.

Please see Chapter 3 for details of the M7TIME_DATE structure.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

M7SetTime

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetTime

5-72
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetTimeBase

Get time base from TFRB

#include <m7api.h>
UWORD M7GetITimeBase(

M7TFRB_PTR pTFRB);

Parameter Name Meaning

pTFRB Pointer to FRB from which the time base (parameter:
TimeBase) is to be read.

The call returns the TimeBase parameter from the TFRB referenced by a pe-
riodic or one-shot time message. The TimeBase parameter is specified when
linking the FRB.

The call is implemented as a C macro.

The call returns the TimeBase parameter from the referenced TFRB. Possible
values of TimeBase are:

Return Value Meaning

TimeBase Value for the time base:

M7TB_1MS: 1 ms

M7TB_10MS: 10 ms

M7TB_100MS: 100 ms

M7TB_1S: 1s s

M7LinkPeriodicTimer, M7LinkOneShotTimer, M7GetPeriod

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetTimeBase

5-73
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetTSReason

Read reason for operating state/transition from FRB

#include <m7api.h>
UWORD M7GetTSReason(M7TSFRB_PTR pTSFRB);

Parameter Name Meaning

pTSFRB Pointer to the FRB from which the reason for the operating
state or operating state transition is to be read.

When a state is attained, the M7GetTSReason macro can be used to check
why a change to this state was output by M7RequestState . The value
specified in the Reason parameter of an M7RequestState call is evalu-
ated.

The call is implemented as a C macro.

The reason is returned from the FRB.

M7LinkTransition, M7UnLinkTransition, M7GetTSType,
M7ConfirmTransition

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetTSReason

5-74
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetTSType

Read operating state from an FRB

#include <m7api.h>
UWORD M7GetTSType(M7TSFRB_PTR pTSFRB);

Parameter Name Meaning

pTSFRB Pointer to the FRB from which the operating state is to be
read.

The call returns an identifier for the operating state or operating state transi-
tion from a TSFRB of the OST server.

The call is implemented as a C macro.

When a message of the type M7MSG_STATE (linked with M7LinkState)
or M7MSG_REQ_FINISHED (requested with M7RequestState) is re-
ceived, the following identifiers are possible in the referenced TSFRB:

Identifier Meaning

M7STATE_STOP M7 is in STOP state

M7STATE_STARTUP M7 is in STARTUP state

M7STATE_RUN M7 is in RUN state

M7STATE_HALT M7 is in HALT state

M7STATE_RESET M7 is in RESET state

When a message of the type M7MSG_TRANSITION (linked with M7Link-
Transition) is received, the following identifiers are possible in the refer-
enced TSFRB:

Identifier Meaning

M7TRANS_STOPSTARTUP Operating state transition from STOP to STAR-
TUP requested

M7TRANS_STOPRESET Operating state transition from STOP to RESET
requested

M7TRANS_STARTUPSTOP Operating state transition from STARTUP to
STOP requested

Function

Syntax

Parameters

Description

Return Value

M7 APIM7GetTSType

5-75
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Identifier Meaning

M7TRANS_STARTUPRUN Operating state transition from STARTUP to
RUN requested

M7TRANS_STARTUPHALT Operating state transition from STARTUP to
HALT requested

M7TRANS_RUNSTOP Operating state transition from RUN to STOP
requested

M7TRANS_RUNHALT Operating state transition from RUN to HALT
requested

M7TRANS_HALTSTOP Operating state transition from HALT to STOP
requested

M7TRANS_HALTSTARTUP Operating state transition from HALT to STAR-
TUP requested

M7TRANS_HALTRUN Operating state transition from HALT to RUN
requested

M7TRANS_RESETSTOP Operating state transition from RESET to STOP
requested

M7LinkState, M7UnLinkState, M7RequestState, M7GetTSReason,
M7LinkTransition, M7UnLinkTransition, M7ConfirmTransition

See Also

M7 API M7GetTSType

5-76
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetZSAlarmAddr

Get base address of an I/O module

#include <m7api.h>
M7IO_BASEADDR M7GetZSAlarmAddr(

M7ZSALARM_FRB_PTR pZSFRB,
UWORD SlotNum);

Parameter Name Meaning

pZSFRB Pointer to the ZSFRB from which the base address of the I/O
module is determined.

SlotNum Number of the slot in which the module is installed. The slot
number must be within the range
1 ... MAX_SLOT_400.
The MAX_SLOT_400 constant identifies the maximum
number of slots in the S7-400 system.

The call returns the base address of the module at slot number SlotNum on an
insert/remove module alarm.

The call is implemented as a C macro.

The function is only supported on the SIMATIC S7-400 system.

The base address is returned by the call.

M7ConfirmZSAlarm, M7LinkZSAlarm, M7UnLinkZSAlarm, M7GetZ-
SAlarmIMRBaddr, M7GetZSAlarmMode, M7GetZSAlarmPType,
M7GetZSAlarmIdent

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetZSAlarmAddr

5-77
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetZSAlarmIdent

Get identifier of an I/O module

#include <m7api.h>
UBYTE M7GetZSAlarmIdent(

M7ZSALARM_FRB_PTR pZSFRB,
UWORD SlotNum);

Parameter Name Meaning

pZSFRB Pointer to the ZSFRB from which the identification number
of the I/O module is determined.

SlotNum Number of the slot in which the module is installed. The slot
number must be within the range 1...MAX_SLOT_400.
The MAX_SLOT_400 constant identifies the maximum
number of slots in the S7-400 system.

The call returns the identification number of the module at slot number Slot-
Num on an insert/remove module alarm.

The call is implemented as a C macro.

The function is only supported on the SIMATIC S7-400 system.

The identification number is returned by the call. The identification number
of a module is explained in the appropriate hardware description.

M7ConfirmZSAlarm, M7LinkZSAlarm, M7UnLinkZSAlarm,
M7GetZSAlarmIMRBaddr, M7GetZSAlarmAddr,
M7GetZSAlarmPType, M7GetZSAlarmMode

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetZSAlarmIdent

5-78
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetZSAlarmIMRBaddr

Define base address of the IM module for which an insert/remove–mod-
ule alarm was linked

#include <m7api.h>
UBYTE M7GetZSAlarmIMRBaddr(

M7ZSALARM_FRB_PTR pZSFRB);

Parameter Name Meaning

pZSFRB Pointer to the ZSFRB

The call returns information about the base address of the IM module which
is installed in the rack or S7 slave on which the error occurred (CR_BADDR
for the central rack).

The call is implemented as a C macro.

The function is only supported on the SIMATIC S7-400 system.

The base address of the IM module is returned by the call.

M7ConfirmZSAlarm, M7LinkZSAlarm, M7UnLinkZSAlarm,
M7GetZSAlarmPType, M7GetZSAlarmAddr, M7GetZSAlarmMode,
M7GetZSAlarmIdent

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetZSAlarmIMRBaddr

5-79
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetZSAlarmMode

Get mode of an I/O module

#include <m7api.h>
UBYTE M7GetZSAlarmMode(

M7ZSALARM_FRB_PTR pZSFRB,
UWORD SlotNum);

Parameter Name Meaning

pZSFRB Pointer to the ZSFRB from which the mode of the I/O mo-
dule is determined.

SlotNum Number of the slot in which the module is installed. The slot
number must be within the range
1 ... MAX_SLOT_400.
The MAX_SLOT_400 constant identifies the maximum
number of slots in the S7-400 system.

The call returns the mode of the module at slot number SlotNum on an insert/
remove module alarm.

The call is implemented as a C macro.

The function is only supported on the SIMATIC S7-400 system.

An identifier for the mode is returned by the call. The possible values are
listed in the following table:

Identifier Meaning

M7DEV_OK Module is OK

M7DEV_REM Module has been removed

M7DEV_PUT Module has been inserted

M7ConfirmZSAlarm, M7LinkZSAlarm, M7UnLinkZSAlarm, M7GetZ-
SAlarmIMRBaddr, M7GetZSAlarmAddr, M7GetZSAlarmPType,
M7GetZSAlarmIdent

Function

Syntax

Parameters

Description

Return Value

See Also

M7 API M7GetZSAlarmMode

5-80
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7GetZSAlarmPType

Get I/O type of an I/O module

#include <m7api.h>
UBYTE M7GetZSAlarmPType(

M7ZSALARM_FRB_PTR pZSFRB,
UWORD SlotNum);

Parameter Name Meaning

pZSFRB Pointer to the ZSFRB from which the type of I/O module is
determined.

SlotNum Number of the slot in which the module is installed. The slot
number must be within the range
1 ... MAX_SLOT_400.
The MAX_SLOT_400 constant identifies the maximum
number of slots in the S7-400 system.

The call returns the I/O type of the module at slot number SlotNum on an
insert/remove module alarm.

The call is implemented as a C macro.

The function is only supported on the SIMATIC S7-400 system.

The I/O type is returned by the call. The possible values are listed in the fol-
lowing table:

I/O Type Meaning

M7IO_IN Module is input module

M7IO_OUT Module is output module

M7ConfirmZSAlarm, M7LinkZSAlarm, M7UnLinkZSAlarm, M7GetZ-
SAlarmIMRBaddr, M7GetZSAlarmAddr, M7GetZSAlarmMode,
M7GetZSAlarmIdent

Function

Syntax

Parameters

Description

Return Value

See Also

M7 APIM7GetZSAlarmPType

5-81
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7InitAPI

Initialize M7 API

#include <m7api.h>
M7ERR_CODE M7InitAPI(void);

The function initializes the M7 API. The function must be called immedi-
ately at the start of the main routine in a C application program.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NOT_IMPLEMENTED M7 servers have not yet been started

Function

Syntax

Description

Return Value

Error Codes

M7 API M7InitAPI

5-82
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7InitISADesc

Create I/O descriptor from logical address

#include <m7api.h>
M7ERR_CODE M7InitISADesc(

M7IO_LOGADDR Addr,
UBYTE PType,
UWORD Len,
M7IO_DESC_PTR pIODesc);

Parameter Name Meaning

Addr Logical address

PType I/O Type
M7IO_IN
M7IO_OUT

Len Length of the planned access. The following identifiers are
possible:
M7PBYTE: Descriptor for one byte
M7PWORD: Descriptor for one word
M7PDWORD: Descriptor for one doubleword

pIODesc Pointer to initialized I/O descriptors. The user program must
allocate the memory for the I/O descriptor from the global
data area or the heap.

The function creates an I/O descriptor from the logical address. The I/O des-
criptor is used for high-speed access to the ISA bus I/O.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_PAR The specified address does not describe an interface mo-
dule; incorrect length or I/O type

M7StoreISAByte, M7StoreISAWord, M7StoreISADWord, M7LoadISA-
Byte, M7LoadISAWord, M7LoadISADWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7InitISADesc

5-83
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7KAbort

Close an application link

#include <m7api.h>
M7ERR_CODE M7KAbort(M7CONNID ConnID);

Parameter Name MeaningÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call.

The M7KAbort function closes an application link between the client and
server. All asynchronous jobs for the connection are deleted.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7KInitiate

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7KAbort

5-84
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7KEvent

Fetch data of asynchronous messages

#include <m7api.h>
M7ERR_CODE M7KEvent(

M7CONNID ConnID,
UDWORD nRequest,
UBYTE_PTR pBuffer,
UDWORD nBufsiz,
UDWORD *pnBytes);

Parameter Name MeaningÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call.ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

nRequest
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Job number. The job number can be read out from the FRB
referenced in the message using the M7GetCommRequest
call.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pBuffer ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to the result buffer. The result buffer must be pro-
vided by the user program.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

nBufsiz ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Length of the result buffer.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pnBytes ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Number of bytes read.

The data generated by cyclical reading and diagnostics messages must be
fetched from the driver with the M7KEvent function.

The next message with job number nRequest for connection reference
ConnID is copied to the result buffer and deleted from the driver.
The number of bytes transferred is stored in *pnBytes.

If the result buffer is too small to store all the data of a message, as many
data items as possible are copied, and an appropriate error code is set. If a
matching message does not exist, the call returns without an error, and with
*pnBytes equal to 0.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

Function

Syntax

Parameters

Description

Return Value

Error Codes

M7 APIM7KEvent

5-85
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7BUBCycRead, M7DiagModeSee Also

M7 API M7KEvent

5-86
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7KInitiate

Set up application link for communication via communication bus/MPI

#include <m7api.h>
M7ERR_CODE M7KInitiate(

M7CONNID *pConnID,
UBYTE_PTR pHostAddr);

Parameter Name Meaning
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

*pConnID ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to the connection reference for further communica-
tion calls

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pHostAddr ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Address of the destination computer

The M7KInitiate function opens an application link to a server via MPI or
K bus. The host address of the remote partner is passed in a string. pHostAddr
contains the connection number from the connection configuration. The con-
nection number can be entered in decimal as well as in hexadecimal format
(not case sensitive). For example: 0x1d0. The “local” string is passed in order
to set up a unidirectional loop-back connection for the own CPU/FM.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_RESOURCE_LIMIT Resources exceeded

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7KAbort

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7KInitiate

5-87
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7KPassword

Password for functions with special protection level

#include <m7api.h>
M7ERR_CODE M7KPassword(

UDWORD flags,
M7CONNID ConnID,
UBYTE_PTR pszPassword);

Parameter Name Meaning

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

flags ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Flags

SET_PASSWORD: If this flag is enabled and the correct pass-
word is entered, the connection is legitimized; that is all functions
are subsequently available.

A_ZERO_FLAG: If set, the connection is enabled; that is func-
tions are subsequently only available with the appropriate protec-
tion level password. This flag can be connected with other options
by an OR operation. It must be set if no other flag is used.

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

ConnID
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call.
ÑÑÑÑÑÑ
ÑÑÑÑÑÑpszPassword

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑPointer to an 8-byte password.

The M7/S7 CPU has a password and a protection level entered in SDB0. Fol-
lowing an M7KInitiate call, the application can only execute functions on
the current protection level. The application must be legitimized with the
correct password to enable execution of all functions.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7KPassword

5-88
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7KReadTime

Read time

#include <m7api.h>
M7ERR_CODE M7KReadTime(

M7CONNID ConnID,
M7KTIME_PTR pBuffer,
UDWORD nBufsize,
UDWORD *pnBytes);

Parameter Name Meaning

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pBuffer ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to a data structure of the type M7KTIME . The data
structure which stores the K bus time must be allocated by
the user program from the global data or the heap.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

nBufsize
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Length of the M7KTIME structure.
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pnBytes
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to the number of bytes read.

The M7KReadTime function reads the time from the server computer into
the data structure provided. The number of bytes read is entered in *pnBytes.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate, M7KWriteTime

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7KReadTime

5-89
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7KWriteTime

Set time

#include <m7api.h>
M7ERR_CODE M7KWriteTime(

M7CONNID ConnID,
M7KTIME_PTR pBuffer,
UDWORD nBufsize);

Parameter Name Meaning

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

ConnID ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Connection reference from an M7KInitiate call.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pBuffer ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to a data structure of the type M7KTIME with the
time to be set.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

nBufsize ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Length of the M7KTIME structure.

The M7KWriteTime function sets the time on the destination computer to
the value specified in pBuffer.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KReadTime, M7KInitiate

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7KWriteTime

5-90
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LinkBatteryFailure

Initialize FRB for battery monitoring and register on OST server

#include <m7api.h>
M7ERR_CODE M7LinkBatteryFailure(

M7BAFFRB_PTR pBAFFRB,
unsigned int MPrio);

Parameter Name Meaning
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pBAFFRB ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to the FRB provided for registration. The FRB must
be allocated in the user program from the global data or the
heap.ÑÑÑÑÑÑÑ

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

MPrio
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Priority of the M7MSG_BATTERY_FAILURE message to
be sent (0–255).

The M7LinkBatteryFailure function initializes an FRB and registers
the FRB on the OST server for handling.

If the battery voltage falls below the threshold before or during handling of
an FRB, the task receives a message of the type M7MSG_BATTERY_FAIL-
URE with message priority MPrio.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_PRIO Incorrect priority

M7UnLinkBatteryFailure

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7LinkBatteryFailure

5-91
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7LinkCycle

Initialize FRB and register on FC server

#include <m7api.h>
M7ERR_CODE M7LinkCycle(

M7FSCFRB_PTR pFSCFRB,
UWORD Cycle,
unsigned int MPrio);

Parameter Name Meaning

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

pFSCFRB ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Pointer to the FRB registered for communication with the
FC server.

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

Cycle ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Specifies the state on which message is to be sent.

M7S_CYCLECONTROLPOINT
Message at scan cycle checkpoint

M7S_FREECYCLE
Message at start of free cycle

M7S_STARTUPCYCLE
Message for state: STARTUP

M7S_CYCLEOVERFLOW
Message on cycle time limit exceeded

MPrio Priority with which a message is to be sent (0–255).

The M7LinkCycle function initializes an FRB and registers the FRB on the
FC server for handling. When the desired state specified in Cycle becomes
active, the task receives a message of the type M7MSG_M_CYCLE.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_PAR Unknown state

M7E_PRIO Incorrect priority

M7UnLinkCycle, M7ConfirmCycle

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7LinkCycle

5-92
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LinkDataAccess

Link S7 object for access information via message

#include <m7api.h>
M7ERR_CODE M7LinkDataAccess(

M7OBJFRB_PTR pOBJFRB,
UBYTE ObjType,
UWORD Part,
UWORD Flags,
unsigned int MPrio);

Parameter Name Meaning

pOBJFRB Pointer to the FRB provided for link registration

ObjType Type identifier of S7 object for which accesses are to be re-
ported (see Table 2-7).

Part Subarea (DB number, etc., see Table 2-8)

Flags Mask for selecting which access is to be reported:

M7READ_ACCESS: Read only

M7WRITE_ACCESS: Write only

M7CREATE_ACCESS: Message on create object

M7DELETE_ACCESS: Message on delete object

M7LINK_ACCESS: Message on link object

MPrio Priority with which a message is to be sent (0–255).

The function requests the object server to report access to the referenced S7
object by sending a message to the task.

The calling task can use Flags to determine which access type (for example
write access) is to be reported. The Flags cannot be connected by a logic OR
operation; only one access type is allowed.

When the function has been successfully executed, and an external access is
made to the registered S7 object by another task or via communication, the
object server sends one of the messages listed in the following table – ac-
cording to the specified access type – after the access takes place.

Access Message

Read access M7MSG_DATA_ACCESS_R

Write access M7MSG_DATA_ACCESS_W

S7 object deleted M7MSG_DATA_ACCESS_DEL

S7 object created M7MSG_DATA_ACCESS_CREATE

Function

Syntax

Parameters

Description

M7 APIM7LinkDataAccess

5-93
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

= M7SUCCESS Always returned by the call.

Error Code Meaning

M7E_FRB_ALREADY_IN_LIST FRB is already linked

M7E_LINK_PAR Parameter error

M7E_OBJ Object type not supported

M7E_PAR Parameter error

M7E_PRIO Incorrect priority

M7SetFRBTag, M7GetFRBTag, M7GetObjType, M7GetFlags, M7Get-
Part

Return Value

Error Codes

See Also

M7 API M7LinkDataAccess

5-94
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LinkDataAccessCB

Link callback function for S7 access

#include <m7api.h>
M7ERR_CODE M7LinkDataAccessCB(

M7CBFRB_PTR pCBFRB,
UDWORD (*pCallback)(M7CBFRB_PTR
pCBFRB),
UBYTE ObjType,
UWORD Part,
UWORD Flags);

Parameter Name Meaning

pOBJFRB Pointer to the FRB provided for link registration

*pCallback Pointer to the callback function

ObjType Type identifier of S7 object for which accesses are to be repor-
ted (see Table 2-7).

Part Subarea (DB number, etc., see Table 2-8)

Flags Mask for selecting on which access types the callback func-
tion is to be called:

M7READ_ACCESS: Read access

M7WRITE_ACCESS: Write access

M7CREATE_ACCESS: Message on create object

M7DELETE_ACCESS: Message on delete object

M7LINK_ACCESS: Message on link object

The task uses the function to request the object server to call the callback
function before a WRITE–, CREATE or LINK–ACCESS or after a READ–
ACCESS of the specified S7 object.

The calling task can use Flags to determine on which access type (for exam-
ple write access only).

= M7SUCCESS Always returned by the call.

Error Code Meaning

M7E_FRB_ALREADY_IN_LIST FRB is already linked

M7E_LINK_PAR Parameter error

M7E_OBJ Object type not supported

M7E_PAR Parameter error

Function

Syntax

Parameters

Description

Return Value

Error Codes

M7 APIM7LinkDataAccessCB

5-95
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7GetCBBitOffset, M7GetCBBuffer,M7GetCBByteOffset, M7GetCB-
DataType, M7GetCBCount, M7GetCBFlags, M7GetCBObjType,
M7GetCBPart, M7UnLinkDataAccessCB

See Also

M7 API M7LinkDataAccessCB

5-96
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LinkDate

Link time-controlled time message

#include <m7api.h>
M7ERR_CODE M7LinkDate(

M7TFRB_PTR pTFRB,
M7TIME_DATE_PTR pDateTime,
BOOL Periodic,
unsigned int MPrio);

Parameter Name Meaning

pTFRB Pointer to time server FRB

pDateTime Pointer to memory area with date/time structure where the
time parameters for the function are stored (see Section 3).

Periodic Selection for “once” or “daily”:

M7ONCE Message once

M7DAILY Daily message (date = start date)

MPrio Priority with which a message is to be sent (0–255).

The function registers an FRB for a time-controlled handling on the time
server. When the date or time specified in *pDateTime has been reached, the
time server sends a message of the type M7MSG_TIMESERVER to the call-
ing task. The message is transmitted in RUN mode with second accuracy
(resolution = 1 second). If the system is not in the RUN mode when the spe-
cified time is reached, the message is delayed until the next transition into
the RUN mode. If a task is simultaneously logged for operating state mes-
sages, the order in which the time–controlled messages and the operating
state messages are received is undefined at the time of transition into the
RUN mode. In non–periodic mode, the time server deletes the associated
FRB after sending the time–controlled message.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_PAR Parameter error

M7E_PRIO Incorrect priority

M7E_RESOURCE_LIMIT Too many timer FRBs in operation

M7UnLinkDate

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7LinkDate

5-97
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7LinkDiagAlarm

Link diagnostics alarm for handling

#include <m7api.h>
M7ERR_CODE M7LinkDiagAlarm(

M7DIAGALARM_FRB_PTR pDiagFrb,
UBYTE PType,
M7IO_BASEADDR Addr,
unsigned int MPrio);

Parameter Name Meaning

pDiagFrb Pointer to the FRB provided for registration. The FRB must
be allocated in the user program from the global data or the
heap.

PType Identifier for input or output module:

M7IO_IN Input module

M7IO_OUT Output module

Addr Logical base address of the module sending diagnostics
alarms

MPrio Priority with which a message is to be sent (0–255).

The function initializes an FRB header and registers the FRB for handling on
the alarm server.

If the I/O module specified by Addr reports a diagnostics alarm, the calling
task receives a message of the type M7MSG_DIAG_ALARM.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_PAR Addressed module does not exist.

M7E_INVAL_DEV Diagnostics alarm can only be reported by ET ER for
DP standard slaves.

M7UnLinkDiagAlarm, M7GetDiagAlarmAddr, M7GetDiagAlarmBusy,
M7GetDiagAlarmInfo, M7GetDiagAlarmPType

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7LinkDiagAlarm

5-98
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LinkIOAlarm

Link process alarm for handling

#include <m7api.h>
M7ERR_CODE M7LinkIOAlarm(

M7IOALARM_FRB_PTR pIOFrb,
UBYTE PType,
M7IO_BASEADDR Addr,
UDWORD AlarmMask,
unsigned int MPrio);

Parameter Name Meaning

pIOFrb Pointer to the FRB provided for registration

PType Identifier for input or output module:

M7IO_IN Input module

M7IO_OUT Output module

Addr Logical base address of the module sending process alarms

AlarmMask Alarm mask:

32 channels can be selected with the AlarmMask Parameters.

Bit 2^0 is assigned to channel 0, bit 2^1 to channel 1, etc.

Mask bit = 1 means that the channel is not processed;

Mask bit = 0 means that the channel is processed.

MPrio Priority with which a message is to be sent.

The function initializes an FRB header and registers the FRB for handling on
the alarm server.

If the I/O module specified by Addr reports a process alarm, the calling task
receives a message of the type M7MSG_IO_ALARM.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Function

Syntax

Parameters

Description

Return Value

M7 APIM7LinkIOAlarm

5-99
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

M7E_PAR Addressed module does not exist.

M7E_SLAVE_TYPE Process alarms can only be reported by DP-S7 slave mo-
dules.

M7E_INVAL_DEV Process alarms can only be generated by I/O modules and
not by the ET-ER.

M7UnLinkIOAlarm, M7GetIOAlarmAddr, M7GetIOAlarmBusy,
M7GetIOAlarmMask, M7GetIOAlarmState, M7GetIOAlarmPType

Error Codes

See Also

M7 API M7LinkIOAlarm

5-100
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LinkOneShotTimer

Link one-shot time message

#include <m7api.h>
M7ERR_CODE M7LinkOneShotTimer(

M7TFRB_PTR pTFRB,
UWORD TimeBase,
UDWORD Time,
unsigned int MPrio);

Parameter Name Meaning

pTFRB Pointer to the accompanying time server FRB

TimeBase Value for the time base:

M7TB_1MS: 1 ms
M7TB_10MS: 10 ms
M7TB_100MS: 100 ms
M7TB_1S: 1 s

Time Time (multiple of TimeBase, max. 4 198 404)

MPrio Priority with which a message is to be sent.

The function registers an FRB for processing of a one-shot time message on
the time server. When the specified time has expired, the time server sends a
message to the calling task and deletes the accompanying FRB. Time mes-
sages are sent only during the RUN operation state.

Select the TimeBase and Time parameters such that the TimeBase parameter
contains the largest possible value for the desired time interval. This mini-
mizes the load on the system caused by the time server.

Example:
You want your task to receive a single time message from the time server
after a time of 4s. In this case, select the value ’M7TB_1S’ for TimeBase and
the value ’4’ for Time (not: ’M7TB_100MS’ for TimeBase and ’40’ for
Time!).

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Function

Syntax

Parameters

Description

Note

Return Value

M7 APIM7LinkOneShotTimer

5-101
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

M7E_PAR Incorrect value for TimeBase

M7E_PRIO Incorrect priority

M7E_RESOURCE_LIMIT Too many timer FRBs operational

M7UnLinkOneShotTimer

Error Codes

See Also

M7 API M7LinkOneShotTimer

5-102
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LinkPeriodicTimer

Link periodic time message

#include <m7api.h>
M7ERR_CODE M7LinkPeriodicTimer(

M7TFRB_PTR pTFRB,
UWORD TimeBase,
UDWORD Period,
BOOL Handshake,
unsigned int MPrio);

Parameter Name Meaning

pTFRB Pointer to the accompanying time server FRB

TimeBase Value for the time base:

M7TB_1MS: 1 ms

M7TB_10MS: 10 ms

M7TB_100MS: 100 ms

M7TB_1S: 1s

Period Duration of the periods
(multiple of TimeBase, max. 4 198 404)

Handshake Selection of mode:

M7WITH_HANDSHAKE
Acknowledgement-driven operation active

M7NO_HANDSHAKE
Acknowledgement-driven operation not active

MPrio Priority with which a message is to be sent.

The function registers an FRB for processing of a periodic time message on
the time server.

When the specified time has expired, the time server sends periodic time
messages to the calling task. Time messages are sent only during the RUN
operation state.

In handshake mode (Handshake = M7WITH_HANDSHAKE), every periodic
time message must be acknowledged by the receiving task with the M7Con-
firmPeriodicTimer function.

A maximum number of 10 FRBs can be registered per M7 CPU or FM.

Select the TimeBase and Time parameters such that the TimeBase parameter
contains the largest possible value for the desired time interval. This mini-
mizes the load on the system caused by the time server.

Function

Syntax

Parameters

Description

Note

M7 APIM7LinkPeriodicTimer

5-103
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Example:
You want your task to receive a single time message from the time server
after a time of 4s. In this case, select the value ’M7TB_1S’ for TimeBase and
the value ’4’ for Time (not: ’M7TB_100MS’ for TimeBase and ’40’ for
Time!).

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_PAR Incorrect value for TimeBase

M7E_PRIO Incorrect priority

M7E_RESOURCE_LIMIT Too many timer FRBs operational

M7UnLinkPeriodicTimer, M7ConfirmPeriodicTimer, M7GetLostPeriods

Return Value

Error Codes

See Also

M7 API M7LinkPeriodicTimer

5-104
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LinkPIError

Initialize FRB for process image transfer error

#include <m7api.h>
M7ERR_CODE M7LinkPIError(

M7FRBHEADER_PTR pPIEFRB
unsigned int MPrio);

Parameter Name Meaning

pPIEFRB Pointer to the FRB used to link the process image transfer
error

MPrio Priority of M7MSG_PI_ERROR message (0–255)

The M7LinkPIError function initializes an FRB for the handling of pro-
cess image transfer errors which occur in the free cycle.

If the free cycle server detects a PI transfer error, it sends the message
M7MSG_PI_ERROR to every linked task. The message contains the process
image type and the process image address at which the transfer error oc-
curred.

The MPrio parameter can be used to define the priority of the
M7MSG_PI_ERROR message.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_PRIO Incorrect priority

M7UnLinkPIError

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7LinkPIError

5-105
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7LinkState

Request message on specific operating state

#include <m7api.h>
M7ERR_CODE M7LinkState(

M7TSFRB_PTR pTSFRB,
UWORD State,
unsigned int MPrio);

Parameter Name Meaning

pTSFRB Pointer to the FRB provided for registration. The FRB must
be allocated in the user program from the global data or the
heap.

State Specifies the operating state on which communication is to
take place. A task can only register for one operating state
with an FRB.

The following values can be specified:

M7STATE_STOP STOP operating state attained

M7STATE_STARTUP STARTUP operating state at-
tained

M7STATE_RUN RUN operating state attained

M7STATE_HALT HALT operating state attained

M7STATE_RESET RESET operating state attained

MPrio Priority with which a message is to be sent.

The function initializes an FRB header and registers the FRB for handling on
the OST server.

When the operating state specified by the State parameter becomes active,
the calling task is informed by a message of the type M7MSG_STATE.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Parameter error

M7E_PRIO Incorrect priority

M7UnLinkState, M7GetState, M7RequestState, M7GetTSType,
M7GetTSReason

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7LinkState

5-106
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LinkTransition

Request message on specific operating state transition

#include <m7api.h>
M7ERR_CODE M7LinkTransition(

M7TSFRB_PTR pTSFRB,
UWORD Transition,
unsigned int MPrio);

Parameter Name Meaning

pTSFRB Pointer to the FRB provided for registration. The FRB must
be allocated in the user program from the global data or the
heap.

Transition Specifies the operating state transition on which communica-
tion is to take place. A task can only register for one opera-
ting state transition with an FRB.

The following values can be specified:

M7TRANS_STOPSTARTUP STOP to STARTUP

M7TRANS_STOPRESET STOP to RESET

M7TRANS_STARTUPSTOP STARTUP to STOP

MSTRANS_STARTUPRUN STARTUP to RUN

M7TRANS_STARTUPHALT STARTUP to HALT

M7TRANS_RUNSTOP RUN to STOP

M7TRANS_RUNHALT RUN to HALT

M7TRANS_HALTSTOP HALT to STOP

M7TRANS_HALTSTARTUP HALT to STARTUP

M7TRANS_HALTRUN HALT to RUN

M7TRANS_RESETSTOP RESET to STOP

MPrio Priority with which a message is to be sent.

The function initializes an FRB header and registers the FRB for handling on
the OST server.

Before the operating state transition specified by the Transition parameter
takes place, the calling task is informed by a message of the type
M7MSG_TRANSITION. The task must acknowledge this operating state
transition.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Function

Syntax

Parameters

Description

Return Value

M7 APIM7LinkTransition

5-107
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

M7E_PAR Parameter error

M7E_PRIO Incorrect priority

M7UnLinkTransition, M7GetTSReason, M7GetTSType

Error Codes

See Also

M7 API M7LinkTransition

5-108
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LinkZSAlarm

Link message on insert/remove module alarm

#include <m7api.h>
M7ERR_CODE M7LinkZSAlarm(

M7ZSALARM_FRB_PTR pZSFRB,
UBYTE RackNo,
unsigned int MPrio);

Parameter Name Meaning

pZSFRB Pointer to the FRB provided for handling the registration.
The FRB must be allocated in the user program from the
global data or the heap.

RackNo Rack number

MPrio Priority of the M7MSG_ZS_ALARM message (0–255).

The function initializes an FRB for “insert/remove module” alarm handling
and registers the FRB on the alarm server.

When an insert/remove–module alarm occurs in the rack or on the S7 slave
in which the IM module with base address IMRBaddr is installed, the task
receives the message M7MSG_ZS_ALARM.

The base address M7CR_BADDR must be registered for the central rack.

MPrio can be used to define the priority of the message.

The address of the insert/remove–module FRB with the insert/remove–mod-
ule information is passed to the user in the message buffer. This FRB is not
the FRB used to link by the user, but is an FRB allocated by the system.

After evaluation of the alarm, the user must confirm the insert/remove–mod-
ule alarm with M7ConfirmZSAlarm , so that the system resource can be
released again.

The function is only supported on the SIMATIC S7-400 system.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Function

Syntax

Parameters

Description

Return Value

M7 APIM7LinkZSAlarm

5-109
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

M7E_PRIO Incorrect priority

M7E_PAR Invalid RackNo value

M7E_NOT_IMPLEMENTED Function not supported on S7-300

M7ConfirmZSAlarm, M7UnLinkZSAlarm, M7GetZSAlarmIMRBaddr,
M7GetZSAlarmMode, M7GetZSAlarmPType, M7GetZSAlarmAddr,
M7GetZSAlarmIdent

Error Codes

See Also

M7 API M7LinkZSAlarm

5-110
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LoadBit

Load bit from process image

#include <m7api.h>
BOOL M7LoadBit(

UWORD PIType,
UWORD ByteOffset,
UBYTE BitOffset,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

PIType Identifiers for process images:

M7IO_PII Process image of inputs

M7IO_PIQ Process image of outputs

ByteOffset Offset of signal byte

BitOffset Bit offset within the signal byte

pError Pointer to a variable of the type M7ERR_CODE in which
an error code is to be stored.

The function addresses a bit in the process image defined by PIType, and
returns the state of the bit.

The return value is the state of the addressed bit.

Error Code Meaning

M7E_PAR Incorrect PIType, ByteOffset or BitOffset

M7LoadByte, M7LoadDWord, M7LoadWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7LoadBit

5-111
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7LoadByte

Load byte from process image

#include <m7api.h>
UBYTE M7LoadByte(

UWORD PIType,
UWORD ByteOffset,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

PIType Identifiers for process images:

M7IO_PII Process image of inputs

M7IO_PIQ Process image of outputs

ByteOffset Offset of signal byte

pError Pointer to a variable of the type M7ERR_CODE in which
an error code is to be stored.

The function addresses a byte in the process image defined by PIType, and
returns the state of the addressed byte.

The return value is the state of the addressed byte.

Error Code Meaning

M7E_PAR Incorrect PIType, or ByteOffset

M7LoadBit, M7LoadDWord, M7LoadWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7LoadByte

5-112
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LoadDirect

Read I/O area directly

#include <m7api.h>
M7ERR_CODE M7LoadDirect(

VOID_PTR pBuffer,
UWORD SizeOfItem,
UWORD Count,
M7IO_LOGADDR Addr);

Parameter Name Meaning

pBuffer Pointer to the destination buffer

SizeOfItem Size of an element in bytes.
The following constants are predefined:

M7PBYTE Pointer to elements of the type BYTE

M7PWORD Pointer to elements of the type WORD

M7PDWORD Pointer to elements of the type DWORD

Count Number of elements

Addr Logical address of the first element

The function performs a direct access to the process I/O. The source, size,
number and destination of the data to be read are defined by the call parame-
ters.

The function does not convert the numeric representation
(SIMATIC/Intel).

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Parameter error

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DP_SLAVE_STATE The device is not ready for data communication

Function

Syntax

Parameters

Description

Return Value

Error Codes

M7 APIM7LoadDirect

5-113
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7LoadDirectByte, M7LoadDirectDWord, M7LoadDirectWordSee Also

M7 API M7LoadDirect

5-114
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LoadDirectByte

Read byte direct from I/O

#include <m7api.h>
UBYTE M7LoadDirectByte(

M7IO_LOGADDR Addr,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

Addr Logical address of the I/O byte

pError Pointer to a variable of the type M7ERR_CODE in which
an error code is to be stored.

The function performs a direct access to the process I/O and reads a byte.

If the function is successfully executed, the return value is the byte read from
the process I/O.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Addressed module does not exist

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DP_SLAVE_STATE The device is not ready for data communication

M7LoadDirect, M7LoadDirectDWord, M7LoadDirectWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7LoadDirectByte

5-115
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7LoadDirectDWord

Read doubleword direct from I/O

#include <m7api.h>
UDWORD M7LoadDirectDWord(

M7IO_LOGADDR Addr,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

Addr Logical address of the I/O doubleword

pError Pointer to a variable of the type M7ERR_CODE in which
an error code is to be stored.

The function performs a direct access to the process I/O and reads a double-
word.

The contents of the doubleword are converted from the SIMATIC format
to the Intel numeric representation.

If the function is successfully executed, the return value is the doubleword
read from the process I/O in Intel format.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Addressed module does not exist

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DP_SLAVE_STATE The device is not ready for data communication

M7LoadDirect, M7LoadDirectByte, M7LoadDirectWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7LoadDirectDWord

5-116
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LoadDirectWord

Read word direct from I/O

#include <m7api.h>
UWORD M7LoadDirectWord(

M7IO_LOGADDR Addr,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

Addr Logical address of the I/O word

pError Pointer to a variable of the type M7ERR_CODE in which
an error code is to be stored.

The function performs a direct access to the process I/O and reads a word.

The contents of the word are converted from the SIMATIC format to the
Intel numeric representation.

If the function is successfully executed, the return value is the word read
from the process I/O in Intel format.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Addressed module does not exist

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DP_SLAVE_STATE The device is not ready for data communication

M7LoadDirect, M7LoadDirectByte, M7LoadDirectDWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7LoadDirectWord

5-117
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7LoadDWord

Load doubleword from process image

#include <m7api.h>
UDWORD M7LoadDWord(

UWORD PIType,
UWORD ByteOffset,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

PIType Identifiers for process images:

M7IO_PII Process image of inputs

M7IO_PIQ Process image of outputs

ByteOffset Offset of signal byte

pError Pointer to a variable of the type M7ERR_CODE in which
an error code is to be stored.

The function addresses a doubleword in the process image defined by
PIType, and returns the state of the addressed doubleword.

The contents of the doubleword are first converted from the SIMATIC to
the Intel numeric representation.

The return value is the state of the addressed doubleword in Intel format.

Error Code Meaning

M7E_PAR Incorrect PIType, or ByteOffset

M7LoadBit, M7LoadByte, M7LoadWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7LoadDWord

5-118
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LoadISAByte

Read byte direct from ISA bus I/O

#include <m7api.h>
UBYTE M7LoadISAByte(

M7IO_DESC_PTR pIODesc,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

pIODesc Pointer to I/O descriptor initialized with M7InitISADesc .

pError Pointer to a variable of the type M7ERR_CODE in which an
error code is to be stored.

The function runs as a macro, performing a direct access to the ISA bus pro-
cess I/O, using an I/O descriptor generated with M7InitISADesc , and
reading in a byte.

If the function is successfully executed, the return value is the byte read from
the ISA process I/O.

Error Code Meaning

M7E_PAR Data access to ISA bus is larger (in bytes) than specified in
M7InitISADesc .

M7LoadISAWord, M7LoadISADWord, M7InitISADesc

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7LoadISAByte

5-119
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7LoadISADWord

Read doubleword direct from ISA bus I/O

#include <m7api.h>
UDWORD M7LoadISADWord(

M7IO_DESC_PTR pIODesc,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

pIODesc Pointer to I/O descriptor initialized with M7InitISADesc

pError Pointer to a variable of the type M7ERR_CODE in which an
error code is to be stored.

The function runs as a macro, performing a direct access to the ISA bus pro-
cess I/O, using an I/O descriptor generated with M7InitISADesc , and
reading in a doubleword (32 bits) in Intel format.

The contents of the doubleword are converted from the SIMATIC to the
Intel numeric representation.

If the function is successfully executed, the return value is the doubleword
(32 bits) read from the ISA process I/O in Intel format.

Error Code Meaning

M7E_PAR Data access to ISA bus is larger (in bytes) than specified in
M7InitISADesc

M7LoadISAByte, M7LoadISAWord, M7InitISADesc

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7LoadISADWord

5-120
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LoadISAWord

Read word direct from ISA bus I/O

#include <m7api.h>
UWORD M7LoadISAWord(

M7IO_DESC_PTR pIODesc,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

pIODesc Pointer to I/O descriptor initialized with M7InitISADesc .

pError Pointer to a variable of the type M7ERR_CODE in which an
error code is to be stored.

The function runs as a macro, performing a direct access to the ISA bus pro-
cess I/O, using an I/O descriptor generated with M7InitISADesc , and
reading in a word (16 bits) in Intel format.

The contents of the word are converted from the SIMATIC to the Intel
numeric representation.

If the function is successfully executed, the return value is the word (16 bits)
read from the ISA process I/O.

Error Code Meaning

M7E_PAR Data access to ISA bus is larger (in bytes) than specified in
M7InitISADesc

M7LoadISAByte, M7LoadISADWord, M7InitISADesc

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7LoadISAWord

5-121
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7LoadPII

Update process image of inputs

#include <m7api.h>
M7ERR_CODE M7LoadPII(UWORD PIINo);

Parameter Name Meaning

PIINo Number of process images parts on M7-400:

0 Complete process image
1 ... 8 Process image part
M7-300:
0 Complete process image
Process image parts are not supported

The function updates the complete process image or the specified part of the
process image of inputs.

Process image parts are only supported on the S7-400 system.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Incorrect PIINo

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7StorePIQ, M7ClearPI

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7LoadPII

5-122
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LoadRecord

Read data record from signal module

#include <m7api.h>
M7ERR_CODE M7LoadRecord(

UBYTE RecordNum,
VOID_PTR pBuffer,
UBYTE Size,
UBYTE PType,
M7IO_BASEADDR Addr);

Parameter Name Meaning

RecordNum Record number

Range: 0 to 255

pBuffer Pointer to a buffer in the working memory, to which the
record is to be transferred.

Size Length of the data record

PType Identifier for the I/O area:

M7IO_IN I/O area for inputs

M7IO_OUT I/O area for outputs

If the module is a mixed module, specify the area ID of the
lowest address. If the addresses are the same, specify
M7IO_IN.

Addr I/O base address of module

The function transfers a data record from an I/O module to a buffer refer-
enced by the pBuffer call parameter.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_COM_ERROR Error on transfer protocol handling

M7E_HWFAULT General hardware error

M7E_PAR Addressed module does not exist

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

Function

Syntax

Parameters

Description

Return Value

Error Codes

M7 APIM7LoadRecord

5-123
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

M7E_REC_LENGTH Module reporting incorrect record length

M7E_REC_NUMBER Module reporting incorrect record number

M7E_DPX2_FAULT Error on DP job for record transfer

M7E_DP_SLAVE_STATE DP Slave not in DATA state

M7E_INVAL_DEV Module of a DP slave is not available

M7LoadRecordEx, M7Store Record

M7StoreRecord

See Also

See Also

M7 API M7LoadRecord

5-124
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LoadRecordEx

Read data record from signal module

#include <m7api.h>
long M7LoadRecordEx(

UBYTE RecordNum
VOID_PTR pBuffer
UBYTE Size
UBYTE PType
M7IO_BASEADDR Addr);

Parameter Name Meaning

RecordNum Record number

Range: 0 to 255

pBuffer Pointer to a buffer in the working memory, to which the
record is to be transferred.

Size Length of the data record

PType Identifier for the I/O area:

M7IO_IN I/O area for inputs

M7IO_OUT I/O area for outputs

If the module is a mixed module, specify the area ID of the
lowest address. If the addresses are the same, specify
M7IO_IN.

Addr I/O base address of module

The function transfers a data record from an I/O module to a buffer refer-
enced by the pBuffer call parameter.

Unlike the M7LoadRecord function, M7LoadRecordEx allows data ac-
cess without specifying the exact number of bytes to be read. If the maxi-
mum record length specified in the Size parameter is 240, the valid bytes of
record RecordNum are read and transferred to pBuffer.

The return value contains the number of valid bytes in the data buffer (see
below).

>M7SUCCESS The function was successfully executed. The return value
contains the number of valid bytes in the data buffer, i.e.
record length if data buffer ≥ record
buffer length if data buffer < record

< M7SUCCESS: An error occurred

Function

Syntax

Parameters

Description

Return Value

M7 APIM7LoadRecordEx

5-125
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_COM_ERROR Error on transfer protocol handling

M7E_HWFAULT General hardware error

M7E_PAR Addressed module does not exist

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_REC_LENGTH Module reporting incorrect record length

M7E_REC_NUMBER Module reporting incorrect record number

M7E_DPX2_FAULT Error on DP job for record transfer

M7E_DP_SLAVE_STATE DP Slave not in DATA state

M7E_INVAL_DEV Module of a DP slave is not available

M7LoadRecord, M7Store Record

Error Codes

See Also

M7 API M7LoadRecordEx

5-126
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7LoadWord

Load word from process image

#include <m7api.h>
UWORD M7LoadWord(

UWORD PIType,
UWORD ByteOffset,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

PIType Identifiers for process images:

M7IO_PII Process image of inputs

M7IO_PIQ Process image of outputs

ByteOffset Offset of signal byte

pError Pointer to a variable of the type M7ERR_CODE in which
an error code is to be stored.

The function addresses a word in the process image defined by PIType, and
returns the state of the addressed word.

The contents of the word are first converted from the SIMATIC to the
Intel numeric representation.

The return value is the state of the addressed word in Intel format.

Error Code Meaning

M7E_PAR Incorrect PIType or ByteOffset

M7LoadBit, M7LoadByte, M7LoadDWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7LoadWord

5-127
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7LocateObject

Change start address of user data area of an S7 object

#include <m7api.h>
M7ERR_CODE M7LocateObject(

UBYTE ObjType,
UWORD Part,
VOID_PTR Ptr
BOOL Copy);

Parameter Name Meaning

ObjType Identifier of an S7 object (see Table 2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)

Ptr New start address of S7 object

Copy Handling of new memory area

TRUE The user data of the object are copied to the
new memory area.

FALSE The user data of the object are not transferred.

The function changes the start address of the user data area of an S7 object
described by the above parameters. The user data are either transferred to the
new area or not, according to the Copy parameter. This function can not be
used for objects in SRAM (retentive) can not be

When calling the function, you should make sure that sufficient memory is
available after the new start address.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_OBJ Object type not supported.

M7E_PART Subarea not available.

M7E_REM_OBJ Not allowed for retentive objects.

M7CreateObject, M7DeleteObject, M7RemoveObject, M7StoreObject

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7LocateObject

5-128
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7OVSCompress

Object management system compress

#include <m7api.h>
M7ERR_CODE M7OVSCompress(M7CONNID ConnID);

Parameter Name MeaningÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ConnID
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.

The M7OVSCompress function is used to request memory compression on
an S7 CPU (object management system compression).

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

The M7OVSCompress function is available only for S7 CPU.

M7OVSDelete, M7OVSFindFirst, M7OVSFindNext, M7OVSLinkln,
M7OVSMemMode, M7OVSRead, M7OVSWrite

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

M7 APIM7OVSCompress

5-129
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7OVSDelete

Delete blocks via object management system

#include <m7api.h>
M7ERR_CODE M7OVSDelete(

UDWORD flags,
M7CONNID ConnID,
UBYTE nBlks,
M7BLKLIST_PTR pBlkList);

Parameter Name Meaning

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

flags ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

One or both of the following flags must be enabled:

A_PASSIV: Delete passive blocks.

A_LINKED_IN: Delete linked-in blocks.

If the block list contains only blocks of one block type, but
both flags are enabled, the job is denied completely.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ConnID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

nBlks
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Number of items in the block list.

If nBlks is equal to 0, all blocks in the RAM memory are
deleted.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pBlkList ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to the block list containing the blocks to be deleted.
The block list consists of M7BLKLIST structure entries.
The M7BLKLIST structure is described in Chapter 3.

T he M7OVSDelete function is used to delete the blocks specified in the
block list in one unit. It is possible to delete both copied and linked modules.
The blocks are only deleted if all the specified blocks are present.

The maximum number of blocks to be deleted is defined by the following
value, according to the maximum PDU size (see M7GetPduSize):

max_no = (maxpdusize – 28)/8

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Function

Syntax

Parameters

Description

Return Value

M7 API M7OVSDelete

5-130
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_PARAM Parameter error

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7OVSCompress, M7OVSFindFirst, M7OVSFindNext, M7OVSLinkln,
M7OVSMemMode, M7OVSRead, M7OVSWrite

Error Codes

See Also

M7 APIM7OVSDelete

5-131
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7OVSFindFirst

Read out first entry from object management system directory

#include <m7api.h>
M7ERR_CODE M7OVSFindFirst (

UDWORD flags,
M7CONNID ConnID,
UWORD BlkTyp,
UWORD Language,
M7BLKINFO_PTR pFFBlkInfo);

Parameter Name MeaningÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

flags
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

One or both of the following flags must be enabled:

A_PASSIV: Find passive blocks.

A_LINKED_IN: Find linked-in blocks.

Additionally one or both of the following flags can be en-
abled:

 A_DIRECTORY Find blocks of the block type with the
lowest type number

A_LANGUAGE Find blocks in the specified programming
language.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ConnID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BlkTyp ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

If A_Directory was not specified, the parameter contains the
block type:

M7BLKTYP_OB Organization block

M7BLKTYP_DB Data block

M7BLKTYP_FC Function call

M7BLKTYP_SFC System function call

M7BLKTYP_FB Function block

M7BLKTYP_SFB System function block

Function

Syntax

Parameters

M7 API M7OVSFindFirst

5-132
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Parameter Name MeaningÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Language
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

If A_LANGUAGE was specified, Language contains the
programming language of the block to be found:

M7LANGTYP_HUELSE Container for SFCs and SFBs

M7LANGTYP_AWL Block created in STL (state-
ment list)

M7LANGTYP_KOP Block created in KOP
(ladder diagram)

M7LANGTYP_FUP Block created in FUP
(function block diagram)

M7LANGTYP_SCL Block created in SCL

M7LANGTYP_DB Block created with block edi-
tor

M7LANGTYP_GRAPH Block created with Graph 5

M7LANGTYP_SDB Block created with system
data block editor

M7LANGTYP_CPU Block created dynamically by
the CPU

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

pFFBlkInfo
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to a FindFirst block information block structure of the
type M7BLKINFO where a block which is found is entered
(see Chapter 6).

M7OVSFindFirst returns the first directory entry in *pFFBlkInfo, accord-
ing to the parameters, and initiates a search sequence which can be continued
with these parameters using M7OVSFindNext .

At least one of the two flags A_PASSIV and A_LINKED_IN must be speci-
fied. If A_PASSIV is specified, passive blocks are displayed. If
A_LINKED_IN is specified, linked-in blocks are displayed.

If A_DIRECTORY is specified, the search finds blocks of the block type
with the lowest type number. In this case, BlkTyp does not need to be speci-
fied.

If A_LANGUAGE is specified, the search finds blocks in the specified pro-
gramming language.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_PARAM Parameter error

M7E_KSUB_EOF End of file or end of directory reached

Description

Return Value

Error Codes

M7 APIM7OVSFindFirst

5-133
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7OVSCompress, M7OVSDelete, M7OVSFindNext, M7OVSLinkln,
M7OVSMemMode, M7OVSRead, M7OVSWrite

See Also

M7 API M7OVSFindFirst

5-134
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7OVSFindNext

Resume reading of object management system directory

#include <m7api.h>
M7ERR_CODE M7OVSFindNext (

UDWORD flags,
M7CONNID ConnID,
M7BLKINFO_PTR pFFBlkInfo);

Parameter Name Meaning

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

flags ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The same flags must be specified as in M7OVSFindFirst .

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ConnID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

pFFBlkInfo ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to a FindFirst block information structure where a
block which is found is entered (see M7OVSFindFirst).

The same flags must be specified as in the preceding M7OVSFindFirst -
call. M7OVSFindNext returns the next directory item in the search se-
quence in pFFBlkInfo.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_PARAM Parameter error

M7E_KSUB_EOF End of file or end of directory reached

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7OVSCompress, M7OVSDelete, M7OVSFindFirst, M7OVSLinkln,
M7OVSMemMode, M7OVSRead, M7OVSWrite

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7OVSFindNext

5-135
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7OVSLinkIn

Object management system link-in

#include <m7api.h>
M7ERR_CODE M7OVSLinkIn(

M7CONNID ConnID,
UBYTE nBlks,
M7BLKLIST_PTR pBlkList);

Parameter Name Meaning

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ConnID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

nBlks ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Number of items in the block list.

If nBlks is equal to 0, all the copied blocks are linked.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pBlkList ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to the block list containing the blocks to be linked.
The block list consists of M7BLKLIST structure entries.
The M7BLKLIST structure is described in Chapter 3.

The M7OVSLinkIn function is used to activate the number nBlks of blocks
located in the CPU in one unit.

The maximum number of blocks to be linked is defined by the following
value, according to the maximum PDU size (see M7GetPduSize):

max_anzahl = (maxpdusize – 28)/8

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_PARAM Parameter error

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7OVSCompress, M7OVSDelete, M7OVSFindFirst, M7OVSFindNext,
M7OVSMemMode, M7OVSRead, M7OVSWrite

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7OVSLinkIn

5-136
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7OVSMemMode

Object management system set memory mode

#include <m7api.h>
M7ERR_CODE M7OVSMemMode(

UDWORD flags,
M7CONNID ConnID);

Parameter Name Meaning
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

flags ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A_PLC_RAM: Set memory mode to RAM.

A_PLC_EPROM: Set memory mode to EPROM.

One (and only one) of the two flags must always be set.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ConnID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.

The M7OVSMemMode function can be used to switch the M7/S7 CPU
memory to RAM or EPROM mode.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_PARAM Parameter error

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7OVSCompress, M7OVSDelete, M7OVSFindFirst, M7OVSFindNext,
M7OVSLinkln, M7OVSRead, M7OVSWrite

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7OVSMemMode

5-137
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7OVSRead

Object management system load

#include <m7api.h>
M7ERR_CODE M7OVSRead (

UDWORD flags,
M7CONNID ConnID,
UBYTE_PTR pBitmap,
UBYTE_PTR pBuffer,
UDWORD nBufsiz,
UWORD BlkTyp,
UWORD BlkNum,
UDWORD *pnBytes);

Parameter Name Meaning

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

flags ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A_PASSIV: Load a passive block.

A_LINKED_IN: Load a linked-in block.

At least one of the two flags must be enabled. If both flags
are enabled, A_HEADER must also be enabled.

A_SSB: Read the interface description only.

A_HEADER: Read the block header only.

A_FILE If enabled, pBuffer specifies the name
of the file in which the block is stored;
otherwise the block is stored in
memory.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ConnID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pBitmap ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

One-byte bitmap. If A_HEADER mode is specified, the
storage location of the object is returned. The returned
bitmap can be combined logically with the following iden-
tifiers:

M7BLKINFO_PASSIV
Block is in load memory (copied)

M7BLKINFO_ACTIV
Block is in working memory (linked in)

M7BLKINFO_RAM
Block is in RAM or RAM mode

M7BLKINFO_EPROM
Block is in EPROM or EPROM mode

M7BLKINFO_BESY
Block is a component of the operating system

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pBuffer ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Receive buffer

If A_FILE is enabled, pBuffer specifies the name of the file
in which the block is stored

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

nBufsiz ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Size of input buffer

If A_FILE is enabled, nBufsiz is ignored.

Function

Syntax

Parameters

M7 API M7OVSRead

5-138
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Parameter Name MeaningÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BlkTyp
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Block types:

M7BLKTYP_OB Organization block

M7BLKTYP_DB Data block

M7BLKTYP_FC Function call

M7BLKTYP_SFC System function call

M7BLKTYP_FB Function block

M7BLKTYP_SFB System function block

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BlkNum ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Number of block

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

pnBytes ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to number of bytes read. or 0 if the block is stored
in a file.

This function loads a block of the M7/S7 CPU into a buffer area or as a file
on the hard disk of the M7.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_BLOCK_TOO_LARGE Insufficient buffer space

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_PARAM Parameter error

M7E_KSUB_FILEIO File handling error

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7OVSCompress, M7OVSDelete, M7OVSFindFirst, M7OVSFindNext,
M7OVSLinkln, M7OVSMemMode, M7OVSWrite

Description

Return Value

Error Codes

See Also

M7 APIM7OVSRead

5-139
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7OVSSetObjectHeader

Set an S7 object header

#include <m7api.h>
M7ERR_CODE M7OVSSetObjectHeader(

UBYTE_PTR ptr,
UWORD BlkNum,
UDWORD nLength,
UBYTE Language,
UBYTE Type,
UBYTE Attribute,
UBYTE ProtectionLevel);

Parameter Name Meaning

ptr Pointer to the memory area in which the S7 object header is
stored. The memory area must be at least
S7_OBJECT_HEADER_LENGTH bytes in size.

BlkNum Block number

nLength Total length of block in bytes

Language Language in which the block was created:

M7LANGTYP_HUELSE Container for SFCs and
SFBs

M7LANGTYP_AWL Block created in STL
(statement list)

M7LANGTYP_KOP Block created in LAD
(ladder diagram)

M7LANGTYP_FUP Block created in FBD
(function block diagram)

M7LANGTYP_SCL Block created in SCL

M7LANGTYP_DB Block created with block edi-
tor

M7LANGTYP_GRAPH Block created with Graph 5

M7LANGTYP_SDB Block created with system
data block editor

M7LANGTYP_CPU Block created dynamically
by the CPU

Type Block types:

M7BLKTYP_OB Organization block

M7BLKTYP_DB Data block

M7BLKTYP_FC Function call

M7BLKTYP_SFC System function call

M7BLKTYP_FB Function block

M7BLKTYP_SFB System function block

Function

Syntax

Parameters

M7 API M7OVSSetObjectHeader

5-140
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Parameter Name Meaning

Attributes Reserved, must be set to 0

WriteProtect Access allowed:
0 Read/write
1 Read only
2 Reading and writing not allowed
3 Know-how protection

The M7OVSSetObjectHeader function sets the header for a block to be
written with the function M7OVSWrite . The total length of the block must
be at least S7_OBJECT_HEADER_LENGTH.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_KSUB_PARAM Parameter error

M7OVSWrite

Description

Return Value

Error Codes

See Also

M7 APIM7OVSSetObjectHeader

5-141
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7OVSWrite

Object management system copy

#include <m7api.h>
M7ERR_CODE M7OVSWrite(

UDWORD flags,
M7CONNID ConnID,
UBYTE_PTR pBuffer,
UDWORD nBufsiz,
UWORD BlkTyp,
UWORD BlkNum);

Parameter Name Meaning
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

flags
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Flags

A_UNCONDITIONAL If it is not enabled, an existing
block of the same type with the
same number is not overwritten. If
A_UNCONDITIONAL is en-
abled, an existing block of the
same type with the same number is
overwritten.

A_FILE If it is enabled, pBuffer points to a
string with a file name. The speci-
fied file contains the block.

A_ZERO_FLAG This flag can be connected with
other options by an OR operation.
It must be set if no other flag is
used.ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ConnID
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pBuffer ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data buffer containing the data of the block.

If A_FILE is enabled, pBuffer points to a string with a file
name. The specified file contains the block.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

nBufsiz
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Length of the data buffer.

Ignored if A_FILE is enabled.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

BlkTyp
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Block types:

M7BLKTYP_OB Organization block

M7BLKTYP_DB Data block

M7BLKTYP_FC Function call

M7BLKTYP_SFC System function call

M7BLKTYP_FB Function block

M7BLKTYP_SFB System function block

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

BlkNum ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Number of block

Function

Syntax

Parameters

M7 API M7OVSWrite

5-142
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

The M7OVSWrite function copies the specified block from the specified
buffer or file to the memory of a remote S7 CPU or M7.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_PARAM Parameter error

M7E_KSUB_FILEIO File handling error

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

A restart is not possible on the M7.

M7OVSCompress, M7OVSDelete, M7OVSFindFirst, M7OVSFindNext,
M7OVSLinkln, M7OVSMemMode, M7OVSRead, M7OVSSetObjec-
tHeader

Description

Return Value

Error Codes

Note

See Also

M7 APIM7OVSWrite

5-143
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKBrcv

Block-oriented receive data via configured connections

#include <m7api.h>
M7ERR_CODE M7PBKBrcv(

UDWORD flags,
M7CONNID ConnID,
UDWORD R_ID,
M7VARADDR_PTR pDstVar,
UDWORD nLength,
M7COMMFRB_PTR pCommFRB
unsigned int Mprio);

Parameter Name Meaning

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

flags ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Flags

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.

A_USER The A_USER Flag is used for con-
trolling the parameter pDstVar (see
below).

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ConnID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

R_ID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Block identifier for the remote Bsend block or M7PBKBsend
call.ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

pDstVar
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to the receive buffer.

A_USER not set
Pointer to one structure of type M7VARADDR . It specifies a
contiguous area of items of a local S7 object to which the
received data are copied.

A_USER set
Pointer to a buffer to which the received data are written.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

nLength ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Total length of the buffer in bytes.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

pCommFRB ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to the function request block.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Mprio ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Priority of the message dispatched (0–255).

M7PBKBrcv starts an asynchronous communication job for a buffer of
nLength bytes via the connection ConnID from a BSEND block or
M7PBKBsend call with identifier R_ID. According to the specified flags
parameter, the data are written either to a buffer in the address area of the
task (flags=A_USER) or to the data area of the S7 object server (flags=0).

When the A_USER flag is not set, then the nLength parameter is not evalu-
ated, but the buffer length is determined from one of the data structures
pointed to by the parameter pSrcVar or pDstVar respectively. In this case

Function

Syntax

Parameters

Description

M7 API M7PBKBrcv

5-144
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

nLength can be assigned any value. Otherwise if the A_USER flag is set, you
must assign nLength the buffer length.

When the data have been transferred from the local station, or an error has
occurred, an M7MSG_PBK_NDR message is created with pCommFRB. The
FRB may not be used for any other purpose in the time between the
M7PBKBrcv call and receipt of the M7MSG_PBK_NDR message.

After receipt of the M7MSG_PBK_NDR Message the number of the received
bytes can be get by M7GetCommRcvLen call.

M7PBKBrcv calls can be canceled with M7PBKCancel .

If an error occurs in the asynchronous part, it can be read from the referenced
M7COMMFRB with the M7GetCommStatus macro.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating
mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O
area

M7E_TYPE Data type is invalid

M7GetCommRcvLen, M7PBKBsend, M7PBKCancel

Return Value

Error Codes

See Also

M7 APIM7PBKBrcv

5-145
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKBsend

Block-oriented send via configured connections

#include <m7api.h>
M7ERR_CODE M7PBKBsend(

UDWORD flags,
M7CONNID ConnID,
UDWORD R_ID,
M7VARADDR_PTR pSrcVar,
UDWORD nLength,
M7COMMFRB_PTR pCommFRB
unsigned int Mprio);

Parameter Name Meaning

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

flags ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Flags

A_USER The A_USER Flag is used for con-
trolling the parameters pSrcVar (see
below).

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ConnID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

R_ID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Block identifier for the remote BRCV block or M7PBKBrcv
call.ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

pSrcVar
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to the data to be sent.

A_USER not set
Pointer to one structure of type M7VARADDR . It specifies a
contiguous area of items in a local S7 object.

A_USER set
Pointer to a buffer containing the data to be sent.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

nLength
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Total length of the buffer in bytes.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁpCommFRB

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPointer to the function request block.ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Mprio
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Priority of the message dispatched (0–255).

M7PBKBsend starts asynchronous transmission of a data area of nLength via
the connection ConnID to the BRCV block specified by the R_ID identifier
or the M7PBKBrcv call on the remote station.

If flags=A_USER, the data to be sent begin at the address specified by
pSrcVar.

If flags=0, pSrcVar specifies the address of the variable to be sent in the ad-
dress area of the S7 object server.

Function

Syntax

Parameters

Description

M7 API M7PBKBsend

5-146
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

When the A_USER flag is not set, then the nLength parameter is not evalu-
ated, but the buffer length is determined from one of the data structures
pointed to by the parameter pSrcVar or pDstVar respectively. In this case
nLength can be assigned any value. Otherwise if the A_USER flag is set, you
must assign nLength the buffer length.

When the data have been transferred from the local station, or an error has
occurred, an M7MSG_PBK_DONE message is created with pCommFRB.
The FRB may not be used for any other purpose in the time between the
M7PBKBsend call and receipt of the M7MSG_PBK_DONE message.

M7PBKBsend calls can be canceled with M7PBKCancel .

If an error occurs in the asynchronous part, it can be read from the referenced
M7COMMFRB with the M7GetCommStatus macro.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating
mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O
area

M7E_TYPE Data type is invalid

M7GetCommStatus, M7PBKBrcv, M7PBKCancel

Return Value

Error Codes

See Also

M7 APIM7PBKBsend

5-147
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKCancel

Cancel running send or receive job via configured connections

#include <m7api.h>
M7ERR_CODE M7PBKCancel(

M7CONNID ConnID,
M7COMMFRB_PTR pCommFRB);

Parameter Name Meaning
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ConnID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pCommFRB
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to a function request block.

M7PBKCancel cancels a running M7PBKBsend-, M7PBKBrcv or
M7PBKURcv job. The send or receive job to be canceled is specified by the
parameters ConnID and pCommFRB (see M7PBKBrcv or M7PBKBsend).

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_NO_SUCH_FRB *M7COMMFRB not operational

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate, M7PBKBsend, M7PBKBrcv, M7PBKURcv

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7PBKCancel

5-148
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7PBKGet

Start asynchronous variable reading via configured connections

#include <m7api.h>
M7ERR_CODE M7PBKGet(

M7CONNID ConnID,
UBYTE nVars,
M7VARADDR_PTR pRemoteVar,
M7VARADDR_PTR pDstVar,
M7COMMFRB_PTR pCommFRB
unsigned int Mprio);

Parameter Name Meaning
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ConnID
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁnVars

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNumber of variables to be read.ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

pRemoteVar
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Array with the address specifications (M7VARADDR) . It
specifies the variables to be read from the remote station.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

pDstVar
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Array with the address specifications (M7VARADDR) . It
specifies for receiving data the variables of the S7 object
server of the local station .

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

pCommFRB ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to the function request block.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Mprio ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Priority of the message dispatched (0–255).

M7PBKGet starts the asynchronous process for reading nVars from the vari-
able area of the S7 object server or from the S7 CPU data area on the remote
station into the variable area of the S7 object server on the local station.

The following conditions apply to the maximum user data length for the
M7PBKGet call:

�(4 � nBytes(i)) � maxpdusize –14
i=1

nVars

0 � maxpdusize –12 * (nVars � 1)

and

maxpdusize is the maximum PDU size for the connection opened with
M7KInitiate and nBytes(i) is the number of bytes for the i-th variable,
rounded up to the nearest even number.

pRemoteVar and pDstVar are pointers to arrays with nVars elements each.
Each element specifies a contiguous area of items on the S7 object server or
in the S7 CPU data area (see M7BUBRead).

Function

Syntax

Parameters

Description

M7 APIM7PBKGet

5-149
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

When the data have been stored in the data area specified by pDstVar, an
M7MSG_PBK_NDR message is created for pCommFRB. The FRB may not
be used for any other purpose in the time between the M7PBKGet call and
receipt of the M7MSG_PBK_NDR message.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating
mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O
area

M7E_TYPE Data type is invalid

M7KInitiate, M7PBKPut, M7BUBRead

Return Value

Error Codes

See Also

M7 API M7PBKGet

5-150
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7PBKIAbort

Close an application link (for internal SIMATIC station communication
via non-configured connections)

#include <m7api.h>
M7ERR_CODE M7PBKIAbort(

UBYTE IOID,
UWORD LADDR);

Parameter Name Meaning

IOID Input or output address area
(M7KIOID_IN, M7KIOID_OUT)

LADDR I/O start address of remote station
(0–MAX_LOG_ADDR)

The M7PBKIAbort function closes an application link between a client and
server which were set up with the functions M7PBKIPut or M7PBKIGet .

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_ACTIVE The connection to station LADDR is cur-
rently active and cannot be closed.

M7PBKIPut, M7PBKIGet

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7PBKIAbort

5-151
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKIGet

Start asynchronous variable reading (for internal SIMATIC station com-
munication via non-configured connections)

#include <m7api.h>
M7ERR_CODE M7PBKIGet(

UDWORD flags,
UBYTE IOID,
UWORD LADDR,
M7VARADDR_PTR pRemoteVar,
M7VARADDR_PTR pDstVar,
M7COMMFRB_PTR pCommFRB,
unsigned int Mprio);

Parameter Name Meaning

flags Flags

CONT If CONT is set the application link set
up by the data transfer is retained.

If CONT is not set the application link
set up by the data transfer is closed
again after the data transfer

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must be
set if no other flag is used.

IOID Input or output address area (M7KIOID_IN, M7KIOID_OUT)

LADDR I/O start address of remote station (0–MAX_LOG_ADDR)

pRemoteVar Pointer to one structure of type M7VARADDR . It specifies a
contiguous area of items of a S7 object in the remote station.

pDstVar Pointer to one structure of type M7VARADDR . It specifies for
receiving data a variable of the S7 object in the local station .

pCommFRB Pointer to the function request block

MPrio Priority of the message sent (0-255)

M7PBKIGet starts asynchronous reading of a variable from the variable area
of the S7 object server on the remote station LADDR to the variable area of
the S7 object server on the local station.

An application link with the remote station is set up if one does not already
exist. If the CONT flag is enabled, the link remains intact after the end of data
transfer. When the application link is no longer required, it must be closed
with the M7PBKIAbort call. If the CONT flag is not enabled, the application
link is closed again automatically after the end of data transfer.

Function

Syntax

Parameters

Description

M7 API M7PBKIGet

5-152
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

pRemoteVar and pDstVar are pointers to elements which specify a contiguous
area of items in the S7 object server (see M7BUBRead).

If the data are stored in the data area specified by pDstVar, an
M7MSG_PBK_NDR message is created for pCommFRB. The FRB may not
be used for any other purpose in the time between the M7PBKIGet call and
receipt of the M7MSG_PBK_NDR message.

The user data length amount to 76 byte.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_CONN_ACTIVE The connection to station LADDR is cur-
rently active. No data can be transferred.

M7E_KSUB_NO_SRV MPI driver not active

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_REMOTE Execution error on server

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O area

M7E_TYPE Data type is invalid

M7GetCommStatus, M7PBKIAbort, M7PBKIPut, M7BUBRead

Note

Return Value

Error Codes

See Also

M7 APIM7PBKIGet

5-153
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKIPut

Start asynchronous variable writing (for internal SIMATIC station com-
munication via non-configured connections)

#include <m7api.h>
M7ERR_CODE M7PBKIPut(

UDWORD flags,
UBYTE IOID,
UWORD LADDR,
M7VARADDR_PTR pRemoteVar,
M7VARADDR_PTR pSrcVar,
M7COMMFRB_PTR pCommFRB,
unsigned int Mprio);

Parameter Name Meaning

flags Flags

CONT If CONT is set the application link
set up by the data transfer is retained.

If CONT is not set the application
link set up by the data transfer is
closed again after the data transfer

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.

IOID Input or output address area (M7KIOID_IN,
M7KIOID_OUT)

LADDR I/O start address of remote station (0–MAX_LOG_ADDR)

pRemoteVar Pointer to one structure of type M7VARADDR . It specifies
the variables to be overwritten in the S7 object server or the
S7 CPU data area of the remote station

pSrcVar Pointer to one structure of type M7VARADDR . It specifies
the variables to be sent in the S7 object server of the local
station

pCommFRB Pointer to the function request block

MPrio Priority of the message sent (0-255)

M7PBKIPut starts asynchronous writing of a variable in the S7 object server
or the S7 CPU data area of the remote station LADDR with the values of a
local variable of the S7 object server.

An application link with the remote station is set up if one does not already
exist. If the CONT flag is enabled, the link remains intact after the end of data
transfer. When the application link is no longer required, it must be closed

Function

Syntax

Parameters

Description

M7 API M7PBKIPut

5-154
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

with the M7PBKIAbort call. If the CONT flag is not enabled, the application
link is closed again automatically after the end of data transfer.

pRemoteVar and pSrcVar are pointers to the address specifications of the re-
mote or local variables in the S7 object server/S7 CPU data area.

When the data have been stored on the remote computer, or an error has oc-
curred, an M7MSG_PBK_DONE message is created with pCommFRB. The
FRB may not be used for any other purpose in the time between the
M7PBKIPut call and receipt of the M7MSG_PBK_DONE message.

The user data length amount to 76 byte.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_CONN_ACTIVE The connection to station LADDR is cur-
rently active. No data can be transferred.

M7E_KSUB_NO_SRV MPI driver not active

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_REMOTE Execution error on server

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O area

M7E_TYPE Data type is invalid

M7GetCommStatus, M7PBKIAbort, M7PBKIGet, M7BUBWrite

Note

Return Value

Error Codes

See Also

M7 APIM7PBKIPut

5-155
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKPrint

Send data with a format description

#include <m7api.h>
M7ERR_CODE M7PBKPrint(

UDWORD flags,
M7CONNID ConnID,
UBYTE printerID,
UBYTE * fmt,
UBYTE nVars,
M7VARDATA_PTR pSrcVar,
M7COMMFRB_PTR pCommFRB,
unsigned int MPrio);

Parameter Name Meaning

flags Flags

ConnID Connection ID

printerID Printer ID

fmt Format string (null-terminated)

n_Vars Number of send parameters

pSrcVar Send parameters

pCommFRB Pointer to the function request block

MPrio Priority of the message sent (0–255)

M7PBKPrint starts asynchronous sending of multiple data areas and a for-
mat string via connection ConnID to the remote station.

The nVars parameter specifies the number of data areas to be transferred.
pSrcVar points to an array of M7VARDATA objects. Each of these objects
contains a data area to be sent.

The fmt parameter points to a null-terminated format string.

When the data have been accepted by the remote station or an error has oc-
curred, an M7MSG_PBK_DONE message is created with pCommFRB. The
FRB may not be used for any other purpose in the time between the
M7PBKPrint call and receipt of the M7MSG_PBK_DONE message.

If an error occurs in the asynchronous component, it can be read out from the
referenced M7COMMFRB with the macro M7GetCommStatus .

The following conditions apply to the maximum user data length for the
M7PBKPrint call:

Function

Syntax

Parameters

Description

M7 API M7PBKPrint

5-156
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

�(4 � nBytes(i)) � maxpdusize� 26 � längefmt� 4 * nVars
i=1

nVars

maxpdusize is the maximum PDU size for the connection opened with
M7KInitiate and nBytes(i) is the number of bytes for the i-th variable,
rounded to the nearest even number.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate

Return Value

Error Codes

See Also

M7 APIM7PBKPrint

5-157
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKPut

Start asynchronous variable writing via configured connections

#include <m7api.h>
M7ERR_CODE M7PBKPut(

M7CONNID ConnID,
UBYTE nVars,
M7VARADDR_PTR pRemoteVar,
M7VARADDR_PTR pSrcVar,
M7COMMFRB_PTR pCommFRB
unsigned int MPrio);

Parameter Name Meaning
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ConnID
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁnVars

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNumber of variables to be written.ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pRemoteVar
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Array with the address specifications (M7VARADDR) . It
specifies the variables to be overwritten on the S7 object
server or in the S7 CPU data area of the remote station.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pSrcVar ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Array with the address specifications (M7VARADDR) . It
specifies the variables to be sent on the S7 object server of
the local station.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pCommFRB
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to the function request block.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁMPrio

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPriority with which a message is sent (0–255).

M7PBKPut starts asynchronous overwriting of nVars variables on the S7 ob-
ject server or in the S7 CPU data area of the remote station with the values of
local variables on the S7 object server.

pRemoteVar and pSrcVar are pointers to arrays with nVars elements contain-
ing the address specifications of the remote or local variables on the S7 ob-
ject server in the S7 CPU data area.

When the data have been stored on the remote computer, or an error has oc-
curred, an M7MSG_PBK_DONE message is created with pCommFRB. The
FRB may not be used for any other purpose in the time between the
M7PBKPut call and receipt of the M7MSG_PBK_DONE message.

The following conditions apply to the maximum user data length for the
M7PBKPut call:

�(4 � nBytes(i)) � maxpdusize –12 * (nVars� 1)
i=1

nVars

Function

Syntax

Parameters

Description

M7 API M7PBKPut

5-158
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

maxpdusize is the maximum PDU size for the connection opened with
M7KInitiate and nBytes(i) is the number of bytes for the i-th variable,
rounded to the nearest even number.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating
mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O
area

M7E_TYPE Data type is invalid

M7KInitiate, M7BKGet, M7BUBWrite, M7GetCommStatus

Return Value

Error Codes

See Also

M7 APIM7PBKPut

5-159
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKResume

Warm restart request for remote communication partner

#include <m7api.h>
M7ERR_CODE M7PBKResume(M7CONNID ConnID);

Parameter Name MeaningÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ConnID
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.

M7PBKResume sends a RESTART request to the remote computer.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

A restart is not possible on the M7.

M7KInitiate, M7PBKStart, M7PBKStop, M7PBKStatus

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

M7 API M7PBKResume

5-160
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7PBKStart

Cold start request for remote communication partner

#include <m7api.h>
M7ERR_CODE M7PBKStart(M7CONNID ConnID);

Parameter Name MeaningÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ConnID
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.

The M7PBKStart function sends a cold RESTART request to the destina-
tion computer for all user programs.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate, M7PBKResume, M7PBKStop, M7PBKStatus

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7PBKStart

5-161
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKStatus

Get status of remote communication partner

#include <m7api.h>
M7ERR_CODE M7PBKStatus (

M7CONNID ConnID,
M7PBKSTATUS_PTR pPBKStatus,
UDWORD nPBKStatus,
UDWORD *pnBytes);

Parameter Name Meaning

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ConnID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

pPBKStatus ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to a structure of the type M7PBKSTATUS in which
the logical and physical status of the remote device are stored
(see Chapter 3).

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

nResultBufsiz
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Length of the result buffer.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

pnBytes
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pointer to the number of bytes read.

The M7PBKStatus function returns the current virtual device status.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate, M7PBKResume, M7PBKStop, M7PBKStart

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7PBKStatus

5-162
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7PBKStop

Stop request for remote communication partner

#include <m7api.h>
M7ERR_CODE M7PBKStop (M7CONNID ConnID);

Parameter Name MeaningÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ConnID
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Connection reference from an M7KInitiate call.

The M7PBKStop function sends a STOP request for all user programs on the
destination computer.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate, M7PBKResume, M7PBKSatus, M7PBKStart

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7PBKStop

5-163
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKURcv

Uncoordinated receive via configured connections

#include <m7api.h>
M7ERR_CODE M7PBKURcv(

UDWORD flags,
M7CONNID ConnID,
UDWORD R_ID,
UBYTE n_Vars,
M7VARDATA_PTR pDstVar,
M7COMMFRB_PTR pCommFRB,
unsigned int MPrio);

Parameter Name Meaning

flags Flags (A_ZERO_FLAG)

ConnID Connection ID

R_ID Block identifier for the remote USEND block or
M7PBKUSend call.

n_Vars Number of receive parameters

pDstVar Receive parameters

pCommFRB Pointer to the function request block

MPrio Priority of the message sent (0–255)

M7PBKURcv starts asynchronous receipt of multiple data areas via connec-
tion ConnID from a USEND block or M7PBKUSend call with the identifier
R_ID.

The nVars parameter specifies the number of data areas to be received.
pSrcVar points to an array of M7VARDATA objects. Each of these objects
contain a data area for the received data.

When the data have been accepted by the local station or an error has oc-
curred, an M7MSG_PBK_NDR message is created with pCommFRB. The
FRB may not be used for any other purpose in the time between the
M7PBKURcv call and receipt of the M7MSG_PBK_NDR message.

If an error occurs in the asynchronous component, it can be read out from the
referenced M7COMMFRB with the macro M7GetCommStatus .

The following condition applies to the maximum user data length for the
M7PBKURcv call:

Function

Syntax

Parameters

Description

M7 API M7PBKURcv

5-164
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

�(4 � nBytes(i)) � maxpdusize� 24 � 4 * nVars
i=1

nVars

maxpdusize is the maximum PDU size for the connection opened with
M7KInitiate and nBytes(i) is the number of bytes for the i-th variable,
rounded to the nearest even number.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate, M7PBKUSend

Return Value

Error Codes

See Also

M7 APIM7PBKURcv

5-165
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKUSend

Uncoordinated send via configured connections

#include <m7api.h>
M7ERR_CODE M7PBKUSend(

UDWORD flags,
M7CONNID ConnID,
UDWORD R_ID,
UBYTE n_Vars,
M7VARDATA_PTR pSrcVar,
M7COMMFRB_PTR pCommFRB,
unsigned int MPrio);

Parameter Name Meaning

flags Flags (A_ZERO_FLAG)

ConnID Connection ID

R_ID Block identifier for the remote URCV block or
M7PBKURcv call.

n_Vars Number of send parameters

pSrcVar Send parameters

pCommFRB Pointer to the function request block

MPrio Priority of the message sent (0–255)

M7PBKUSend starts asynchronous sending of multiple data areas via connec-
tion ConnID to the URCV block specified by R_ID or the M7PBKURcv call
of the remote station.

The nVars parameter specifies the number of data areas to be transferred.

pSrcVar points to an array of M7VARDATA objects. Each of these objects
contain a data area to be sent.

When the data have been accepted by the remote station or an error has oc-
curred, an M7MSG_PBK_DONE message is created with pCommFRB. The
FRB may not be used for any other purpose in the time between the
M7PBKUSend call and receipt of the M7MSG_PBK_DONE message.

If an error occurs in the asynchronous component, it can be read out from the
referenced M7COMMFRB with the macro M7GetCommStatus .

The following condition applies to the maximum user data length for the
M7PBKUSend call:

Function

Syntax

Parameters

Description

M7 API M7PBKUSend

5-166
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

�(4 � nBytes(i)) � maxpdusize� 24 � 4 * nVars
i=1

nVars

maxpdusize is the maximum PDU size for the connection opened with
M7KInitiate and nBytes(i) is the number of bytes for the i-th variable,
rounded to the nearest even number.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate, M7PBKURcv

Return Value

Error Codes

See Also

M7 APIM7PBKUSend

5-167
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKXAbort

Close an application link (for communication on an MPI subnet via non-
configured connections)

#include <m7api.h>
M7ERR_CODE M7PBKXAbort(UWORD DEST_ID);

Parameter Name Meaning

DEST_ID MPI node address (0-126).

The M7PBKXAbort function closes an application link between client and
server which was set up with the functions M7PBKXSend, M7PBKXPut or
M7PBKXGet.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_KSUB_CONN_ACTIVE The connection to node DEST_ID is cur-
rently active and cannot be closed.

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_NOT_IMPLEMENTED Function not supported

M7PBKXSend, M7PBKXPut, M7PBKXGet

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7PBKXAbort

5-168
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7PBKXCancel

Cancel running receive request M7PBKXRcv (for communication on an
MPI subnet via non-configured connections)

#include <m7api.h>
M7ERR_CODE M7PBKXCancel(

M7COMMFRB_PTR CommFRB);

Parameter Name Meaning

pCommFRB Pointer to function request block

M7PBKCancel cancels a running M7PBKXRcv request.

The FRB may not be used for any other purpose until receipt of the
M7MSG_PBK_NDR message. If an error occurs in the asynchronous compo-
nent, it can be read out from the referenced M7COMMFRB with the macro
M7GetCommStatus .

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_KSUB_NO_SRV MPI driver not active

M7E_KSUB_REMOTE Execution error on server

M7E_NOT_IMPLEMENTED Function not supported

M7PBKXRcv, M7GetCommStatus

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7PBKXCancel

5-169
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKXGet

Asynchronous variable reading (for communication on an MPI subnet
via non-configured connections)

#include <m7api.h>
M7ERR_CODE M7PBKXGet(

UDWORD flags,
UWORD DEST_ID,
M7VARADDR_PTR pRemoteVar,
M7VARADDR_PTR pDstVar,
M7COMMFRB_PTR pCommFRB,
unsigned int Mprio);

Parameter Name Meaning

flags Flags

CONT If CONT is set the application link
set up by the data transfer is retained.

If CONT is not set the application
link set up by the data transfer is
closed again after the data transfer

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.

DEST_ID MPI address (0-126)

pRemoteVar Pointer to one structure of type M7VARADDR . It specifies
the variable to be read from the remote station

pDstVar Pointer to one structure of type M7VARADDR . It specifies
the variable of the S7 object server for receiving data.

pCommFRB Pointer to the function request block

MPrio Priority of the message sent (0-255)

M7PBKXGet starts asynchronous reading of a variable from the variable area
of the S7 object server or the S7 CPU data area on the remote station
DEST_ID to the variable area of the S7 object server on the local station.

An application link with the remote station is set up if one does not already
exist. If the CONT flag is enabled, the link remains intact after the end of data
transfer. When the application link is no longer required, it must be closed
with the M7PBKXAbort call. If the CONT flag is not enabled, the application
link is closed again automatically after the end of data transfer.

pRemoteVar and pDstVar are pointers to elements which specify a contiguous
area of items in the S7 object server or in the S7 CPU data area (see M7BU-
BRead).

Function

Syntax

Parameters

Description

M7 API M7PBKXGet

5-170
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

If the data are stored in the data area specified by pDstVar, an
M7MSG_PBK_NDR message is generated for pCommFRB. The FRB may
not be used for any other purpose in the time between the M7PBKXGet call
and receipt of the M7MSG_PBK_NDR message.

 The user data length amount to 76 byte.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_CONN_ACTIVE The connection to station DEST_ID is cur-
rently active. No data can be transferred.

M7E_KSUB_NO_SRV MPI driver not active

M7E_KSUB_NO_SUCH_CONN Invalid connection (DEST_ID incorrect)

M7E_KSUB_REMOTE Execution error on server

M7E_LENGTH Incorrect length

M7E_NOT_IMPLEMENTED Function is not supported

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O area

M7E_TYPE Data type is invalid

M7BUBRead, M7GetCommStatus, M7PBKXAbort, M7PBKPut

Note

Return Value

Error Codes

See Also

M7 APIM7PBKXGet

5-171
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKXPut

Start asynchronous variable writing (for communication on an MPI sub-
net via non-configured connections)

#include <m7api.h>
M7ERR_CODE M7PBKXPut(

UDWORD flags,
UWORD DEST_ID,
M7VARADDR_PTR pRemoteVar,
M7VARADDR_PTR pSrcVar,
M7COMMFRB_PTR pCommFRB,
unsigned int Mprio);

Parameter Name Meaning

flags Flags

CONT If CONT is set the application link set
up by the data transfer is retained.

If CONT is not set the application link
set up by the data transfer is closed
again after the data transfer

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must be
set if no other flag is used.

DEST_ID MPI address (0-126)

pRemoteVar Pointer to one structure of type M7VARADDR . It specifies
the variable to be overwritten in the S7 object server or the S7
CPU data area of the remote station

pSrcVar Pointer to one structure of type M7VARADDR . It specifies
the variable to be sent in the S7 object server of the local sta-
tion

pCommFRB Pointer to the function request block

MPrio Priority of the message sent (0-255)

M7PBKXPut starts asynchronous overwriting of a variable in the S7 object
server or S7 CPU data area of the remote station DEST_ID with the values of
a local variable on the S7 object server.

An application link with the remote station is set up if one does not already
exist. If the CONT flag is enabled, the link remains intact after the end of data
transfer. When the application link is no longer required, it must be closed
with the M7PBKXAbort call. If the CONT flag is not enabled, the application
link is closed again automatically after the end of data transfer.

pRemoteVar and pSrcVar are pointers to the address specifications of the re-
mote or local variable in the S7 object server/S7 CPU data area.

Function

Syntax

Parameters

Description

M7 API M7PBKXPut

5-172
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

If the data are stored on the remote computer, or an error has occurred, an
M7MSG_PBK_DONE message is created with pCommFRB. The FRB may
not be used for any other purpose in the time between the M7PBKXPut call
and receipt of the M7MSG_PBK_DONE message.

The user data length amount to 76 byte.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_KSUB_CONN_ACTIVE The connection to station DEST_ID is cur-
rently active. No data can be transferred.

M7E_KSUB_NO_SRV MPI driver not active

M7E_KSUB_NO_SUCH_CONN Invalid connection (DEST_ID incorrect)

M7E_KSUB_REMOTE Execution error on server

M7E_LENGTH Incorrect length

M7E_NOT_IMPLEMENTED Function is not supported

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O area

M7E_TYPE Data type is invalid

M7BUBWrite, M7GetCommStatus, M7PBKXAbort, M7PBKPXGet

Note

Return Value

Error Codes

See Also

M7 APIM7PBKXPut

5-173
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKXRcv

Receive data (for communication on an MPI subnet via non-configured
connections)

#include <m7api.h>
M7ERR_CODE M7PBKXRcv(

UDWORD flags,
UDWORD R_ID,
M7VARADDR_PTR pDstVar,
UDWORD nLength,
M7COMMFRB_PTR pCommFRB,
unsigned int MPrio);

Parameter Name Meaning

flags Flags

A_USER The A_USER Flag is used for con-
trolling the parameters pDstVar (see
below).

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.

R_ID Block identifier for the remote XSEND block or
M7PBKXSend call.

pDstVar Pointer to the receive buffer.

A_USER not set
Pointer to one structure of type M7VARADDR . It specifies a
contiguous area of items of an S7 object into which the re-
ceived data are copied.

A_USER set
Pointer to a buffer to which the received data are written.

nLength Total length of the buffer in bytes

pCommFRB Pointer to the function request block

MPrio Priority of the message sent (0-255)

M7PBKXRcv starts an asynchronous receive request for a buffer of nLength
bytes from an XSEND block or M7PBKXSend call with identifier R_ID. De-
pending on the specified flags, the data are written to a buffer in the address
area of the task (Flags=A_USER) or to the data area of the S7 object server
(flags=A_ZERO_FLAG).

When the A_USER flag is not set, then the nLength parameter is not evalu-
ated, but the buffer length is determined from one of the data structures
pointed to by the parameter pSrcVar or pDstVar respectively. In this case

Function

Syntax

Parameters

Description

M7 API M7PBKXRcv

5-174
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

nLength can be assigned any value. Otherwise if the A_USER flag is set, you
must assign nLength the buffer length.

When the data have been accepted by the local station or an error has oc-
curred, an M7MSG_PBK_NDR message is created with pCommFRB. The
FRB may not be used for any other purpose in the time between the
M7PBKXRcv call and receipt of the M7MSG_PBK_NDR message.

After receipt of an M7MSG_PBK_NDR message, the number of bytes re-
ceived can be determined using the M7GetCommRcvLen call.

M7PBKXRcv calls can be canceled with M7PBKXCancel.

If an error occurs in the asynchronous component, it can be read out from the
referenced M7COMMFRB with the macro M7GetCommStatus .

The user data length amount to 76 byte.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_KSUB_NO_SRV MPI driver not active

M7E_KSUB_REMOTE Execution error on server

M7E_NO_MEM No more memory available

M7E_PRIO Incorrect priority

M7E_LENGTH Incorrect length

M7E_NOT_IMPLEMENTED Function is not supported

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O area

M7E_TYPE Data type is invalid

M7GetCommRcvLen, M7GetCommStatus, M7PBKXSend,
M7PBKXCancel

Note

Return Value

Error Codes

See Also

M7 APIM7PBKXRcv

5-175
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7PBKXSend

Send data (for communication on an MPI subnet via non-configured con-
nections)

#include <m7api.h>
M7ERR_CODE M7PBKXSend(

UDWORD flags,
UWORD DEST_ID,
UDWORD R_ID,
M7VARADDR_PTR pSrcVar,
UDWORD nLength,
M7COMMFRB_PTR pCommFRB,
unsigned int MPrio);

Parameter Name Meaning

flags Flags

CONT If CONT is set the application link
set up by the data transfer is retained.

If CONT is not set the application
link set up by the data transfer is
closed again after the data transfer

A_USER The A_USER Flag is used for con-
trolling the parameters pSrcVar (see
below).

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.

DEST_ID MPI address (0-255)

R_ID Block identifier for the remote XRCV block or M7PBKXRcv
call.

pSrcVar Pointer to the data to be sent.

A_USER not set
Pointer to one structure of type M7VARADDR . It specifies a
contiguous area of items in a local S7 object.

A_USER set
Pointer to a buffer containing the data to be sent.

nLength Total length of the buffer in bytes

pCommFRB Pointer to the function request block

MPrio Priority of the message sent (0-255)

M7PBKXSend starts asynchronous sending of a data area of length nLength
to the node DEST_ID to the XRCV block or M7PBKXRcv call, specified by
R_ID, on the remote station.

Function

Syntax

Parameters

Description

M7 API M7PBKXSend

5-176
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

An application link with the node is set up if one does not already exist. If
the CONT flag is enabled, the link remains intact after the end of data trans-
fer. When the application link is no longer required, it must be closed with
the M7PBKXAbort call. If the CONT flag is not enabled, the application link
is closed again automatically after the end of data transfer.

If the A_USER flag is enabled, the data to be sent begin at the address speci-
fied by pSrcVar.

If the A_USER flag is not enabled, pSrcVar specifies the address of the vari-
able to be sent in the address area of the S7 object server.

When the A_USER flag is not set, then the nLength parameter is not evalu-
ated, but the buffer length is determined from one of the data structures
pointed to by the parameter pSrcVar or pDstVar respectively. In this case
nLength can be assigned any value. Otherwise if the A_USER flag is set, you
must assign nLength the buffer length.

When the data have been accepted by the remote station or an error has oc-
curred, an M7MSG_PBK_DONE message is created with pCommFRB. The
FRB may not be used for any other purpose in the time between the
M7PBKXSend call and receipt of the M7MSG_PBK_DONE message.

If an error occurs in the asynchronous component, it can be read out from the
referenced M7COMMFRB with the macro M7GetCommStatus .

The user data length amount to 76 bytes.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning

M7E_KSUB_CONN_ACTIVE The connection to station DEST_ID is cur-
rently active. No data can be transferred.

M7E_KSUB_NO_SRV MPI driver not active

M7E_KSUB_NO_SUCH_CONN Invalid connection (DEST_ID incorrect)

M7E_KSUB_REMOTE Execution error on server

M7E_LENGTH Wrong length

M7E_NO_MEM No more memory available

M7E_NOT_IMPLEMENTED Function is not supported

M7E_OBJ Object type is not supported

M7E_OFFSET Wrong offset

M7E_OVS_WRONG_STATE Activity not permited in the actual working
state

M7E_PAR Error of parameter

M7E_PART Subdomain not available

Note

Return Value

Error Codes

M7 API

5-177
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

M7E_PER_BITS Bit address is inadmissible in the peripheral
area

M7E_PRIO Incorrect priority

M7E_TYPE Data type is invalid

M7GetCommStatus, M7PBKXAbort, M7PBKXRcvSee Also

M7 API M7PBKXSend

5-178
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7Read

Read S7 data area

#include <m7api.h>
M7ERR_CODE M7Read(

VOID_PTR pBuffer,
UBYTE ObjType,
UWORD Part,
UBYTE DataType,
UWORD Count,
UDWORD Addr);

Parameter Name Meaning

pBuffer Pointer to the destination buffer

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.) The permissible values for the
subarea depend on the type of S7 object (see Table 2-8)

DataType Data type of an element (see Table 2-9). For the data type
M7DT_BOOL is only available the value 1 for the parameter
LENGTH.

Count Number of elements to be read

Addr Address or offset within an object or subarea. If DataType ≠
BOOL, Addr must be a multiple of 8 bits.

The function reads a defined number of data elements from an S7 data area
and copies them to a user data area.

The contents of the data area are not converted from SIMATIC to Intel
numeric representation.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

Function

Syntax

Parameters

Description

Return Value

Error Codes

M7 APIM7Read

5-179
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

M7E_PER_BITS Bit addressing not permitted in I/O area

M7E_TYPE Data type is invalid

M7ReadBit, M7ReadByte, M7ReadDWord, M7ReadWordSee Also

M7 API M7Read

5-180
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7ReadBit

Read bit from S7 object

#include <m7api.h>
BOOL M7ReadBit(

UBYTE ObjType,
UWORD Part,
UWORD ByteOffset,
UBYTE BitOffset,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.) The permissible values for the
subarea depend on the type of S7 object (see Table 2-8).

ByteOffset Offset of the byte where the desired bit is stored

BitOffset Offset of the desired bit within the byte

pError Pointer to a variable of the type M7ERR_CODE, in which an
error code is to be stored.

The function reads a bit from an S7 object. The bit is defined by the above
parameters.

If the function is successfully executed, the return value is the state of the
addressed bit. If the state = ‘0’, the value is FALSE; if the state = ‘1’, the
value is TRUE.

Error Code Meaning

M7E_BIT_OFFSET Incorrect bit offset within the byte

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O area

M7E_TYPE Data type is invalid

M7Read, M7ReadByte, M7ReadDWord, M7ReadWord, M7ReadReal

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7ReadBit

5-181
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7ReadByte

Read byte from S7 object

#include <m7api.h>
UBYTE M7ReadByte(

UBYTE ObjType,
UWORD Part,
UWORD ByteOffset,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table).

ByteOffset Offset of the desired byte

pError Pointer to a variable of the type M7ERR_CODE, in which an
error code is to be stored.

The function reads a byte from an S7 object. The byte is defined by the
above parameters.

If the function is successfully executed, the return value is the value of the
addressed byte.

Error Code Meaning

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_TYPE Data type not supported

M7Read, M7ReadBit, M7ReadDWord, M7ReadWord, M7ReadReal

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7ReadByte

5-182
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7ReadDWord

Read doubleword from S7 object

#include <m7api.h>
UDWORD M7ReadDWord(

UBYTE ObjType,
UWORD Part,
UWORD ByteOffset,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)

ByteOffset Offset of the desired doubleword

pError Pointer to a variable of the type ERR_CODE, in which an
error code is to be stored.

The function reads a doubleword from an S7 object. The doubleword is de-
fined by the above parameters.

The contents of the doubleword are converted from the SIMATIC to the
Intel numeric representation.

If the function is successfully executed, the return value is the value of the
addressed doubleword in Intel format.

Error Code Meaning

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_TYPE Data type not supported

M7Read, M7ReadBit, M7ReadByte, M7ReadWord, M7ReadReal

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7ReadDWord

5-183
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7ReadReal

Read floating point number from S7 object

#include <m7api.h>
REAL M7ReadReal(

UBYTE ObjType,
UWORD Part,
UWORD ByteOffset,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)

ByteOffset Offset of the desired floating point number

pError Pointer to a variable of the type ERR_CODE, in which an
error code is to be stored.

The function reads a floating point number from an S7 object. The floating
point number is defined by the above parameters.

The contents of the floating point number are converted from the SI-
MATIC to the Intel numeric representation.

If the function is successfully executed, the return value is the value of the
addressed floating point number in Intel format.

Error Code Meaning

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_TYPE Data type not supported

M7Read, M7ReadBit, M7ReadByte, M7ReadDWord, M7WriteReal

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7ReadReal

5-184
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7ReadWord

Read word from S7 object

#include <m7api.h>
UWORD M7ReadWord(

UBYTE ObjType,
UWORD Part,
UWORD ByteOffset,
M7ERR_CODE_PTR pError);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)

ByteOffset Offset of the desired word

pError Pointer to a variable of the type ERR_CODE, in which an
error code is to be stored.

The function reads a word from an S7 object. The word is defined by the
above parameters.

The contents of the word are converted from the SIMATIC to the Intel
numeric representation.

If the function is successfully executed, the return value is the value of the
addressed word in Intel format.

Error Code Meaning

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_TYPE Data type not supported

M7Read, M7ReadBit, M7ReadByte, M7ReadDWord, M7ReadReal

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7ReadWord

5-185
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7RelocateObject

Pass S7 object to object server

#include <m7api.h>
M7ERRCODE M7RelocateObject(

UBYTE ObjType,
UWORD Part,
BOOL Copy);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)

Copy Handling of new memory area

TRUE The user data of the object are copied to the
new memory area.

FALSE The user data of the object are not trans-
ferred.

This function M7RelocateObject can be used to pass an S7 object Obj-
Type, which has previously been assigned to the responsibility of a user task
with the function M7LocateObject , back to the object server.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NOT_LOCATED Object was not passed to a user task with M7Loca-
teObject

M7E_NO_MEM No more memory available

M7E_OBJ Object type not supported.

M7E_PART Subarea not available.

M7LocateObject

Funktion

Syntax

Parameters

Beschreibung

Return Value

Error Codes

See Also

M7 API M7RelocateObject

5-186
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7RemoveObject

Delete S7 object from BACKDIR or ROMDIR

#include <m7api.h>
M7ERR_CODE M7RemoveObject(

UBYTE ObjType,
UWORD Part,
BOOL Rom);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.) The permissible values for the sub-
area depend on the type of S7 object (see Table 2-8).

Rom Rom = FALSE: S7 object is deleted from BACKDIR.

Rom = TRUE: S7 object is deleted from ROMDIR.

The function deletes an S7 object from the BACKDIR or ROMDIR directory,
depending on the Rom parameter.

If the function is successfully executed, it returns the value of the addressed
word in Intel format.

The function passes error flags in *pError:

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred (see Error Codes).

Error Code Meaning

M7E_PART Subarea not available.

M7E_NODIR Directory not readable or does not exist.

M7E_OBJ Object type not supported.

M7E_REM_OBJ Illegal action because the object is retentive

M7CreateObject, M7DeleteObject, M7GetObjectInfo

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7RemoveObject

5-187
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7RequestState

Request operating state change

#include <m7api.h>
void M7RequestState(

M7TSFRB_PTR pTSFRB,
UWORD State,
UWORD Reason,
uint MPrio);

Parameter Name Meaning

pTSFRB Pointer to the FRB provided for handling the request.

State Specifies the new operating state requested.

The following values can be specified:

M7STATE_HALT HALT operating state

M7STATE_RESET RESET operating state

M7STATE_RUN RUN operating state

M7STATE_STOP STOP operating state

M7STATE_CONTINUE CONTINUE from HALT op-
erating state in the former
state (STARTUP or RUN).

Reason For user diagnostics entries; from 0xA000 to 0xBFFF.

MPrio Priority of the message dispatched (0–255).

The function requests a change to the operating state specified in the State
parameter.

When the operating state specified in the State parameter is activated, or an
error has occurred, the calling task is informed by a message of the type
M7MSG_REQ_FINISHED.

When the M7MSG_REQ_FINISHED message is received, you can use the C
macro M7GetFRBErrCode to detect whether the function has been success-
ful.

In this case, M7GetFRBErrCode returns the following error codes:

Error Code Meaning

M7E_OST_CPU_IN_STOP CPU in STOP mode (for FM)

M7E_OST_ILLEGAL_PARAM_CPU Parameter error

M7E_OST_MODE_SW_IN_STOP Operating mode selector on CPU/FM
is set to STOP

Function

Syntax

Parameters

Description

Error Codes

M7 API M7RequestState

5-188
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

M7E_OST_WRONG_STATE Transition from current state not possi-
ble or requested state already active.

M7E_OST_NO_SUCH_STATE Unknown operating state

M7E_PAR Parameter error

M7E_PRIO Incorrect priority

= M7SUCCESS Always returned

You should check whether the requested operating state has been activated or
denied, or whether an error has occurred, after the M7MSG_REQ_FIN-
ISHED message has been received, with the functions M7GetFRBErr-
Code or M7GetTSType .

M7GetState, M7LinkState, M7GetFRBErrCode, M7GetTSType

Return Value

See Also

M7 APIM7RequestState

5-189
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7RetriggerCycle

Retrigger cycle time

#include <m7api.h>
M7ERR_CODE M7RetriggerCycle(void)

The function resets the cycle time, with the result that monitoring of the
maximum cycle time recommences.

= M7SUCCESS Always returned

M7LinkCycle, M7UnLinkCycle

Function

Syntax

Description

Return Value

See Also

M7 API M7RetriggerCycle

5-190
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7SendDiagAlarm

Send diagnostics alarm to S7 CPU

#include <m7api.h>
M7ERR_CODE M7SendDiagAlarm(VOID_PTR pAlarmInfo);

Parameter Name Meaning

pAlarmInfo Pointer to a memory area containing the supplementary
alarm information. The supplementary information is 16
bytes in length and is transferred to diagnostics record 1.

The function sends a diagnostics alarm to the S7/M7 CPU.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_GL_ALARM_DISABLED All alarms are disabled (activated by
S7/M7 CPU).

M7E_ODIS Output disable (activated by S7/M7
CPU).

M7E_D_ALARM_BUSY Diagnostics alarm has not yet been ack-
nowledged by S7/M7 CPU.

M7E_ALARM_GEN_DISABLED Alarm generation disabled on module in
record 0.

M7E_D_ALARM_GEN_DISABLED Diagnostics alarm generation disabled
on module in record 0.

M7GetDiagAlarmBusy

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7SendDiagAlarm

5-191
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7SendIOAlarm

Send process alarm to S7 CPU

#include <m7api.h>
M7ERR_CODE M7SendIOAlarm(UDWORD AlarmInfo);

Parameter Name Meaning

AlarmInfo 4 bytes of supplementary alarm information

The function sends a process alarm to the S7/M7 CPU.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_GL_ALARM_DISABLED All alarms are disabled
(activated by S7/M7 CPU).

M7E_ODIS Output disable
(activated by S7/M7 CPU).

M7E_P_ALARM_BUSY Process alarm has not yet been acknow-
ledged by S7/M7 CPU.

M7E_ALARM_GEN_DISABLED Alarm generation disabled on module in
record 0.

M7E_P_ALARM_GEN_DISABLED Process alarm generation disabled on
module in record 0.

M7GetIOAlarmBusy

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7SendIOAlarm

5-192
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7SetFRBTag

Set identifier of an FRB

#include <m7api.h>
void M7SetFRBTag(

M7FRBHEADER_PTR pFRB,
UWORD Tag);

Parameter Name Meaning

pFRB Pointer to FRB whose identifier is to be set.

Tag Identifier of the FRB

The function sets the identifier of the FRB to the value specified in the Tag
parameter.

The value is user-specific and can be allocated freely within the value range
permitted for UWORD.

The FRB identifier can be read out again with the M7GetFRBTag function.

The call is implemented as a C macro.

M7GetFRBErrCode, M7GetFRBTag

Function

Syntax

Parameters

Description

See Also

M7 APIM7SetFRBTag

5-193
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7SetTime

Set date and time

#include <m7api.h>
M7ERR_CODE M7SetTime(

M7TIME_DATE_PTR pDateTime);

Parameter Name Meaning

pDateTime Pointer to the memory area containing the date/time structure
in which the current values for the date and time are stored
(see Chapter 3).

The function sets the internal system time and date.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Parameter error

M7GetTime

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7SetTime

5-194
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7SetUserLED

Control user (USR) LEDs

#include <m7api.h>
M7ERR_CODE M7SetUserLED(

UWORD Led,
UWORD Mode);

Parameter Name Meaning

Led Number of user LED:
M7USERLED1 M7-300 and M7-400
M7USERLED2 M7-400 only

Mode Control mode:

M7LED_OFF Switch off LED

M7LED_ON Switch on LED, steady light

M7LED_FLASHSLOW Switch on LED, flashing
light, 0.5 Hz

M7LED_FLASHFAST Switch on LED, flashing
light, 2 Hz

The function switches the user LED on, off or flashing (0.5 or 2 Hz), accord-
ing to the value of Mode.

You specify the number of the “user” LED with the Led parameter. M7US-
ERLED1 and M7USERLED2 can be specified for Led on the M7-400; only
M7USERLED1 is allowed on the M7-300.

The selected LED can be switched on or off with the constants M7LED_ON
and M7LED_OFF. The flashing frequency can also be controlled in the Mode
parameter by performing a logic operation with M7LED_FLASHSLOW or
M7LED_FLASHFAST.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Parameter error

Function

Syntax

Parameters

Description

Return Value

Error Codes

M7 APIM7SetUserLED

5-195
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7StoreBit

Set bit state in process image

#include <m7api.h>
M7ERR_CODE M7StoreBit(

UWORD PIType,
UWORD ByteOffset,
UBYTE BitOffset,
BOOL Value);

Parameter Name Meaning

PIType Identifiers for process images:

M7IO_PII Process image of inputs

M7IO_PIQ Process image of outputs

ByteOffset Offset of signal byte

BitOffset Bit offset within the signal byte

Value State to which the addressed bit is to be set (TRUE or FALSE)

The function addresses a bit in the process image defined by PIType, and sets
it to the state specified in Value.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Incorrect PIType, ByteOffset or BitOffset

M7StoreByte, M7StoreDWord, M7StoreWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7StoreBit

5-196
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7StoreByte

Overwrite byte in process image

#include <m7api.h>
M7ERR_CODE M7StoreByte(

UWORD PIType,
UWORD ByteOffset,
UBYTE Value);

Parameter Name Meaning

PIType Identifiers for process images:

M7IO_PII Process image of inputs

M7IO_PIQ Process image of outputs

ByteOffset Offset of signal byte

Value New value with which the byte in the process image is to
be overwritten.

The function addresses a byte in the process image defined by PIType, and
overwrites it with the value specified in Value.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Incorrect PIType or ByteOffset

M7StoreBit, M7StoreDWord, M7StoreWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7StoreByte

5-197
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7StoreDirect

Write data direct to I/O area

#include <m7api.h>
M7ERR_CODE M7StoreDirect(

VOID_PTR pBuffer,
UWORD SizeOfItem,
UWORD Count,
M7IO_LOGADDR Addr);

Parameter Name Meaning

pBuffer Pointer to the source buffer

SizeOfItem Size of an element in bytes.
The following constants are predefined:

M7PBYTE Element has data type BYTE

M7PWORD Element has data type WORD

M7PDWORD Element has data type DWORD

Count Number of elements

Addr Logical address of first element

The function transfers data directly to the process I/O from a data buffer ref-
erenced by pBuffer. The size, number and destination of the transferred data
are defined by the call parameters.

The function does not convert the numeric representation (SIMATIC/Intel).

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Parameter error

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DP_SLAVE_STATE Device not ready for data communication

M7StoreDirectByte, M7StoreDirectDWord, M7StoreDirectWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7StoreDirectM7StoreDirect

5-198
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7StoreDirectByte

Write byte direct to I/O

#include <m7api.h>
M7ERR_CODE M7StoreDirectByte(

M7IO_LOGADDR Addr,
UBYTE Value);

Parameter Name Meaning

Addr Logical address of the I/O byte

Value New value with which the I/O byte is to be overwritten.

The function addresses a byte on the process I/O and overwrites it with the
value specified by Value.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Parameter error

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DP_SLAVE_STATE Device not ready for data communication

M7StoreDirect, M7StoreDirectDWord, M7StoreDirectWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7StoreDirectByte

5-199
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7StoreDirectDWord

Write doubleword direct to I/O

#include <m7api.h>
M7ERR_CODE M7StoreDirectDWord(

M7IO_LOGADDR Addr,
UDWORD Value);

Parameter Name Meaning

Addr Logical address of the I/O doubleword

Value New value with which the I/O doubleword is to be over-
written, in SIMATIC format.

The function addresses a doubleword on the process I/O and overwrites it
with the value specified by Value.

Before the value specified by Value is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Parameter error

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DP_SLAVE_STATE Device not ready for data communication

M7StoreDirect, M7StoreDirectByte, M7StoreDirectWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7StoreDirectDWord

5-200
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7StoreDirectWord

Write word direct to I/O

#include <m7api.h>
M7ERR_CODE M7StoreDirectWord(

M7IO_LOGADDR Addr,
UWORD Value);

Parameter Name Meaning

Addr Logical address of the I/O word

Value New value with which the I/O word is to be overwritten, in
SIMATIC format.

The function addresses a word on the process I/O and overwrites it with the
value specified by Value.

Before the value specified by Value is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Parameter error

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DP_SLAVE_STATE Device not ready for data communication

M7StoreDirect, M7StoreDirectByte, M7StoreDirectDWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7StoreDirectWord

5-201
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7StoreDWord

Write doubleword to process image

#include <m7api.h>
M7ERR_CODE M7StoreDWord(

UWORD PIType,
UWORD ByteOffset,
UDWORD Value);

Parameters Name Meaning

PIType Identifiers for process images:

M7IO_PII Process image of inputs

M7IO_PIQ Process image of outputs

ByteOffset Offset of signal doubleword

Value New value with which the doubleword in the process
image is to be overwritten, in SIMATIC format.

The function addresses a doubleword in the process image defined by
PIType, and overwrites it with the value specified in Value.

Before the value specified by Value is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Parameter error

M7StoreBit, M7StoreByte, M7StoreWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7StoreDWord

5-202
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7StoreISAByte

Write byte direct to ISA bus I/O

#include <m7api.h>
M7ERR_CODE M7StoreISAByte(

M7IO_DESC_PTR pIODesc,
UBYTE Value);

Parameter Name Meaning

pIODesc Pointer to I/O descriptor initialized with M7InitISADesc .

Value Value to be written

The function runs as a macro, performing a direct access to the ISA bus pro-
cess I/O, using an I/O descriptor generated with M7InitISADesc .The
value to be written is defined by val. The address of the I/O area is defined
by the I/O descriptor for the output signals. The process image of outputs is
updated automatically.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Data access to ISA bus is larger (in bytes) than specified in
M7InitISADesc .

M7StoreISAWord, M7StoreISADWord, M7InitISADesc

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7StoreISAByte

5-203
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7StoreISADWord

Write doubleword direct to ISA bus I/O

#include <m7api.h>
M7ERR_CODE M7StoreISADWord(

M7IO_DESC_PTR pIODesc,
UDWORD val);

Parameter Name Meaning

pIoDesc Pointer to I/O descriptor initialized with M7InitISADesc

val Value to be written

The function runs as a macro, performing a direct access to the ISA bus pro-
cess I/O, using an I/O descriptor generated with M7InitISADesc . The
value to be written is defined by val. The address of the I/O area is defined
by the I/O descriptor for the output signals. The process image of outputs is
updated automatically.

The function converts the value from Intel to SIMATIC format before
performing the access.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Data access to ISA bus is larger (in bytes) than specified in
M7InitISADesc .

M7StoreISAByte, M7StoreISAWord, M7InitISADesc

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7StoreISADWord

5-204
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7StoreISAWord

Write word direct to ISA bus I/O

#include <m7api.h>
M7ERR_CODE M7StoreISAWord(

M7IO_DESC_PTR pIODesc,
UWORD val);

Parameter Name Meaning

pIoDesc Pointer to I/O descriptor initialized with M7InitISADesc

val Value to be written

The function runs as a macro, performing a direct access to the ISA bus pro-
cess I/O, using an I/O descriptor generated with M7InitISADesc . The
value to be written is defined by val. The address of the I/O area is defined
by the I/O descriptor for the output signals. The process image of outputs is
updated automatically.

The function converts the value from Intel to SIMATIC format before
performing the access.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Data access to ISA bus is larger (in bytes) than specified in
M7InitISADesc .

M7StoreISAByte, M7StoreISADWord, M7InitISADesc

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7StoreISAWord

5-205
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7StoreObject

Store S7 object in BACKDIR or ROMDIR

#include <m7api.h>
M7ERR_CODE M7StoreObject(

UBYTE ObjType,
UWORD Part,
BOOL Rom);

Parameter Name Meaning

ObjType Type identifier for the S7 object:

M7D_DB Data block

M7D_PAR_READ Parameter data record with read at-
tribute

M7D_PAR_WRITE Parameter data record with write at-
tribute

Part Subarea (DB number of the parameter data record)

Rom Rom = TRUE: S7 object is stored in ROMDIR.

Rom = FALSE: S7 object is stored in BACKDIR.

The function stores an S7 object in the directory defined by the environment
variable BACKDIR or ROMDIR. The Rom call parameter defines the
memory area in which the S7 object is to be stored.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PART Subarea not available.

M7E_NODIR Directory not readable or does not exist.

M7E_OBJ Object type not supported.

M7CreateObject, M7DeleteObject, M7RemoveObject, M7LocateObject

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7StoreObject

5-206
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7StorePIQ

Update output signals

#include <m7api.h>
M7ERR_CODE M7StorePIQ(UWORD PIQNo);

Parameter Name Meaning

PIINo Number of process images part on M7-400.
M7-400:
0 Complete process image
1 ... 8 Process image part
M7-300:
0 Complete process image
Process image parts are not supported

The function updates the output signals with the contents of the complete
process image or the specified part of the process image of outputs.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Parameter error

M7E_PARITY Local bus parity error

M7E_QVZ LB timeout

M7LoadPII, M7ClearPI

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7StorePIQ

5-207
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7StoreRecord

Transfer data record to a signal module

#include <m7api.h>
M7ERR_CODE M7StoreRecord(

UBYTE RecordNum,
VOID_PTR pBuffer,
UBYTE Size,
UBYTE PType,
M7IO_BASEADDR Addr);

Parameter Name Meaning

RecordNum Record number

Range: 0 to 255

pBuffer Pointer to a buffer in the working memory containing the
contents of the data record referenced by RecordNum.

Size Length of the data record

PType Identifier for the I/O module:

M7IO_IN Input module

M7IO_OUT Output module

If the module is a mixed module, specify the area ID of the
lowest address. If the addresses are the same, specify
M7IO_IN.

Addr I/O base address of signal module

The function transfers a data record from the data buffer referenced by the
pBuffer parameter to an I/O module.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_COM_ERROR Error on transfer protocol handling

M7E_HWFAULT General hardware error

M7E_PAR Parameter error

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

Function

Syntax

Parameters

Description

Return Value

Error Codes

M7 API M7StoreRecord

5-208
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

M7E_REC_LENGTH Module reporting incorrect record length

M7E_REC_NUMBER Module reporting incorrect record number

M7E_DPX2_FAULT Error on DP job for record transfer

M7E_DP_SLAVE_STATE DP Slave not in DATA state

M7E_INVAL_DEV Module of a DP slave is not available

M7LoadRecordSee Also

M7 APIM7StoreRecord

5-209
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7StoreWord

Overwrite word in process image

#include <m7api.h>
M7ERR_CODE M7StoreWord(

UWORD PIType,
UWORD ByteOffset,
UWORD Value);

Parameter Name Meaning

PIType Identifiers for process images:

M7IO_PII Process image of inputs

M7IO_PIQ Process image of outputs

ByteOffset Offset of signal word

Value New value with which the word in the process image is to
be overwritten.

The function addresses a word in the process image defined by PIType, and
overwrites it with the value specified in Value.

Before the value specified by Value is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Error in PIType or ByteOffset.

M7StoreBit, M7StoreByte, M7StoreDWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7StoreWord

5-210
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7SZLRead

Read system state list

#include <m7api.h>
M7ERR_CODE M7SZLRead (

UDWORD flags,
M7CONNID ConnID,
UBYTE_PTR pBuffer,
UDWORD nBufsiz,
UWORD szlID,
UWORD Index,
UDWORD *pnBytes);

Parameter Name Meaning

flags Flags

A_FILE If it is enabled, pBuffer specifies
the name of the file in which the
system state list item is stored;
otherwise the item is stored in me-
mory.

A_ZERO_FLAG This flag can be connected with
other options by an OR operation.
It must be set if no other flag is
used.

ConnID Connection reference from an M7KInitiate call.

pBuffer Receive buffer.
If A_FILE is enabled, pBuffer specifies the name of the file
in which the item is stored; otherwise the item is stored in
memory.

nBufsiz Length of the receive buffer.
Ignored if A_FILE is enabled.

SZLID ID of the SZL sublist to be read.

Index Index in the sublist.

pnBytes Pointer to the number of bytes read.

The M7SZLRead function reads out the part of the system state list specified
by szlID and Index from the destination computer. The user should specify a
buffer sufficiently large to store the system state list data. If a buffer overflow
occurs, the function returns an appropriate error code.

The structure of the system state list for an M7 is described in the User
Manual, System Software for S7-300 and S7-400, Installation and Operation.

Function

Syntax

Parameters

Description

M7 APIM7SZLRead

5-211
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_PARAM Parameter error

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_FILEIO Error on file handling

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate, M7WriteDiagnose

Return Value

Error Codes

See Also

M7 API M7SZLRead

5-212
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7UnLinkBatteryFailure

Unlink FRB for battery alarm

#include <m7api.h>
M7ERR_CODE M7UnLinkBatteryFailure(

M7BAFFRB_PTR pBAFFRB);

Parameter Name Meaning

pBAFFRB Pointer to the FRB to be unlinked.

The function unlinks the FRB on the OST server.

The FRB must previously have been linked with M7LinkBatteryFai-
lure

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_FRB_NOT_IN_LIST FSCFRB not operational

M7LinkBatteryFailure

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7UnLinkBatteryFailure

5-213
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7UnLinkCycle

Unlink FRB on FC server

#include <m7api.h>
M7ERR_CODE M7UnLinkCycle(M7FSCFRB_PTR pFSCFRB);

Parameter Name Meaning

pFSCFRB Pointer to the FRB to be unlinked.

The function unlinks the FRB on the FC server.

The FRB must previously have been linked with M7LinkCycle .

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_FSC_NO_SUCH_CYCLE Unknown state

M7E_FRB_NOT_IN_LIST FRB not linked

M7LinkCycle, M7ConfirmCycle

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7UnLinkCycle

5-214
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7UnLinkDataAccess

Unlink S7 object for access information via message

#include <m7api.h>
M7ERR_CODE M7UnLinkDataAccess(M7OBJFRB_PTR

pOBJFRB);

Parameter Name Meaning

pOBJFRB Pointer to the FRB to be unlinked.

The function unlinks the access information for an S7 object on the S7 object
server.

The FRB must previously have been linked with M7LinkDataAccess .

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_FRB_NOT_IN_LIST FRB not linked

M7LinkDataAccess, M7GetFlags, M7GetObjType, M7GetPart

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7UnLinkDataAccess

5-215
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7UnLinkDataAccessCB

Unlink callback function call for S7 object access

#include <m7api.h>
M7ERR_CODE M7UnLinkDataAccessCB(M7CBFRB_PTR

pCBFRB);

Parameter Name Meaning

pCBFRB Pointer to the FRB provided for unlinking.

The function unlinks a callback function on the object server.

The callback function must previously have been linked with the M7Link-
DataAccessCB function.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_FRB_NOT_IN_LIST FRB not linked

M7LinkDataAccessCB, M7GetCBFlags, M7GetCBBuffer, M7GetCBDa-
taType, M7GetCBObjType, M7GetCBPart, M7GetCBCount, M7GetCB-
ByteOffset, M7GetCBBitOffset

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7UnLinkDataAccessCB

5-216
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7UnLinkDate

Unlink time-controlled time message

#include <m7api.h>
M7ERR_CODE M7UnLinkDate(M7TFRB_PTR pTFRB);

Parameter Name Meaning

pTFRB Pointer to the FRB linked with the time-controlled time mes-
sage.

This function is used to unlink the request for a time-controlled time message
on the server.

The FRB must previously have been linked with the M7LinkDate function.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_FRB_NOT_IN_LIST FRB not linked

M7LinkDate

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7UnLinkDate

5-217
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7UnLinkDiagAlarm

Unlink diagnostics alarm

#include <m7api.h>
M7ERR_CODE M7UnLinkDiagAlarm(

M7DIAGALARM FRB_PTR pDAFrb);

Parameter Name Meaning

pDAFrb Pointer to the FRB to be unlinked.

The function unlinks the specified FRB for alarm handling on the alarm ser-
ver. No more diagnostics alarms are subsequently signalled for the calling
task.

The FRB must previously have been linked with M7LinkDiagAlarm .

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_FRB_NOT_IN_LIST FRB not linked.

M7E_ALARM_PENDING A diagnostics alarm is still waiting on the module
involved and must be acknowledged first.

M7LinkDiagAlarm, M7GetDiagAlarmAddr, M7GetDiagAlarmBusy,
M7GetDiagAlarmInfo,M7GetDiagAlarmPT ype, M7ConfirmDiagAlarm

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7UnLinkDiagAlarm

5-218
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7UnLinkIOAlarm

Unlink process alarm

#include <m7api.h>
M7ERR_CODE M7UnLinkIOAlarm(

M7IOALARM_FRB_PTR pPAFrb);

Parameter Name Meaning

pPAFrb Pointer to the FRB to be unlinked.

The function unlinks the specified FRB for alarm handling on the alarm
server. No more process alarms are subsequently signalled for the calling
task.

The FRB must previously have been linked with M7LinkIOAlarm .

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_FRB_NOT_IN_LIST FRB not linked.

M7E_ALARM_PENDING A diagnostics alarm is still waiting on the module
involved and must be acknowledged first.

M7LinkIOAlarm, M7GetIOAlarmAddr, M7GetIOAlarmMask,
M7GetIOAlarmState, M7GetIOAlarmPTye, M7ConfirmIOAlarm

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7UnLinkIOAlarm

5-219
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7UnLinkOneShotTimer

Unlink one-shot time message

#include <m7api.h>
M7ERR_CODE M7UnLinkOneShotTimer(M7TFRB_PTR pTFRB);

Parameter Name Meaning

pTFRB Pointer to the FRB with which the one-shot time message
was linked.

The function unlinks the request for a one-shot time message on the time
server.

The FRB must previously have been linked with M7LinkOneShotTimer .

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_FRB_NOT_IN_LIST FRB not linked

M7LinkOneShotTimer

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7UnLinkOneShotTimer

5-220
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7UnLinkPeriodicTimer

Unlink periodic time message

#include <m7api.h>
M7ERR_CODE M7UnLinkPeriodicTimer(M7TFRB_PTR pTFRB);

Parameter Name Meaning

pTFRB Pointer to the FRB with which the periodic time message
was linked.

The function unlinks the request for a periodic message on the time server.

The FRB must previously have been linked with M7LinkPeriodicTimer .

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_FRB_NOT_IN_LIST FRB not linked.

M7LinkPeriodicTimer, M7ConfirmPeriodicTimer, M7GetLostPeriods

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7UnLinkPeriodicTimer

5-221
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7UnLinkPIError

Unlink FRB for process image transfer error

#include <m7api.h>
M7ERR_CODE M7UnLinkPeriodicTimer(M7TFRB_PTR pTFRB);

Parameter Name Meaning

pTFRB Pointer to the FRB to be unlinked

The M7UnLinkPIError function unlinks the FRB for the handling of pro-
cess image transfer errors in the free cycle. This FRB must already have been
linked with the M7LinkPIError function.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_FRB_NOT_IN_LIST FRB not linked.

M7LinkPeriodicTimer, M7ConfirmPeriodicTimer, M7GetLostPeriods

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7UnLinkPIError

5-222
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7UnLinkState

Unlink message about specific operating state

#include <m7api.h>
M7ERR_CODE M7UnLinkState(M7TSFRB_PTR pTSFRB);

Parameter Name Meaning

pTSFRB Pointer to the FRB to be acknowledged.

The function unlinks messages relating to a specific operating state on the
OST server.

The FRB must previously have been linked with M7LinkState .

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Parameter error

M7E_FRB_NOT_IN_LIST FRB not linked

M7LinkState, M7GetState, M7RequestState

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7UnLinkState

5-223
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7UnLinkTransition

Unlink message about specific operating state transition

#include <m7api.h>
M7ERR_CODE M7UnLinkTransition(M7TSFRB_PTR pTSFRB);

Parameter Name Meaning

pTSFRB Pointer to the FRB to be acknowledged.

The function unlinks messages relating to a specific operating state transition
on the OST server.

The FRB must previously have been linked with M7LinkTransition .

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Parameter error

M7E_FRB_NOT_IN_LIST FRB not linked

M7LinkTransition, M7GetTSReason, M7GetTSType,
M7ConfirmTransition

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7UnLinkTransition

5-224
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7UnLinkZSAlarm

Unlink message about insert/remove module alarm

#include <m7api.h>
M7ERR_CODE M7UnLinkZSAlarm(

M7ZSALARM_FRB_PTR pZSFRB);

Parameter Name Meaning

pZSFRB Pointer to the FRB to be acknowledged.

The function unlinks messages for an insert/remove module alarm event.

The FRB must previously have been linked with M7LinkZSAlarm .

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_FRB_NOT_IN_LIST FRB not linked

M7ConfirmZSAlarm, M7LinkZSAlarm, M7GetZSAlarmIMRBaddr,
M7GetZSAlarmMode, M7GetZSAlarmPType, M7GetZSAlarmAddr

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7UnLinkZSAlarm

5-225
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7Write

Write user data to S7 data area

#include <m7api.h>
M7ERR_CODE M7Write(VOID_PTR pBuffer,

UBYTE ObjType,
UWORD Part,
UBYTE DataType,
UWORD Count,
UDWORD Addr);

Parameter Name Meaning

pBuffer Pointer to the buffer containing the user data. The user data
must be in the SIMATIC format!

ObjType Type identifier for the desired S7 object (see Table).

Part Subarea (DB number, etc.) The permissible values for the
subarea depend on the type of S7 object (see Table 2-8)

DataType Data type of an element (see Table 2-9). For the data type
M7DT_BOOL is only available the value 1 for the parameter
LENGTH.

Count Number of elements to be copied

Addr Address or offset within an object or subarea. If DataType ≠
BOOL, Addr must be a multiple of 8 bits.

The function copies a defined number of data elements from a user data area
to an S7 data area.

The contents of the data area are not converted from Intel to SIMATIC
numeric representation.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

Function

Syntax

Parameters

Description

Return Value

Error Codes

M7 API M7Write

5-226
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

M7E_PER_BITS Bit addressing not permitted in I/O area

M7E_TYPE Data type is invalid

M7E_WRITE_PROTECT Object type under write protection

M7WriteBit, M7WriteByte, M7WriteDWord, M7WriteWordSee Also

M7 APIM7Write

5-227
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7WriteBit

Set bit in S7 object

#include <m7api.h>
M7ERR_CODE M7WriteBit(

UBYTE ObjType,
UWORD Part,
UWORD ByteOffset,
UBYTE BitOffset,
BOOL Value);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.) The permissible values for the
subarea depend on the type of S7 object (see Table 2-8)

ByteOffset Offset of the byte where the desired bit is stored

BitOffset Offset of the desired bit within the byte

Value Value to which the addressed bit is to be set

The function addresses a bit, defined by the above parameters in an S7 ob-
ject, and sets it to the state specified by Value.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_BIT_OFFSET Incorrect bit offset within the byte

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in I/O area

M7E_TYPE Data type is invalid

M7E_WRITE_PROTECT Object type under write protection

M7Write, M7WriteByte, M7WriteDWord, M7WriteReal, M7WriteWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7WriteBitM7WriteBit

5-228
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7WriteByte

Overwrite byte in S7 object

#include <m7api.h>
M7ERR_CODE M7WriteByte(

UBYTE ObjType,
UWORD Part,
UWORD ByteOffset,
UBYTE Value);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8).

ByteOffset Offset of the desired byte

Value Value with which the addressed byte is to be overwritten.

The function addresses a byte, defined by the above parameters in an S7 ob-
ject, and overwrites it with the value specified by Value.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_TYPE Data type not supported

M7E_WRITE_PROTECT Object type under write protection

M7Write, M7WriteBit, M7WriteDWord, M7WriteReal, M7WriteWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7WriteByte

5-229
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7WriteDiagnose

Write entry to diagnostics buffer

#include <m7api.h>
M7ERR_CODE M7WriteDiagnose

UBYTE Type,
UBYTE Eventnumber,
BOOL Direction,
UWORD ZI1,
UDWORD ZI23,
BOOL Send);

Parameter Name Meaning

Type Event class

Eventnumber Event number

Direction If TRUE, 1 is transferred (incoming event)

ZI1 Supplementary info 1

ZI23 Supplementary info 2 and 3

Send If TRUE, event is sent via K bus

The call stores a diagnostics event with the specified class/number and sup-
plementary information. The entry contains the current time stamp. If the
Send parameter is specified, the diagnostics event is sent on to linked com-
munication partners.

Entries cannot be written to the diagnostics buffer in the STOP operating
state. This prevents existing entries from being overwritten.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_DIAG_NUMBER Incorrect event class
(only 0x0a or 0x0b allowed)

M7E_DIAG_STATE Incorrect operating state. Entries not possible in STOP
state.

M7E_WRITE_PROTECT Object type under write protection

M7SZLRead

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7WriteDiagnose

5-230
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7WriteDWord

Overwrite doubleword in S7 object

#include <m7api.h>
M7ERR_CODE M7WriteDWord(

UBYTE ObjType,
UWORD Part,
UWORD ByteOffset,
UDWORD Value);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)

ByteOffset Offset of the desired doubleword

Value Value with which the addressed doubleword is to be over-
written, in Intel format.

The function addresses a doubleword in an S7 object, defined by the above
parameters in an S7 object, and overwrites it with the value specified by
Value.

Before the value specified by Value is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_TYPE Data type not supported

M7E_WRITE_PROTECT Object type under write protection

M7Write, M7WriteBit, M7WriteByte, M7WriteReal, M7WriteWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7WriteDWordM7WriteDWord

5-231
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

M7WriteReal

Overwrite a floating point number in S7 object

#include <m7api.h>
M7ERR_CODE M7WriteReal(

UBYTE ObjType,
UWORD Part,
UWORD ByteOffset,
REAL Value);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)

ByteOffset Offset of the desired floating point number

Value Value with which the addressed word is to be overwritten, in
Intel format.

The function addresses a floating point number in an S7 object, defined by
the above parameters in an S7 object, and overwrites it with the value speci-
fied by Value.

Before the value specified by Value is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_TYPE Data type not supported

M7E_WRITE_PROTECT Object type under write protection

M7Write, M7WriteBit, M7WriteByte, M7WriteDWord, M7WriteWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 API M7WriteReal

5-232
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

M7WriteWord

Overwrite word in S7 object

#include <m7api.h>
M7ERR_CODE M7WriteWord(

UBYTE ObjType,
UWORD Part,
UWORD ByteOffset,
UWORD Value);

Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)

ByteOffset Offset of the desired word

Value Value with which the addressed word is to be overwritten, in
Intel format.

The function addresses a word in an S7 object, defined by the above parame-
ters in an S7 object, and overwrites it with the value specified by Value.

Before the value specified by Value is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_LENGTH Incorrect length

M7E_OBJ Object type not supported

M7E_OVS_WRONG_STATE Illegal action in current operating mode

M7E_PAR Parameter error

M7E_PART Subarea not available

M7E_TYPE Data type not supported

M7E_WRITE_PROTECT Object type under write protection

M7Write, M7WriteBit, M7WriteByte, M7WriteDWord, M7WriteReal

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

M7 APIM7WriteWord

6-1
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RMOS API

Call Brief Description Page

get2ndparm Read EBX start parameter of task 6-4

getdword Read start parameter of task in long format 6-5

getparm Read start parameter of task as pointer 6-6

RmActivateTask Activate task 6-7

RmAlloc Allocate memory from heap 6-8

RmCatalog Enter resource in resource catalog 6-10

RmCreateBinSemaphore Create semaphore 6-12

RmCreateChildTask Create child task 6-13

RmCreateFlagGrp Create flag group 6-15

RmCreateMailbox Create mailbox 6-16

RmCreateMemPool Create memory pool larger than 64 Kbytes 6-17

RmCreateMessageQueue Create message queue 6-19

RmCreateTask Create task 6-20

RmCreateTaskEx Create a task on the opreating system 6-22

RmDeleteBinSemaphore Delete semaphore 6-24

RmDeleteFlagGrp Delete flag group 6-25

RmDeleteMailbox Delete mailbox 6-26

RmDeleteMemPool Delete memory pool 6-27

RmDeleteMessageQueue Delete message queue 6-28

RmDeleteTask Delete task 6-29

RmDisableScheduler Disable scheduler 6-30

RmEnableScheduler Enable scheduler 6-31

RmEndTask End task 6-32

RmFree Free a memory area 6-33

RmFreeAll Free all memory areas of a task 6-34

RmGetAbsTime Get absolute system time 6-35

RmGetBinSemaphore Test and set semaphore 6-36

RmGetEntry Find entry in catalog 6-37

RmGetFlag Test event flag 6-39

RmGetIntHandler Read out interrupt handler 6-41

In this chapter

6

6-2
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Call PageBrief Description

RmGetMemPoolInfo Check memory pool information 6-42

RmGetName Search catalog for entry 6-43

RmGetSize Get the size of a memory area 6-45

RmGetTaskID Get task ID 6-46

RmGetTaskPriority Get task priority 6-47

RmGetTaskState Get task state 6-48

RmIOClose Close unit 6-51

RmIOControl Control function for loadable drivers 6-52

RmIOOpen Open unit 6-60

RmIORead Read from a unit 6-62

RmIOWrite Write to unit 6-64

RmKillTask End task 6-66

RmList List entries in resource catalog 6-68

RmLoadDevice Load driver 6-70

RmMapMemory Address physical memory 6-72

RmMemPoolAlloc Allocate memory area from memory pool 6-73

RmPauseTask Pause for time interval 6-75

RmQueueStartTask Add task to queue. The task is started im-
mediately it switches to the DORMANT
state

6-76

RmReadMessage Read message from message queue 6-78

RmReAlloc Change the size of a memory area 6-80

RmReceiveMail Receive message from local mailbox 6-82

RmReleaseBinSemaphore Reset semaphore 6-84

RmResetFlag Reset event flag 6-85

RmRestartTask Terminate task and restart after time interval6-86

RmResumeTask Resume task halted by RmPauseTask or
RmSuspendTask

6-88

RmSendMail Send message to a mailbox 6-89

RmSendMailCancel Cancel message started with RmSend-
MailDelayed

6-91

RmSendMailDelayed Send mail to a mailbox after a delay 6-92

RmSendMessage Add message to message queue 6-94

RmSetFlag Set event flag 6-96

RmSetFlagDelayed Set event flag after interval 6-97

RmSetIntDefHandler Install default interrupt handler 6-98

RmSetIntISHandler Initialize S or I interrupt handler 6-99

RmSetIntMailboxHandler Initialize mailbox interrupt handler 6-101

RMOS API

6-3
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Call PageBrief Description

RmSetIntTaskHandler Initialize interrupt handler for task start 6-103

RmSetMailboxSize Define limit values for mailboxes 6-105

RmSetMessageQueueSize Define length of message queue 6-106

RmSetTaskPriority Change task priority 6-107

RmStartTask Start request for tasks in DORMANT state 6-108

RmSuspendTask Set task from READY to BLOCKED state 6-110

RmUncatalog Delete resources from catalog 6-111

SerialCheckChar Read in single character from unit 6-112

SerialCheckString Read string from unit 6-113

SerialClose Close a connection to a unit of a driver 6-114

SerialGetChar Read in single character from unit 6-115

SerialGetString Read string from unit 6-116

SerialInit Initialize unit 6-117

SerialInitEx Extended initialization of unit 6-118

SerialOpen Establish a connection to a unit of a driver 6-121

SerialPutChar Write a single character to a unit 6-122

SerialPutString Write characters to a unit 6-123

x_dos_cpyin Allocate memory area from transfer buffer
and copy in data

6-124

x_dos_cpyout Copy data from allocated memory area in
transfer buffer and free the area

6-126

RMOS API

6-4
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

get2ndparm

Read EBX start parameter of task

#include <rmapi.h>
unsigned int get2ndparm (void);

get2ndparm returns the EBX of the task, overwriting the EAX register.
The functions getdword and getparm can subsequently no longer be
used.

This function call must be the first within a task, since the code generated by
the compiler can, under certain circumstances, overwrite the EAX or EBX
register.

getdword, getparm

Function

Syntax

Description

See Also

RMOS APIget2ndparm

6-5
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

getdword

Read start parameter of task in long format

#include <rmapi.h>
unsigned long getdword (void);

getdword returns an unsigned long variable corresponding to the EAX reg-
ister.

This function call must be the first within a task, since the code generated by
the compiler can, under certain circumstances, overwrite the EAX or EBX
register.

get2ndparm, getparm

Function

Syntax

Description

See Also

RMOS API getdword

6-6
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

getparm

Read start parameter of task as pointer

#include <rmapi.h>
int * getparm (void);

getparm returns a pointer corresponding to the EAX register.

This function call must be the first within a task, since the code generated by
the compiler can, under certain circumstances, overwrite the EAX or EBX
register.

get2ndparm, getdword

Function

Syntax

Description

See Also

RMOS APIgetparm

6-7
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmActivateTask

Activate Task

#include <rmapi.h>
int RmActivateTask(uint TaskID);

Parameter Name Meaning

TaskID Task-ID (RM_OWN_TASK=own task)

This function switches another task to the READY state if it was in the
BLOCKED state.

The RmActivateTask is illegal under the following conditions, and is ter-
minated with an error message:

� Termination/deletion through RmKillTask was already requested

� Page fault because stack overflow

RM_OK Function successfully executed

Error Code Meaning

RM_INVALID_ID An invalid TaskID was passed.

RM_INVALID_TASK_STATE Call illegal in current task state (task is in DOR-
MANT, ACTIVE, READY or BLOCKED for
end of I/O state).

RmDeleteTask, RmEndTask, RmKillTask, RmPauseTask

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmActivateTask

6-8
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmAlloc

Allocate memory from HEAP

#include <rmapi.h>
int RmAlloc (

ulong TimeOutValue,
uint Mode,
ulong Size,
void ** ppMemory)

Parameter Name Meaning

TimeOutValue Maximum wait time before execution

RM_CONTINUE Continue task without waiting for me-
mory allocation.

RM_WAIT Wait for memory allocation.

0 ... RM_MAXTIME Time interval in ms.

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait for (ms) milliseconds

Mode Allocation method for memory:

RM_AUTOFREE The memory is freed automati-
cally with RmFreeAll . It is as-
signed to a specific task.

RM_NOAUTOFREE The memory is not freed automa-
tically with RmFreeAll .

Size Size of the memory block (–1 = largest available block)

ppMemory Address of pointer to a memory area.

The function allocates a memory area of size Size from the HEAP. *ppMe-
mory subsequently contains a valid pointer (32-bit “flat”) to the allocated
memory area.

RM_OK Function successfully executed.

RM_TASK_WAITING Function had to wait for memeoy allocation

Function

Syntax

Parameters

Description

Return Value

RMOS APIRmAlloc

6-9
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_GOT_TIMEOUT A suitable memory area could not be allocated in the
specified time

RM_INVALID_POINTER A pointer was invalid

RM_INVALID_SIZE Size=0 or Size greater than HEAP

RM_OUT_OF_MEMORY No memory of the specified size available

RmCreateMemPool, RmDeleteMemPool, RmFree, RmFreeAll,
RmGetSize, RmMemPoolAlloc, RmReAlloc, RmGetMemPoolinfo

Error Codes

See Also

RMOS API RmAlloc

6-10
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmCatalog

Enter resource in resource catalog

#include <rmapi.h>
int RmCatalog (

uint Type,
uint ID,
ulong IDEx,
char * pName)

Parameter Name Meaning

Type Resource type (see ID).

ID Resource ID

The possible IDs depend on Type:

0 RM_CATALOG_TASK 0≤id≤2047
1 RM_CATALOG_DEVICE 0≤id≤255
2 RM_CATALOG_POOL 0≤id≤63
3 RM_CATALOG_SEMAPHORE 0≤id≤4095
4 RM_CATALOG_EVENTFLAG 0≤id≤63
5 RM_CATALOG_CNTRL 0≤id≤255
6 RM_CATALOG_LOCALMAILBOX 0≤id≤255
7 RM_CATALOG_MISC 0≤id≤65535
8 RM_CATALOG_USER 0≤id≤65535
10RM_CATALOG_UNIT 0≤id≤255
11RM_CATALOG_MESSAGE 0≤id≤2047

IDEx Extended ID

pName Pointer to a C string containing the name of the entry in the
resource catalog. The string may be up to 15 characters + \0.

The function enters the specified parameters in the resource catalog.

RM_OK Function successfully executed.

Error Code Meaning

RM_CATALOG_EXCEEDED Catalog is full.

RM_OUT_OF_MEMORY An internal attempt to allocate memory
from the HEAP has failed.

RM_INVALID_TYPE The specified type is illegal. 0≤Type≤11

RM_INVALID_ID The specified ID is illegal.

RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.

Function

Syntax

Parameters

Description

Return Value

Error Codes

RMOS APIRmCatalog

6-11
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_INVALID_POINTER The pointer to the string is invalid.

RM_IS_ALREADY_CATALOGED The specified string is already cataloged

RmUnCatalog, RmGetName, RmGetEntry, RmListSee Also

RMOS API RmCatalog

6-12
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmCreateBinSemaphore

Create semaphore

#include <rmapi.h>
int RmCreateBinSemaphore(

char *pSemaphoreName,
uint * pSemaphoreID);

Parameter Name Meaning

pSemaphoreName Pointer to a C string containing the name used to catalog the
semaphore. If this pointer = NUL, the semaphore is not cata-
loged. The C string may be up to 15 characters + \0.

pSemaphoreID Pointer to semaphore ID

RmCreateBinSemaphore creates a semaphore. The semaphore ID is re-
turned in the specified memory area. The maximum number of semaphores is
1024.

The semaphore is cataloged automatically under the specified name. If a null
pointer is passed in pSemaphoreName, no semaphore is cataloged.

RM_OK Function successfully executed, *pSemaphoreID contains
a valid semaphore ID.

Error Code Meaning

RM_OUT_OF_SEMAPHORES The request exceeds the maximum num-
ber of semaphores.

RM_INVALID_POINTER A pointer was invalid.

RM_CATALOG_EXCEEDED Catalog is full (see RmCatalog).

RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.

RM_IS_ALREADY_CATALOGED The specified string is already cataloged.
The string must be unique, therefore it is
not possible to catalog a string more than
once.

RmDeleteBinSemaphore, RmReleaseBinSemaphore,
RmGetBinSemaphore

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmCreateBinSemaphore

6-13
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmCreateChildTask

Create child task

#include <rmapi.h>
int RmCreateChildTask (

char * pTaskName,
ulong TaskStackSize,
uint Priority,
rmfarproc TaskEntry,
uint * pTaskID)

Parameter Name Meaning

pTaskName Pointer to a C string containing the name used to catalog the
task. If this pointer = NUL, the TASK is not cataloged. The C
string may be up to 15 characters + \0.

TaskStackSize Size of the required stack in words (32 -bit).

Priority Task priority (0..255)

RM_CURPRI is the same priority as the calling task.

TaskEntry Entry address for the task.

pTaskID Pointer to task ID

RmCreateChildTask declares tasks to the operating system. The task is
transferred from the NOTEXISTENT state to the DORMANT state. The task
is cataloged automatically under the specified name. If a null pointer is
passed in pTaskName, no task is cataloged.

When it is created, the child task inherits the console, the current working
directory and the environment from the parent task.

RM_OK Function successfully executed. *pTaskID contains the
valid task ID.

Error Code Meaning

RM_OUT_OF_MEMORY Insufficient memory to create stack seg-
ment or insufficient memory for RmCa-
talog .

RM_INVALID_SIZE The length specified for the stack was 0 or
≥ 1GB

RM_CATALOG_EXCEEDED Catalog is full (see RmCatalog).

RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.

Function

Syntax

Parameters

Description

Return Value

Error Codes

RMOS API RmCreateChildTask

6-14
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

RM_IS_ALREADY_CATALOGED The specified string is already cataloged.
The string must be unique, therefore it is
not possible to catalog a string more than
once.

RM_INVALID_TASK_ENTRY The entry address for the task is invalid.

RM_INVALID_POINTER The pointer to the string is incorrect, or a
protection error occurred.

RmCreateTask, RmDeleteTask, RmQueueStartTask, RmStartTaskSee Also

RMOS APIRmCreateChildTask

6-15
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmCreateFlagGrp

Create flag group

#include <rmapi.h>
int RmCreateFlagGrp(

char *pFlagGrpName,
uint * pFlagGrpID);

Parameter Name Meaning

pFlagGrpName Pointer to a C string containing the name used to catalog
the flag group. If this pointer = NUL, the flag group is not
cataloged. The C string may be up to 15 characters + \0.

pFlagGrpID Output parameter, pointer to flag group ID

RmCreateFlagGrp creates a flag group.*pFlagGrpID contains the valid
ID of the flag group.

The flag group is cataloged automatically under the specified name. If a null
pointer is passed in pFlagGrpName, no flag group is cataloged.

RM_OK Function successfully executed.

Error Code Meaning

RM_OUT_OF_FLAGGROUPS The request exceeds the maximum num-
ber of event flags.

RM_INVALID_POINTER A pointer was invalid.

RM_CATALOG_EXCEEDED Catalog is full (see RmCatalog).

RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.

RM_IS_ALREADY_CATALOGED The specified string is already cataloged.
The string must be unique, therefore it is
not possible to catalog a string more than
once.

RmSetFlag, RmResetFlag, RmSetFlagDelayed, RmGetFlag,
RmDeleteFlagGrp

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmCreateFlagGrp

6-16
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmCreateMailbox

Create mailbox

#include <rmapi.h>
int RmCreateMailbox(

char *pMailboxName,
uint * pMailboxID);

Parameter Name Meaning

pMailboxName Pointer to a C string containing the name used to catalog
the mailbox. If this pointer = NUL, the mailbox is not cata-
loged. The C string may be up to 15 characters + \0.

pMailboxID Pointer to a mailbox ID

RmCreateMailbox creates a a mailbox. *pMailboxID contains the valid
mailbox ID.

The mailbox is cataloged automatically under the specified name. If a null
pointer is passed in pMailboxName, no mailbox is cataloged.

RM_OK Function successfully executed.

Error Code Meaning

RM_CATALOG_EXCEEDED Catalog is full (see RmCatalog).

RM_INVALID_POINTER A pointer was invalid.

RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.

RM_IS_ALREADY_CATALOGED The specified string is already cataloged.
The string must be unique, therefore it is
not possible to catalog a string more than
once.

RM_OUT_OF_MAILBOXES The request exceeds the maximum num-
ber of mailboxes.

RM_OUT_OF_MEMORY No memory of the specified size available

RmDeleteMailbox, RmSendMail, RmReceiveMail

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmCreateMailbox

6-17
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmCreateMemPool

Create memory pool larger than 64 Kbytes

#include <rmapi.h>
int RmCreateMemPool(

char *pPoolName,
void *pPoolAddress,
ulong Size,
uint * pPoolID);

Parameter Name Meaning

pPoolName Pointer to a C string containing the name used to catalog the
memory pool. If this pointer = NUL, the memory pool is not
cataloged. The C string may be up to 15 characters + \0.

pPoolAddress Pointer to the memory area in which the pool is to be created.

Size Length of the memory area in bytes

pPoolID Pointer to pool ID

RmCreateMemPool defines a memory pool located at a paragraph bound-
ary. *pPoolID contains the valid memory pool ID. The maximum number of
memory pools is 8. The minimum size of a memory area is 16 bytes.

The memory for a memory pool can be allocated from the HEAP with
RmAlloc . The address returned by RmAlloc is used as the address for the
memory pool.

On initialization, the memory pools are located at the next base address di-
visible by 16. The length is reduced to the next value divisible by 16.

The memory pool is cataloged automatically under the specified name. If a
null pointer is passed in pPoolName, no memory pool is cataloged.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_OFFSET The offset (pPoolAddress) was outside the
valid range.

RM_INVALID_SIZE A size parameter was invalid (Size < 16).

RM_INVALID_POINTER A pointer was invalid.

RM_CATALOG_EXCEEDED Catalog is full (see RmCatalog).

RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.

Function

Syntax

Parameters

Description

Return Value

Error Codes

RMOS API RmCreateMemPool

6-18
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

RM_IS_ALREADY_CATALOGED The specified string is already cataloged.
The string must be unique, therefore it is
not possible to catalog a string more than
once.

RM_OUT_OF_MEMORYPOOLS The request exceeds the maximum num-
ber of memory pools.

RmDeleteMemPool, RmFree, RmFreeAll, RmMemPoolAllocSee Also

RMOS APIRmCreateMemPool

6-19
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmCreateMessageQueue

Create message queue

#include <rmapi.h>
int RmCreateMessageQueue (

char * pMessageQueueName,
uint TaskID)

Parameter Name Meaning

pMessageQueueName Pointer to a C string containing the name used to cata-
log the message queue. If this pointer = NUL, the mes-
sage queue is not cataloged. The C string may be up to
15 characters + \0.

TaskID Destination task-ID

 The function creates a message queue for the task specified by TaskID.

The message queue is cataloged automatically under the specified name. If a
null pointer is passed in pMessageQueueName, no message queue is cata-
loged.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID Invalid task ID.

RM_QUEUE_EXIST Message queue already exists.

RM_CATALOG_EXCEEDED Catalog is full (see RmCatalog).

RM_INVALID_POINTER A pointer was invalid.

RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.

RM_IS_ALREADY_CATALOGED The specified string is already cataloged.
The string must be unique, therefore it is
not possible to catalog a string more than
once.

RmDeleteMessageQueue, RmReadMessage, RmSendMessage

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmCreateMessageQueue

6-20
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmCreateTask

Create task

#include <rmapi.h>
int RmCreateTask (

char * pTaskName,
ulong TaskStackSize,
uint Priority,
rmfarproc TaskEntry,
uint * pTaskID)

Parameter Name Meaning

pTaskName Pointer to a C string containing the name used to catalog the
task. If this pointer = NUL, the task is not cataloged. The C
string may be up to 15 characters + \0.

TaskStackSize Size of the required stack in words (32 -bit).

Priority Task priority (0..255)

TaskEntry Entry address for the task.

pTaskID Pointer to task ID

The function declares a task to the operating system. The task is transferred
from the NOTEXISTENT state to the DORMANT state. *pTaskID contains
the valid task ID.

The task is cataloged automatically under the specified name. If a null
pointer is passed in pTaskName, no task is cataloged.

RM_OK Function successfully executed.

Error Code Meaning

RM_OUT_OF_MEMORY Insufficient memory to create stack seg-
ment or insufficient memory for RmCata-
log.

RM_INVALID_SIZE The length specified for the stack was 0 or
≥ 1G

RM_CATALOG_EXCEEDED Catalog is full (see RmCatalog).

RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.

Function

Syntax

Parameters

Description

Return Value

Error Codes

RMOS APIRmCreateTask

6-21
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_IS_ALREADY_CATALOGED The specified string is already cataloged.
The string must be unique, therefore it is
not possible to catalog a string more than
once.

RM_INVALID_TASK_ENTRY The entry address for the task is invalid.

RM_INVALID_POINTER The pointer to the string is incorrect, or a
protection error occurred.

 Unlike the RmCreateChildTask function, the console, current directory
and environment are not inherited.

RmCreateChildTask, RmDeleteTask, RmQueueStartTask, RmStartTask

Note

See Also

RMOS API RmCreateTask

6-22
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmCreateTaskEx

Create a task on the operating system

#include <rmapi.h>
int RmCreateTaskEx(

char *pTaskName,
RmTCDStruct * pTCD,
uint * pTaskID);

Parameter Name Meaning

pTaskName Pointer to a C string containing the name used to
catalog the task. If this pointer = NULL, the task is
not cataloged.

pTCD Pointer to a structure of the type RmTCDStruct

pTaskID Pointer to the returned task ID

RmCreateTaskEx changes the state of a dynamic task from NONEXIS-
TENT to DORMANT. The structure of type RmTCDStruct must be initial-
ized first. All values which are not used must be 0. The structure is no longer
required after the function call.

The task is subsequently always addressed using the returned task ID. The
task is automatically cataloged under the specified name.

The task flags (TCD.flags) define whether the task properties for the created
task are to be inherited with RM_TFL_CHILD (see RmCreateChildTask)

The RM_TFL_STK flag must always be enabled. The size of the stack is
specified in words (32 bits) in TCD.stck (see example).

The priority of the task is specified in TCD.inpri (from 0 to 255).

The entry address of the task is specified in TCD.task.

The flag for the coprozessor (RM_TFL_NPX) is enabled automatically at the
moment that the task access to the coprozessor. For that reason the call
RmCreateTaskEx is no more necessary and exists only for the compatibil-
ity of previous versions.

RM_OK *pTaskID contains a valid task ID.

Function

Syntax

Parameters

Description

Note

Return Value

RMOS APIRmCreateTask

6-23
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_OUT_OF_MEMORY Insufficient memory to create the
stack segment or RmCatalog had
insufficient memory.

RM_INVALID_SIZE The length parameter for the stack
was 0.

RM_CATALOG_EXCEEDED Catalog is full (see RmCatalog).

RM_INVALID_STRING The length of the string is illegal. It
is either zero or greater than 15.

RM_IS_ALREADY_CATALOGED The specified string is already cata-
loged. The string must be unique,
and it is not possible to catalog a
string more than once.

RM_INVALID_TASK_ENTRY The entry address for the task is in-
valid.

RM_INVALID_PARAMETER The RM_TFL_DS flag cannot be
used for Flat calls.

RM_INVALID_POINTER The pointer to the string is incorrect
or a protection error has been initia-
ted.

In the following example, a task is created. The memset call is used to ini-
tialize the RmTCDStruct structure to 0.

main()
{
 uint TaskID
 RmTCDStruct Tcd;

 memset(&Tcd,0,sizeof(RmTCDStruct));

 Tcd.stck = (void *) 0x400; /* stacksize */
 Tcd.task = (rmfarproc) entry; /* taskentry */
 Tcd.inpri=90; /* priority */
 Tcd.flags = RM_TFL_STK | RM_TFL_CHILD;
 Error = RmCreateTaskEx(“TaskName”,&Tcd,&TaskID);
 ...
}

RmCreateTask, RmCreateChildTask, RmDeleteTask

Error Codes

Example

See Also

RMOS API RmCreateTask

6-24
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmDeleteBinSemaphore

Delete semaphore

#include <rmapi.h>
int RmDeleteBinSemaphore(uint SemaphoreID);

Parameter Name Meaning

SemaphoreID Semaphore ID

RmDeleteBinSemaphore deletes a semaphore created with RmCreate-
BinSemaphore .The SemaphoreID parameter specifies the ID of the sema-
phore to be deleted.

If a catalog entry was created, it is now deleted.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID An invalid ID was passed.

RM_RESOURCE_BUSY The semaphore is still in possession of a task.

RmCreateBinSemaphore, RmReleaseBinSemaphore,
RmGetBinSemaphore

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmDeleteBinSemaphore

6-25
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmDeleteFlagGrp

Delete flag group

#include <rmapi.h>
int RmDeleteFlagGrp(uint FlagGrpID);

Parameter Name Meaning

FlagGrpID ID of the flag group

RmDeleteFlagGrp deletes a global flag group created with RmCreate-
FlagGrp . The FlagGrpID parameter specifies the ID of the flag group to be
deleted. Deleting the local flag group with FlagGrpID=0 is not allowed.

If a catalog entry was created, it is now deleted.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID Flag group = 0 or invalid ID

RM_RESOURCE_BUSY Tasks are still waiting for flags from this flag group
to be set (RmGetFlag), or an RmSetFlagDe-
layed is still active.

RmCreateFlagGrp, RmGetFlag

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmDeleteFlagGrp

6-26
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmDeleteMailbox

Delete mailbox

#include <rmapi.h>
int RmDeleteMailbox(uint MailboxID);

Parameter Name Meaning

MailboxID Mailbox ID

RmDeleteMailbox deletes a mailbox defined with RmCreateMailbox .
The MailboxID parameter specifies the ID of the mailbox to be deleted.

If you delete a mailbox, which is used by an Interrupt mailbox handler, also
the corresponding handler must be deleted.

If a catalog entry was created, it is now deleted.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID An invalid ID was passed.

RM_RESOURCE_BUSY Tasks are still waiting for messages in this mailbox,
or the mailbox still contains messages, or an
RmSendMailDelayed is still active.

RmCreateMailbox

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmDeleteMailbox

6-27
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmDeleteMemPool

Delete memory pool

#include <rmapi.h>
int RmDeleteMemPool(uint PoolID);

Parameter Name Meaning

PoolID Pool ID

RmDeleteMempool deletes a memory pool created with RmCreateMem-
Pool .The PoolID parameter specifies the ID of the memory pool to be de-
leted.

If a catalog entry was created, it is now deleted.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID Pool ID = 0 (corresponds to heap ID) or invalid ID

RM_RESOURCE_BUSY Memory areas from this pool are still allocated.

RmCreateMemPool, RmMemPoolAlloc

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmDeleteMemPool

6-28
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmDeleteMessageQueue

Delete message queue

#include <rmapi.h>
int RmDeleteMessageQueue (uint TaskID)

Parameter Name Meaning

TaskID Task ID

The RmDeleteMessageQueue function deletes the message queue for the
task specified by TaskID.

If a catalog entry was created, it is now deleted.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID Invalid task ID

RM_QUEUE_NOT_EXIST The message queue does not exist.

RM_RESOURCE_BUSY Messages are still waiting in the message queue, or
the task with TaskID is still waiting for messages.

RmCreateMessageQueue, RmSendMessage, RmReadMessage

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmDeleteMessageQueue

6-29
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmDeleteTask

Delete task

#include <rmapi.h>
int RmDeleteTask(uint TaskID);

Parameter Name Meaning

TaskID Task ID (RM_OWN_TASK = own task)

RmDeleteTask deletes the task specified by TaskID if it is in the
DORMANT or ACTIVE state.

If the task was initialized for CRUN, the initialization is deleted and open
files are closed.

If you delete a task with RmDeleteTask , which was called by an Interrupt
handler, also the corresponding handler must be deleted.

If a catalog entry was created, it is now deleted.

RM_OK Function successfully executed.

Error Code Meaning

RM_TASK_NOT_DORMANT An attempt was made to delete a task which is
not in the DORMANT state.

RM_INVALID_ID An invalid task ID was passed.

The RmKillTask call can be used for tasks in other states.

RmCreateTask, RmKillTask, x_cr_killtsk

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS API RmDeleteTask

6-30
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmDisableScheduler

Disable scheduler

#include <rmapi.h>
int RmDisableScheduler(void);

RmDisableScheduler deactivates the scheduler. When the scheduler is
deactivated, only the task which called the function is active (even higher-
priority tasks are no longer allocated CPU time).

RmDisableScheduler cannot be nested, that is every call deactivates
scheduling.

When the scheduler is deactivated, the RmDeleteTask and
RmRestartTask functions cannot be called. RMOS- API- calls should also
be avoided in cases where a task may have to wait for another task to finish
executing. This includes:
RmAlloc , RmGetEntry , RmQueueStartTask , RmReceiveMail ,
RmSendMail , RmStartTask , RmGetFlag and RmGetBinSemaphore .

A CLI job cannot be canceled with <Ctrl>+<C> when the scheduler is deac-
tivated.

If the scheduler is deactivated too long, the real-time capability of the system
can suffer. This applies particularly to the use of RmRestartTask and
RmPauseTask.

The scheduling lock is deactivated automatically as soon as a task blocks
(e.g. Functions with wait option, runtime error, printf)

RM_OK RM_OK is always returned.

RmEnableScheduler, scheduler description in the Programming Manual.

Function

Syntax

Description

Note

Return Value

See Also

RMOS APIRmDisableScheduler

6-31
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmEnableScheduler

Enable scheduler

#include <rmapi.h>
int RmEnableScheduler(void);

RmEnableScheduler activates the scheduler deactivated with RmDisa-
bleScheduler .

RmEnableScheduler cannot be nested, that is every call reactivates sche-
duling.

RM_OK RM_OK is always returned.

RmDisableScheduler, scheduler description in the Programming Manual.

Function

Syntax

Description

Return Value

See Also

RMOS API RmEnableScheduler

6-32
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmEndTask

End task

#include <rmapi.h>
void RmEndTask(void);

RmEndTask terminates execution of the task. The task is switched to the
DORMANT state if no further task start requests are waiting.

This function can also be used for tasks which use the functions of the ANSI
library. The C library function exit(x) can also be used instead of
RmEndTask.

The call has no return value.

RmDeleteTask, RmQueueStartTask, RmStartTask, starting, interruption
and termination of tasks.

Function

Syntax

Description

Note

Return Value

See Also

RMOS APIRmEndTask

6-33
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmFree

Free a memory area

#include <rmapi.h>
int RmFree(void *pMemory);

Parameter Name Meaning

pMemory Pointer to the memory area to be freed.

 RmFree is used to free a memory area allocated by a task with RmAlloc
or RmMemPoolAlloc .

It is not possible to free part of a memory area.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_MEMORYBLOCK Memory area was not allocated.

RM_INVALID_POINTER A pointer was invalid.

RmAlloc, RmCreateMemPool, RmDeleteMemPool, RmFreeAll,
RmMemPoolAlloc, RmReAlloc

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmFree

6-34
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmFreeAll

Free all memory areas of a task

#include <rmapi.h>
int RmFreeAll(uint TaskID);

Parameter Name Meaning

TaskID ID of the task whose entire memory area is to be freed
(RM_OWN_TASK = own task).

 RmFreeAll is used to free all memory areas allocated by a task with
RmAlloc or RmMemPoolAlloc . RmFreeAll frees also memory areas
which was allocated with the C Runtime library functions malloc , calloc
or realloc .

It is not possible to free part of any memory area.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID Invalid TaskID

RM_INVALID_POINTER A pointer was invalid.

An error message is not output if the task has not allocated any memory. Me-
mory which the task has allocated with RM_NOAUTOFREE is not freed.

calloc, malloc, realloc, RmAlloc, RmCreateMemPool, RmDeleteMem-
Pool, RmFree, RmMemPoolAlloc, RmReAlloc

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS APIRmFreeAll

6-35
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmGetAbsTime

Get absolute system time

#include <rmapi.h>
int RmGetAbsTime(RmAbsTimeStruct *pAbsTime);

Parameter Name Meaning

pAbsTime Pointer to a structure of type RmAbsTimeStruct containing
the absolute system time.

RmGetAbsTime copies the absolute system time in milliseconds since the
last complete restart to a structure of type RmAbsTimeStruct.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_POINTER Invalid pAbsTime

RmAbsTimeStruct

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmGetAbsTime

6-36
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmGetBinSemaphore

Test and set semaphore

#include <rmapi.h>
int RmGetBinSemaphore(

ulong TimeOutValue,
uint SemaphoreID);

Parameter Name Meaning

TimeOutValue Maximum time to wait for execution

RM_CONTINUE Continue task and do not wait for sema-
phore

RM_WAIT Wait for semaphore

0 ... RM_MAXTIME Time interval in ms. The task waits until it
receives the semaphore or the time has
expired.

The values for hours, minutes and seconds can be combined by
addition for the time parameter. The maximum wait time is 2^31
milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait for (ms) milliseconds

SemaphoreID Semaphore ID

RmGetBinSemaphore tests and sets a semaphore.

RM_OK Function successfully executed.

RM_TASK_WAITING Task had to wait for semaphore.

Error Code Meaning

RM_INVALID_ID An invalid SemaphoreID was passed.

RM_GOT_TIMEOUT The call was canceled after the con-
figured timeout time.

RM_RESOURCE_NOT_AVAILABLE The desired resource is not available.

The allocation and release of semaphores are not task-specific.

RmCreateBinSemaphore, RmDeleteBinSemaphore, RmReleaseBinSema-
phore

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS APIRmGetBinSemaphore

6-37
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmGetEntry

Find entry in catalog

#include <rmapi.h>
int RmGetEntry (

ulong TimeOutValue,
char *pName
RmEntryStruct * pEntry)

Parameter Name Meaning

TimeOutValue Maximum time to wait for execution

RM_CONTINUE Continue task and do not wait for the
entry to be cataloged

RM_WAIT Wait for the entry to be cataloged

0 ... RM_MAXTIME Time interval in ms. The task waits
until either the entry is cataloged or
the time has expired.

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait for (ms) milliseconds

pName Address of the name to be found in the catalog. The string can
also be defined using C or PLM notation.

pEntry Address of a structure of the type RmEntryStruct, see chap-
ter 3.

RmGetEntry searches for an entry in the resource catalog.

RM_OK Function successfully executed.

RM_TASK_WAITING The task had to wait for entry to
 be cataloged.

Error Code Meaning

RM_INVALID_STRING The length of the string is illegal. It is either zero
or greater than 15.

RM_IS_NOT_CATALOGED The specified string is not cataloged
(only if TimeOutValue == RM_CONTINUE)

Function

Syntax

Parameters

Description

Return Value

Error Codes

RMOS API RmGetEntry

6-38
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

RM_GOT_TIMEOUT The time has expired but the string has not been
cataloged.

RM_INVALID_POINTER The pointer to the string or structure is incorrect,
or a protection error occurred.

RmCatalog, RmUncatalog, RmGetNameSee Also

RMOS APIRmGetEntry

6-39
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmGetFlag

Test event flag

#include <rmapi.h>
int RmGetFlag(

ulong TimeOutValue,
uint Type,
uint FlagGrpID,
uint TestMask,
uint * pFlagMask);

Parameter Name Meaning

TimeOutValue Maximum time to wait for execution

RM_CONTINUE Continue task without waiting for
event flag to be set.

RM_WAIT Wait for the event flag to be set

0 ... RM_MAXTIME Time interval in ms. The task waits
until either the event flag has been set
or the time has expired.

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait for (ms) milliseconds

Type RM_TEST_ALL Test if all the specified bits have been
set

RM_TEST_ONE Test if at least one bit has been set

FlagGrpID ID of the flag group. 0 specifies the local flag group.

TestMask The mask defines which bits are tested

pFlagMask Pointer to a uint which returns the values of all bits in the
flag group.

RmGetFlag tests a flag group to establish whether all (RM_TEST_ALL) or
at least one (RM_TEST_ONE) of the specified bits have been set. If a wait
time is specified, the task waits for the bits to be set. The bits of a flag group
are ANDed with TestMask, and returned in pFlagMask.

RM_OK Function successfully executed.

RM_TASK_WAITING Call had to wait for the flag to be set.

RM_FLAG_ALREADY_SET The flag was already set.

Function

Syntax

Parameters

Description

Return Value

RMOS API RmGetFlag

6-40
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

RM_TEST_NOT_OK One or more flags in TestMask not set (only with
RM_CONTINUE)

RM_INVALID_ID An invalid FlagGrpID was passed.

RM_GOT_TIMEOUT The call was canceled after the configured timeout
expired.

RM_INVALID_POINTER The pointer to pFlagMask is invalid, or a protection
error occurred.

RmSetFlag, RmSetFlagDelayed, RmResetFlag

Error Codes

See Also

RMOS APIRmGetFlag

6-41
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmGetIntHandler

Read out interrupt handler

#include <rmapi.h>
int RmGetIntHandler (

uint IntNum
rmfarproc *pHandlerEntry);

Parameter Name Meaning

IntNum Interrupt Number (0–255)

IRQx (x=0 to 63) Hardware interrupt

IRQ(n) (n=0 to 63) Hardware interrupt

The hardware interrupts in PC hardware are at 0 to 15.

pHandlerEntry Entry address of interrupt handler

RmGetIntHandler is used to read the current interrupt handler from the
IDT.

RM_OK Function successfully executed, *pHandlerEntry contains
the entry address of the associated interrupt handler.

Error Code Meaning

RM_INVALID_INTERRUPT_NUMBER Invalid interrupt number

RM_INVALID_IRQ_NUMBER IRQx invalid, PIC not defined

RM_INVALID_POINTER Invalid pointer

RmSetIntDefHandler, RmSetIntISHandler, RmSetIntMailboxHandler,
 RmSetIntTaskHandler,

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmGetIntHandler

6-42
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmGetMemPoolInfo

Check memory pool information

#include <rmapi.h>
int RmGetMemPoolInfo (

uint PoolID,
RmMemPoolInfoStruct *pInfo)

Parameter Name Meaning

PoolID ID of the memory pool (RM_HEAP for heap)

pInfo Pointer to structure of the type RmMemPoolInfoStruct.

The RmGetMemPoolInfo function returns the size of the pool, of the avail-
able memory, and of the largest available block (RmAlloc (Size=–1)).The
information about the pool specified by PoolID is stored in the RmMem-
PoolInfoStruct structure pInfo points to this structure.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID Pool ID invalid

RM_INVALID_POINTER pInfo is an invalid pointer

RmMemPoolInfoStruct

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmGetMemPoolInfo

6-43
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmGetName

Search catalog for entry

#include <rmapi.h>
int RmGetName (

uint Type,
uint ID,
ulong IDEx,
char * pName)

Parameter Name Meaning

Type Resource type (see ID)

ID Resource ID

0 RM_CATALOG_TASK 0≤id≤2047

1 RM_CATALOG_DEVICE 0≤id≤255

2 RM_CATALOG_POOL 0≤id≤63

3 RM_CATALOG_SEMAPHORE 0≤id≤4095

4 RM_CATALOG_EVENTFLAG 0≤id≤63

5 RM_CATALOG_CNTRL 0≤id≤255

6 RM_CATALOG_LOCALMAILBOX 0≤id≤255

7 RM_CATALOG_MISC 0≤id≤65535

8 RM_CATALOG_USER 0≤id≤65535

10RM_CATALOG_UNIT 0≤id≤255

11 RM_CATALOG_MESSAGE 0≤id≤2047

255 RM_CATALOG_ALL 0≤id≤65535

IDEx Extended resource ID (–1 = not specified)

pName Address of a buffer in which the string is to be stored. The
length of the buffer must be at least 15 characters + \0.

The RmGetName searches through a catalog and returns the name belong-
ing to Type, ID and IDEx.

RM_OK Function successfully executed, the buffer contains the
valid name of the specified resource.

Error Code Meaning

RM_INVALID_TYPE The specified type is illegal. 0≤Type≤11

RM_INVALID_ID The specified ID is illegal.

Function

Syntax

Parameters

Description

Return Value

Error Codes

RMOS API RmGetName

6-44
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

RM_IS_NOT_CATALOGED A matching entry was not found.

RM_INVALID_POINTER The pointer to the string is invalid.

RmCatalog, RmUncatalog, RmGetEntrySee Also

RMOS APIRmGetName

6-45
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmGetSize

Get the size of a memory area

#include <rmapi.h>
int RmGetSize(

void *pMemory,
ulong *pSize);

Parameter Name Meaning

pMemory Pointer to the memory area

pSize Pointer to the memory location where the length of the
memory area is returned.

This function can be used to determine the length of a memory area pre-
viously allocated with RmAlloc or RmMemPoolAlloc . *pSize contains
the length of the specified memory area.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_MEMORY_BLOCK Memory area was invalid.

RM_INVALID_SIZE A size was invalid.

RM_INVALID_POINTER A pointer was invalid.

RmAlloc, RmCreateMemPool, RmDeleteMemPool, RmFree, RmFreeAll,
RmMemPoolAlloc, RmReAlloc

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmGetSize

6-46
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmGetTaskID

Get task ID

#include <rmapi.h>
int RmGetTaskID(

uint Tcb,
uint * pTaskID);

Parameter Name Meaning

Tcb Only RM_OWN_TASK (= own task) allowed

pTaskID Pointer to task ID

 RmGetTaskID can be used to determine the task ID of the present
task.*pTaskID contains the valid task ID of the present task.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_POINTER A pointer was invalid.

RM_PARAMETER_ERROR A parameter other than RM_OWN_TASK was
passed.

RmCreateTask, RmCreateChildTask

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmGetTaskID

6-47
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmGetTaskPriority

Get task priority

#include <rmapi.h>
int RmGetTaskPriority(

uint TaskID,
uint * pPriority);

Parameter Name Meaning

TaskID Task ID (RM_OWN_TASK = own task)

pPriority Pointer to a memory location containing the priority of the
task.

RmGetTaskPriority returns the task priority. *pPriority contains the
priority of the specified task.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID TaskID invalid

RM_INVALID_POINTER A pointer was invalid.

RmGetTaskState

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmGetTaskPriority

6-48
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmGetTaskState

Get task state

#include <rmapi.h>
int RmGetTaskState(

uint TaskID,
uint * pTaskState);

Parameter Name Meaning

TaskID Task ID (RM_OWN_TASK = own task)

pTaskState Pointer to a memory location containing the state of the task.

Possible task states are:

RM_READY Task in READY state

RM_DORMANT Task in DORMANT state

RM_ACTIVE Task in ACTIVE state

RM_BLOCKED Task in BLOCKED state

The reason for the state is coded in the 6 most significant bits
of *pTaskState. *pTaskState can have one of the following
values:

RM_STA_EF Waiting for event flag

RM_STA_SEMA Waiting for semaphore

RM_STA_LOAD Waiting until destination task is
loaded

RM_STA_STRT Waiting for destination task to start

RM_STA_ENDT Waiting for destination task to end

RM_STA_MSG Waiting for a message to be received

RM_STA_MSGRCVD
Waiting for a dispatched message to
be received

RM_STA_POOL Waiting for memory to be allocated
from a memory pool

RM_STA_HLT Halted by DEBUGGER or by
RmSuspendTask

RM_STA_BREAK Interrupted by DEBUGGER breakpo-
int

Function

Syntax

Parameters

RMOS APIRmGetTaskState

6-49
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Parameter Name Meaning

RM_STA_PAUSE Waiting for expiry of a time interval
(RmPauseTask)

RM_STA_WAIT Waiting for time interval to expire

RM_STA_ERR0 Runtime error, type 0
(Division by 0 Interrupt)

RM_STA_ERR1 Runtime error, type 1
(Single Step Interrupt)

RM_STA_ERR2 Runtime error, type 3
(Breakpoint Interrupt)

RM_STA_ERR3 Runtime error, type 4
(Overflow Interrupt)

RM_STA_ERR4 Runtime error, type 5
(Array Bound Interrupt)

RM_STA_ERR5 Runtime error, type 6
(Unused Opcode)

RM_STA_ERR6 Runtime error, type 7
(Escape Opcode)

RM_STA_ERR7 Runtime error, type 8
(Double Fault)

RM_STA_ERR8 Runtime error, type 9
(NDP Segment Overrun)

RM_STA_ERR9 Runtime error, type 10
(Invalid TSS)

RM_STA_ERR10 Runtime error, type 11
(Segment Not Present)

RM_STA_ERR11 Runtime error, type 12
(Stack Fault)

RM_STA_ERR12 Runtime error, type 13
(General Protection)

RM_STA_ERR13 Runtime error, type 14
(Page Fault)

RM_STA_ERR14 Runtime error, type 16
(Floating Point Error)

RM_STA_ERR15 Runtime error, type 17
(Alignment Check)

RM_STA_LOOK Waiting for catalog entry

RM_STA_KEND Task terminated by RmKillTask
(after completion of a running I/O op-
eration)

RM_STA_KDEL Task deleted by RmKillTask (after
completion of a running I/O opera-
tion)

RM_ACTIVE Task in ACTIVE state.

RmGetTaskState returns the task state.Description

RMOS API RmGetTaskState

6-50
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RM_OK Function successfully executed, *pTaskState contains the
state of the specified task.

Error Code Meaning

RM_INVALID_ID TaskID invalid

RM_INVALID_POINTER A pointer was invalid.

RmGetTaskPriority

If a task does not exist RmGetTaskState returns RM_INVALID_ID.

Return Value

Error Codes

See Also

Note

RMOS APIRmGetTaskState

6-51
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmIOClose

Close unit

#include <rmapi.h>
int RmIOClose(RmIOHandle Handle);

Parameter Name Meaning

Handle Descriptor

RmIOClose closes the unit specified by Handle. Handle is a descriptor that
was generated with RmIOOpen. If the unit was reserved for the calling task,
it is released again (by the driver), and waiting requests of other tasks are
processed.

The RmIOClose call does not have a blocking effect if the unit is reserved
for another task.

RM_OK The function was successfully executed

Error Code Meaning

RM_BOUND_REACHED Message queue of unit full

RM_EIO_UNIT_RESET Request canceled by control function
RM_IOCTL_RESET

RM_INVALID_HANDLE Descriptor is invalid

RM_OUT_OF_MEMORY Not enough memory available in heap

RM_QUEUE_NOT_EXIST Message queue of unit has not yet been set up

RmIOControl, RmIOOpen, RmIORead, RmIOWrite, RmLoadDevice

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmIOClose

6-52
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmIOControl

Control function for loadable drivers

#include <rmapi.h>
int RmIOControl(

uint Wait,
uint FlagMask,
RmIOHandle Handle,
uint Control,
void *pBuffer,
int * pIOStatus);

Parameter Name Meaning

Wait Specifies whether the control function is to be executed with
or without waiting.

RM_CONTINUE Continue task without waiting
for control function to finish

RM_WAIT Wait for control function to finish

FlagMask Bit mask to be enabled in the local flag group of the calling
task on termination of the control function (with RM_CON-
TINUE)

Handle Descriptor

Control Function code of the control function, see below

pBuffer Pointer to parameter block for the control function.

pIOStatus Pointer to int with error status of the operation or NULL
pointer

RmIOControl executes a control function on the unit specified by Handle.
Handle is a descriptor that was generated with RmIOOpen.

The Wait parameter specifies whether the task is to wait for the control
function to finish (RM_WAIT), or whether it is to continue
(RM_CONTINUE).

The FlagMask parameter can be used to specify a bit mask in the local flag
group (FlagGroupId=0) which will be enabled after termination of the control
function when a call without wait is executed. If 0 is specified, no bit mask is
enabled.

The Control parameter specifies the control function to be executed. If the
unit does not support the specified control function, the control function is
terminated with RM_EIO_INVALID_CONTROL.

pBuffer is used to pass a parameter block, the structure of which depends on
the specified control function.

Function

Syntax

Parameters

Description

RMOS APIRmIOControl

6-53
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

On termination of the control function, the status is entered in the int to
which pIOStatus points. In requests with wait, this status is identical to the
return value of the call. If the request is executed without wait, the value
RM_IO_QUEUED is stored there while the request is located in the queue.
During processing by the driver, the value RM_IO_IN_PROGRESS is stored
there. After processing, the error status of the operation is stored there. If the
return value of the status in pIOStatus is not required (e.g. because of a call
with RM_WAIT), a NULL pointer can be passed. In this case, the status is
only reported as the return value of the function.

Below you will find the control functions available for the serial interface
driver SER8250.DRV and the 3964(R) driver 3964.DRV.

Control functions for SER8250.DRV

RM_IOCTL_BUFFER_FLUSH
Flush background buffer. pBuffer is ignored.

RM_IOCTL_BUFFER_GETSIZE
Find out the size of the background buffer. The buffer size in number of
characters is written to ulong , to which pBuffer points.

RM_IOCTL_BUFFER_SETSIZE
Set the size of the background buffer. Data already stored in the background
buffer are deleted. In the event of an error (e.g. not enough free memory), the
background buffer remains unchanged. pBuffer points to a ulong which
specifies the new buffer size in number of characters.

RM_IOCTL_BUFFER_USED
Determine the number of characters in the background buffer. The number is
stored in a ulong to which pBuffer points.

RM_IOCTL_CANCEL
Cancel current I/O request. pBuffer is ignored.

RM_IOCTL_GET_PROPERTIES
Determine the function scope of the driver. pBuffer points to a structure of
the type RmIOCTLPropertiesStruc t.

RM_IOCTL_GET_VERSION
Find out version of the driver. pBuffer points to a structure of the type
RmIOCTLVersionStruct .

RM_IOCTL_INIT
Configure unit with new values. pBuffer points to a structure of the type
Ser8250InitStruct , which is used to pass the configuration data.

RM_IOCTL_INIT_ASCII
Configure unit with new values. The new configuration values are passed in
the form of ASCII strings. pBuffer points to an array of pointers which point
to the configuration parameters. The last element of the array must be a
NULL pointer.
The following configuration parameters are permitted:

“IRQ:<irq number>”
<irq number> IRQ number of the interface (e.g. 4 for COM1).

Control Functions

RMOS API RmIOControl

6-54
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

This parameter is only permitted in the first RM_IOCTL_INIT_ASCII or
RM_IOCTL_INIT call for a unit (e.g. DEVICE command).

“BASE:<i/o address>”
<i/o address> I/O base address of the 8250 (e.g. 0x3F8 for COM1)
This parameter is only permitted in the first RM_IOCTL_INIT_ASCII or
RM_IOCTL_INIT call for a unit (e.g. DEVICE command).

“MODE:<baud rate>–<parity>–<data bit>–<stop bit>”
Configuration of the communication parameters. The meanings are as
follows:

<baud rate> Baud rate.
All values by which 115200 can be divided without remainder are permitted.

<parity> Parity. The following parameters are permitted:
N No parity check
E Even parity
O Odd parity
S Parity bit always set to 0 (space)
M Parity bit always set to 1 (mark)

<data bit> Number of data bits. The following numbers are permitted: 5, 6, 7,
8

<stop bit> Number of stop bits. The following settings are permitted:
1 1 stop bit
2 2 stop bits (not with 5 data bits)
15 1.5 stop bits (only with 5 data bits)

“BUFFER:<size>”
<size> Size of the background buffer

Example:
char *parameter[5];
int status
int iostatus;
parameter[0] = “IRQ:4”;
parameter[1] = “BASE:0x3F8”;
parameter[2] = “MODE:19200-n-8-1”;
parameter[3] = “BUFFER:512”;
parameter[4] = NULL;
status = RmIOControl(RM_WAIT, 0, handle, RM_IOCTL_INIT_ASCII,

 parameter, &iostatus);

RM_IOCTL_INIT_GET
Read in the current configuration of the unit. pBuffer points to a buffer with
the structure of type Ser8250InitStruct .

RM_IOCTL_MODE
Configure unit with new values for communication (e.g. baud rate). pBuffer
points to a structure of type RmIOCTLModeSerialStruct .

RM_IOCTL_READLEN
Define the number of characters after which read requests are terminated
automatically (only valid when activated by RM_IOCTL_READSTOP).
pBuffer must point to a ulong which contains the number of characters.

RMOS APIRmIOControl

6-55
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RM_IOCTL_READLEN_GET
Read in the number of characters defined by RM_IOCTL_READLEN. The
number of characters is written to the ulong to which pBuffer points.

RM_IOCTL_READ_MODE
Select the mode of RmIORead. pBuffer points to a ulong in which either
RM_WAIT or RM_CONTINUE is specified.

When RM_WAIT is specified, a read request is not completed until the end
condition (number of characters, stop character, timeout, ...) has been
attained or an error occurs. When RM_CONTINUE is specified, the read
request is terminated with RM_IO_NO_DATA when no data (including the
end condition) are stored in the background buffer.

The default setting is RM_WAIT.

RM_IOCTL_READSTOP
Define which end condition is used for read requests. The stop character(s) is
(are) not written to the user buffer. The end condition is defined by the char
to which pBuffer points. The following values are permitted:

SER8250_READSTOP_OFF
Do not use end condition

SER8250_READSTOP_CHAR_1
Use stop character 1

SER8250_READSTOP_CHAR_1_2
Use stop characters 1 and 2, that is cancel when the 1st
character is followed by the 2nd stop character.

SER8250_READSTOP_LEN
Terminate read request when the number of characters defined
by RM_IOCTL_READLEN have been read in.

SER8250_READSTOP_CHAR_1 or SER8250_READSTOP_CHAR_1_2
and SER8250_READSTOP_LEN can be combined using OR logic.

The default setting is SER8250_READSTOP_OFF.

RM_IOCTL_READSTOP1
Define stop character 1 that terminates the read request. Only valid when
activated by RM_IOCTL_READSTOP. pBuffer must point to a char which
contains the stop character.

RM_IOCTL_READSTOP2
Define stop character 2 that terminates the read request. Only valid when
activated by RM_IOCTL_READSTOP. pBuffer must point to a char which
contains the stop character.

RM_IOCTL_READSTOP_GET
Read in the end condition activated by RM_IOCTL_READSTOP and the
entered stop character. pBuffer must point to an array with 3 char in which
the current values of RM_IOCTL_READSTOP, RM_IOCTL_READSTOP1
and RM_IOCTL_READSTOP2 are entered.

RM_IOCTL_READTIMEOUT
Define a time span (in ms) specifying the maximum pause between two

RMOS API RmIOControl

6-56
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

characters during read requests. If the pause is longer, the read request is
terminated. Specifying RM_CONTINUE deactivates the timeout. pBuffer
must point to a ulong which specifies the time span.

The default setting is RM_CONTINUE.

RM_IOCTL_READTIMEOUT_GET
Read in the time span specified by RM_IOCTL_READTIMEOUT. The time
span is written to the ulong to which pBuffer points.

RM_IOCTL_RELEASE
Release the unit. I/O requests which were blocked while the unit was
reserved are now executed. pBuffer is ignored.

RM_IOCTL_RESERVE
Reserve unit for calling task. I/O requests of other tasks are accepted, but are
not executed until the unit is released. pBuffer is ignored.

RM_IOCTL_RESET
Reset and restart the unit. All I/O requests of the unit which have not yet
been executed are rejected with RM_EIO_UNIT_RESET. The unit must
subsequently be reinitialized (with control functions RM_IOCTL_INIT or
RM_IOCTL_INIT_ASCII). pBuffer is ignored.

RM_IOCTL_WRITEDELAY
Define a time span (in ms) specifying the minimum pause observed after
transmission of the last character during write requests by the driver, before
the request is terminated and a new request is processed. Specifying
RM_CONTINUE deactivates the timeout.

pBuffer must point to a ulong in which the time span is specified.

The default setting is RM_CONTINUE.

RM_IOCTL_WRITEDELAY_GET
Read in the time span specified by RM_IOCTL_WRITEDELAY. The time
span is written to the ulong to which pBuffer points.

RM_IOCTL_WRITESTOP
Define which end condition is used for write requests. The stop character(s)
is (are) transferred in addition to the data sent by the user. The end condition
is defined by the char to which pBuffer points. The following values are
permitted:

SER8250_WRITESTOP_OFF
Do not use end condition

SER8250_WRITESTOP_CHAR_1
Use stop character 1

SER8250_WRITESTOP_CHAR_1_2
Use stop character 1 followed by stop character 2

The default setting is SER8250_WRITESTOP_OFF.

RM_IOCTL_WRITESTOP1
Define stop character 1 for write requests. Only valid when activated by
RM_IOCTL_WRITESTOP. pBuffer must point to a char which contains the
stop character.

RMOS APIRmIOControl

6-57
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RM_IOCTL_WRITESTOP2
Define stop character 2 for write requests. Only valid when activated by
RM_IOCTL_WRITESTOP. pBuffer must point to a char which contains the
stop character.

RM_IOCTL_WRITESTOP_GET
Read in the end condition activated by RM_IOCTL_WRITESTOP and the
entered stop character. pBuffer must point to an array with 3 char in which
the current values of RM_IOCTL_WRITESTOP,
RM_IOCTL_WRITESTOP1 and RM_IOCTL_WRITESTOP2 are entered.

Control functions for 3964.DRV

RM_IOCTL_CANCEL
Cancel current I/O request. pBuffer is ignored.

RM_IOCTL_GET_PROPERTIES
Determine the function scope of the driver. pBuffer points to a structure of
the type RmIOCTLPropertiesStruc t.

RM_IOCTL_GET_VERSION
Find out version of the driver. pBuffer points to a structure of the type
RmIOCTLVersionStruct .

RM_IOCTL_INIT
Configure unit with new values. pBuffer points to a structure of the type
Rm3964InitStruct , which is used to pass the configuration data.

RM_IOCTL_INIT_ASCII
Configure unit with new values. The new configuration values are passed in
the form of ASCII strings. pBuffer points to an array of pointers which point
to the configuration parameters. The last element of the array must be a
NULL pointer.

The following parameters are permitted:
“IRQ:<irq number>”
<irq number> IRQ number of the interface over which the driver is to
communicate (e.g. 4 for COM1). This parameter is only permitted in the first
RM_IOCTL_INIT_ASCII or RM_IOCTL_INIT call for a unit (e.g. DEVICE
command).

“BASE:<i/o address>”
<i/o address> I/O base address of the interface over which the driver is to
communicate (e.g. 0x3F8 for COM1). This parameter is only permitted in the
first RM_IOCTL_INIT_ASCII or RM_IOCTL_INIT call for a unit (e.g.
DEVICE command).

“MODE:<baud>–<parity>–<data>–<stop>”
Communication parameters:
<baud rate> Baud rate.
All values by which 115200 can be divided without remainder are permitted.

<parity> Parity.
The following parameters are permitted:
N No parity check
E Even parity

RMOS API RmIOControl

6-58
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

O Odd parity
S Parity bit always set to 0 (space)
M Parity bit always set to 1 (mark)

<data bit> Number of data bits. The following numbers are permitted: 5, 6, 7,
8

<stop bit> Number of stop bits.
The following settings are permitted:
1 1 stop bit
2 2 stop bits (not with 5 data bits)
15 1.5 stop bits (only with 5 data bits)

“PROT:<protocol>–<master>”
Protocol parameters:
<protocol> Selection of protocol 3964 or 3964R: 1 for 3964R, 0 for
3964
<master> Selection of master or slave: 1 for master, 0 for slave

Example:
char *parameter[5];
int status
int iostatus;
parameter[0] = “IRQ:4”
parameter[1] = “BASE:0x3F8”;
parameter[2] = ”MODE:19200-n-8-1”;
parameter[3] = “PROT:1-1”;
parameter[4] = NULL;
status = RmIOControl(RM_WAIT, 0, handle, RM_IOCTL_INIT_ASCII,

 parameter, &iostatus);

RM_IOCTL_INIT_GET
Read in the current configuration of the unit. pBuffer points to a buffer with
the structure Rm3964InitStruct .

RM_IOCTL_MODE
Configure unit with new values for communication (e.g. baud rate).
pBuffer points to the configuration data, which are to be passed to a structure
RmIOCTLModeSerialStruct .

RM_IOCTL_RELEASE
Release the unit. I/O requests which were blocked while the unit was
reserved are now executed. pBuffer is ignored.

RM_IOCTL_RESERVE
Reserve unit for calling task. I/O requests of other tasks are accepted, but are
not executed until the unit is released. pBuffer is ignored.

RM_IOCTL_RESET
Reset and restart the unit. All I/O requests of the unit which have not yet
been executed are rejected with RM_EIO_UNIT_RESET. The unit must
subsequently be reinitialized (with control functions RM_IOCTL_INIT or
RM_IOCTL_INIT_ASCII). pBuffer is ignored.

RM_OK The function was successfully executedReturn Value

RMOS APIRmIOControl

6-59
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_BOUND_REACHED Message queue of unit full.

RM_EIO_INVALID_CONTROL The specified control function is not sup-
ported

RM_EIO_UNIT_RESET Request canceled by RM_IOCTL_RESET
control function

RM_EIO_××× Other error codes of the operation

RM_INVALID_POINTER Pointer invalid

RM_INVALID_TYPE Invalid value for Wait

RM_INVALID_HANDLE Handle invalid

RM_IO_QUEUED Request waiting in message queue

RM_IO_IN_PROGRESS Request is being processed

RM_OUT_OF_MEMORY Not enough free memory available in heap

RM_QUEUE_NOT_EXIST Message queue of unit has not yet been set
up

RmIOClose, RmIOOpen, RmIORead, RmIOWrite, RmLoadDevice

Error Codes

See Also

RMOS API RmIOControl

6-60
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmIOOpen

Open unit

#include <rmapi.h>
int RmIOOpen(

const char * pUnitName,
uint Mode,
RmIOHandle * pHandle);

Parameter Name Meaning

pUnitName Name of the unit in the RMOS resource catalog

Mode Mode for opening the unit

RM_IO_READ Open unit for read access

RM_IO_WRITE Open unit for write access

RM_IO_RESERVE Reserve unit for task

pHandle Pointer to a variable in which the descriptor for addressing
unit is stored.

RmIOOpen opens the unit specified by pUnitName for processing with the
calls RmIORead, RmIOWrite and RmIOControl . RmIOOpen returns the
descriptor of the open unit to the memory addressed by pHandle.

The Mode parameter specifies what type of accesses are to be performed on
the unit. RM_IO_READ signifies read accesses and RM_IO_WRITE
signifies write accesses.

Specifying RM_IO_RESERVE additionally means that only requests of the
calling task are processed. Requests of other tasks are accepted, but are not
executed until the unit is released with the task (RmIOControl with
RM_IOCTL_RELEASE) or closed with RmIOClose .

If necessary, the values can be combined using OR logic (e.g.
RM_IO_READ | RM_IO_WRITE | RM_IO_RESERVE; the unit is opened
for read and write access exclusively by the calling task).

RM_OK The function was successfully executed

Error Code Meaning

RM_BOUND_REACHED Message queue of unit full.

RM_EIO_UNIT_RESERVED Unit is already reserved (RmIOOpen with
RM_IO_RESERVE or RmIOControl with
RM_IOCTL_RESERVE).

Function

Syntax

Parameters

Description

Return Value

Error Codes

RMOS APIRmIOOpen

6-61
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_EIO_UNIT_RESET Request canceled by control function
RM_IOCTL_RESET

RM_INVALID_POINTER Pointer invalid

RM_INVALID_TYPE Invalid value for Mode

RM_INVALID_UNIT UnitName is not the unit of a loadable driver

RM_IS_NOT_CATALOGED Unit is not cataloged with the specified name

RM_OUT_OF_MEMORY Not enough free memory available in heap

RM_QUEUE_NOT_EXIST Message queue of unit has not yet been set up.

RmIOClose, RmIOControl, RmIORead, RmIOWrite, RmLoadDeviceSee Also

RMOS API RmIOOpen

6-62
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmIORead

Read from unit

#include <rmapi.h>
int RmIORead(

uint Wait,
uint FlagMask,
RmIOHandle Handle,
ulong Length,
void *pBuffer,
ulong BlockAddress,
ulong *pIOCount,
int * pIOStatus);

Parameter Name Meaning

Wait Specifies whether the request is to be executed with or with-
out waiting.

RM_CONTINUE Continue task without waiting for
read request to finish

RM_WAIT Wait for read request to finish

FlagMask Bit mask to be enabled in the local flag group of the calling
task on termination of the request (with RM_CONTINUE)

Handle Descriptor

Length Length of the memory area in bytes/blocks (numerical)

pBuffer Pointer to the memory area

BlockAddress Address of the first block for block–oriented drivers

pIOCount Pointer to a ulong for the number of bytes/blocks read
(valid only after completion of the read request)

pIOStatus Pointer to int for error status of the operation or NULL
pointer

The RmIORead call reads Length bytes (for character–oriented drivers) or
blocks (for block–oriented drivers) from the unit specified by Handle into the
memory area specified by pBuffer. Handle is a descriptor that was generated
with RmIOOpen.

With block–oriented drivers, the address of the first block to be read is also
passed in BlockAddress. With character–oriented drivers (SER8250.DRV,
3964.DRV), BlockAddress is ignored.

Wait specifies whether the task is to wait for the read request to finish
(RM_WAIT), or whether it is to continue (RM_CONTINUE).

Function

Syntax

Parameters

Description

RMOS APIRmIORead

6-63
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The FlagMask parameter can be used to specify a bit mask in the local flag
group (FlagGroupId=0) which will be enabled after termination of the
request when a call without wait is executed. If 0 is specified, no bit mask is
enabled.

After completion of the read request, the number of transferred bytes/blocks
is stored in the ulong to which pIOCount points.

On termination of the read request, the status is entered in the int to which
pIOStatus points. In requests with wait, this status is identical to the return
value of the call. If the request is executed without wait, the value
RM_IO_QUEUED is stored there while the request is located in the queue.
During processing by the driver, the value RM_IO_IN_PROGRESS is stored
there. After processing, the error status of the operation is stored there. If the
return value of the status in pIOStatus is not required (e.g. because of a call
with RM_WAIT), a NULL pointer can be passed. In this case, the status is
only reported as the return value of the function.

RM_OK The function was successfully executed

Error Code Meaning

RM_BOUND_REACHED Message queue of unit full

RM_EIO_INVALID_ACCESS Descriptor is not open for read

RM_EIO_UNIT_RESET Request canceled by control function
RM_IOCTL_RESET

RM_INVALID_HANDLE Descriptor is invalid

RM_INVALID_POINTER Invalid pointer

RM_INVALID_TYPE The value for Wait is invalid

RM_IO_IN_PROGRESS Request is being processed

RM_IO_QUEUED Request waiting in queue

RM_OUT_OF_MEMORY Not enough free memory available in heap

RM_QUEUE_NOT_EXIST Message queue of unit has not yet been set up.

RmIOClose, RmIOControl, RmIOOpen, RmIOWrite, RmLoadDevice

Return Value

Error Codes

See Also

RMOS API RmIORead

6-64
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmIOWrite

Write to unit

#include <rmapi.h>
int RmIOWrite(

uint Wait,
uint FlagMask,
RmIOHandle Handle,
ulong Length,
void *pBuffer,
ulong BlockAddress,
ulong *pIOCount,
int * pIOStatus);

Parameter Name Meaning

Wait Specifies whether the request is to be executed with or with-
out waiting.

RM_CONTINUE Continue task without waiting for
write request to finish

RM_WAIT Wait for write request to finish

FlagMask Bit mask to be enabled in the local flag group of the calling
task on termination of the request (with RM_CONTINUE)

Handle Descriptor

Length Length of the memory area in bytes/blocks (numerical)

pBuffer Pointer to the memory area

BlockAddress Address of the first block for block–oriented drivers

pIOCount Pointer to a ulong for the number of bytes/blocks written
(valid only after completion of the read request)

pIOStatus Pointer to int for error status of the operation or NULL
pointer

The RmIOWrite call writes Length bytes (for character–oriented drivers) or
blocks (for block–oriented drivers) from the memory area specified by
pBuffer to the unit specified by Handle. Handle is a descriptor that was
generated with RmIOOpen.

With block–oriented drivers, the address of the first block to be written is
also passed in BlockAddress. With character–oriented drivers
(SER8250.DRV, 3964.DRV), BlockAddress is ignored.

Wait specifies whether the task is to wait for the write request to finish
(RM_WAIT), or whether it is to continue (RM_CONTINUE).

Function

Syntax

Parameters

Description

RMOS APIRmIOWrite

6-65
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The FlagMask parameter can be used to specify a bit mask in the local flag
group (FlagGroupId=0) which will be enabled after termination of the
request when a call without wait is executed. If 0 is specified, no bit mask is
enabled.

After completion of the read request, the number of transferred bytes/blocks
is stored in the ulong to which pIOCount points.

On termination of the write request, the status is entered in the int to which
pIOStatus points. In requests with wait, this status is identical to the return
value of the call. If the request is executed without wait, the value
RM_IO_QUEUED is stored there while the request is located in the queue.
During processing by the driver, the value RM_IO_IN_PROGRESS is stored
there. After processing, the error status of the operation is stored there. If the
return value of the status in pIOStatus is not required (e.g. because of a call
with RM_WAIT), a NULL pointer can be passed. In this case, the status is
only reported as the return value of the function.

RM_OK The function was successfully executed

Error Code Meaning

RM_BOUND_REACHED Message queue of unit full.

RM_EIO_INVALID_ACCESS Descriptor not open for Write

RM_EIO_UNIT_RESET Request canceled by control function
RM_IOCTL_RESET

RM_INVALID_HANDLE Descriptor is invalid

RM_INVALID_POINTER Invalid pointer

RM_INVALID_TYPE The value for Wait is invalid

RM_IO_IN_PROGRESS Request is being processed

RM_IO_QUEUED Request waiting in queue

RM_OUT_OF_MEMORY Not enough free memory available in heap

RM_QUEUE_NOT_EXIST Message queue of unit has not yet been set up.

RmIOClose, RmIOControl, RmIOOpen, RmIORead, RmLoadDevice

Return Value

Error Codes

See Also

RMOS API RmIOWrite

6-66
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmKillTask

End task

#include <rmapi.h>
int RmKillTask(

uint Mode,
uint TaskID);

Parameter Name Meaning

Mode Desired task state:

RM_TASK_END Switch task to DORMANT state
(same effect as RmEndTask)

RM_TASK_DELETE Delete task (same effect as
RmDeleteTask)

TaskID ID of task to be deleted (RM_OWN_TASK = own task)

The function switches any task (even the calling task) to the DORMANT or
NOTEXISTENT state, irrespective of the state before the function call.

Special conditions arise when the destination task is in the BLOCKED state.

RmKillTask is illegal under the following circumstances, and is terminated
with an error message:

� Termination/deletion through RmKillTask was already requested (call-
ing RmKillTask twice for the same task)

� Page fault because stack overflow

In the following situation, the task does not switch immediately to the
DORMANT or NOTEXISTENT state, but is merely registered:

Waiting for completion of an I/O job:
The task involved remains in the BLOCKED state. The state change is not
activated until the I/O job has been completed. It is thus possible that the task
will remain visible in a passive (blocked) state following the call. In this
case, the task is in the block state RM_STA_KEND or RM_STA_KDEL.

RM_TASK_DELETE option

All start requests are deleted from the queue. If the destination task was
started with the coordination option “Wait until ready” or “Wait until ter-
mination”, all related tasks which have been initiated by RmStartTask
or RmQueueStartTask are informed of the premature termination/dele-
tion of the destination task.

RM_TASK_END option

All start requests remain in the queue. The calling task continues to run as if
the destination task had initiated RmEndTask. If the destination task was

Function

Syntax

Parameters

Description

RMOS APIRmKillTask

6-67
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

started with the coordination option “Wait until ready” or “Wait until ter-
mination”, all related tasks which have been initiated by RmStartTask or
RmQueueStartTask are informed of the premature termination/deletion
of the destination task.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_TYPE An invalid parameter (Mode) was passed.

RM_INVALID_ID An invalid TaskID was passed.

RM_INVALID_TASK_STATE Call illegal in present task state.

Resources, such as memory pools, mailboxes or semaphores, which are still
in possession of the task, are not automatically freed when the task is
switched to the DORMANT state or deleted. These resources must, if pos-
sible, be freed by another task, otherwise they will no longer be available
during subsequent operation.

RmDeleteTask, x_cr_killtsk,

Return Value

Error Codes

Note

See Also

RMOS API RmKillTask

6-68
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmList

List entries in resource catalog

#include <rmapi.h>
int RmList (

uint Type,
uint Count,
uint * pIndex,
uint * pNumEntries
RmEntryStruct * pEntry)

Parameter Name Meaning

Type Resource type (see RmGetName)

Count Number of resource entries to be read out in a call.

NumEntries returns the number of entries which were found
and stored in pEntry.

If Count > 1, pEntry must point to an array with NumEntries
elements of the RmEntryStruct structure.

pIndex This parameter is used as both an input and output parameter.

Input parameter:
*pIndex specifies the value from which the resource entries
are to be read out.

*pIndex must be 0 on the first call. If further calls are re-
quired, *pIndex should not be changed.

Output parameter:
In *pIndex the function returns the next entry which has not
yet been read out.

This index is only used internally for system purposes and can
not be evaluated by the user.

pNumEntries Number of entries found.

pEntry Pointer to a structure or (depending on Count) an array of
structures of the type RmEntryStruct, see chapter 3:

The RmList function reads out a number of entries from the catalog and
stores them in the specified buffer whose start address is specified by pEntry.

The first entry to be read out can be specified in the *pIndex parameter (start
of the list = 0). When the call returns, *pIndex contains a reference to the
next entry which has not yet been read out.*pIndex may not be changed.

The end of the catalog has been reached when the number of entries actually
read out (*pNumEntries) is less than the number requested (Count).

You can limit the read-out to a specific resource type with Type.

Function

Syntax

Parameters

Description

RMOS APIRmList

6-69
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RM_OK Function successfully executed, the buffer contains valid
entries.

Error Code Meaning

RM_INVALID_TYPE The specified type is illegal. 0≤Type≤11

RM_INVALID_POINTER The pointer to the string is incorrect, or a protection
error has occurred.

RmCatalog, RmGetEntry, RmGetName, RmUncatalog

Return Value

Error Codes

See Also

RMOS API RmList

6-70
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmLoadDevice

Load driver

#include <rmapi.h>
int RmLoadDevice(

const char *pDeviceName,
const char *pArguments);

Parameter Name Meaning

pDeviceName Pointer to the name of the driver

pArguments Pointer to arguments (separated by spaces)

RmLoadDevice loads and starts the driver specified by pDeviceName or
generates a new unit for the driver specified by pDeviceName if
pDeviceName is entered in the RMOS resource catalog as a loadable driver
(SER8250, 3964).

The driver must be specified by an absolute path the first time it is loaded.
The name of the driver must be specified (SER8250.DRV, 3964.DRV). The
driver is cataloged after it is loaded.

The name entered in the resource catalog must be used in further calls
(SER8250, 3964).

pArguments specifies the arguments for initializing the driver or unit. The
individual arguments are separated by spaces. See RmIOControl with
control function RM_IOCTL_INIT_ASCII for more detailed information.

The RMFCRIFB.LIB library is required when the application is linked.

RM_OK Function successful

Error Code Meaning

RM_INVALID_DEVICE Invalid pDeviceName (e.g. catalog entry is not a
loadable driver or driver not found).

RM_OUT_OF_MEMORY No free memory available.

RM_EIO_INIT_FAILED The driver has terminated due to an error, and has
been removed from the system.

Function

Syntax

Parameters

Description

Return Value

Error Codes

RMOS APIRmLoadDevice

6-71
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Load driver SER8250 without arguments:
RmLoadDevice(”\\M7RMOS32\\ser8250.drv”, NULL);

Load driver 3964 with unit 3964_COM1 and initialization values:
RmLoadDevice(”\\M7RMOS32\\3964.drv”,
“3964_COM1 IRQ:4 BASE:0x3F8 MODE:19200–N–8–1 PROT:1–1”);

Create unit COM2 for already loaded driver SER8250 with initialization
values:
RmLoadDevice(”SER8250”,
“COM2 IRQ:3 BASE:0x2F8 MODE:19200–N–8–1”);

RmIOClose, RmIOControl, RmIOOpen, RmIORead, RmIOWrite

Example

See Also

RMOS API RmLoadDevice

6-72
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmMapMemory

Address physical memory

#include <rmapi.h>
int RmMapMemory (

ulong PhysAddress,
ulong Length,
void **pPointer);

Parameter Name Meaning

PhysAddress Physical start address

Length Length of the memory area to be mapped

pPointer Address of a pointer variable in which the linear address of the
newly initialized memory area is entered.

Programs can use *pPointer for direct access to the mapped
address area.

If the linear address, that is *pPointer, is equal to NUL, the
memory area could not be mapped.

The RmMapMemory function maps a physical memory area (for example
dual-port RAM or memory mapped I/O) onto a linear address space (start
address: *pPointer, length: Length). User programs can use the returned
pointer *pPointer to access the memory (access is READ/WRITE).

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_POINTER A pointer was invalid.

Function

Syntax

Parameters

Description

Return Value

Error Codes

RMOS APIRmMapMemory

6-73
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmMemPoolAlloc

Allocate memory area from memory pool

#include <rmapi.h>
int RmMemPoolAlloc (

ulong TimeOutValue,
uint Mode,
uint PoolID,
ulong Size,
void ** ppMemory)

Parameter Name Meaning

TimeOutValue Maximum time to wait for execution

RM_CONTINUE Continue task without waiting for me-
mory allocation

RM_WAIT Wait for memory allocation

0 ... RM_MAXTIME Time interval in ms. The task waits un-
til either the memory has been alloca-
ted or the time has expired.

The values for hours, minutes and seconds can be combined by
addition for the time parameter. The maximum wait time is
2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait for (ms) milliseconds

Mode Allocation method for memory:

RM_AUTOFREE The memory is freed automatically
with RmFreeAll . It is assigned
to a specific task.

RM_NOAUTOFREE The memory is not freed automati-
cally with RmFreeAll .

PoolID ID of the memory pool from which the memory is requested.

Size Size of the memory area

ppMemory Address of pointer to a memory area.

Function

Syntax

Parameters

RMOS API RmMemPoolAlloc

6-74
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

 The function allocates a memory area of size Size from the specified me-
mory area. *ppMemory contains a valid pointer to the allocated memory
area.

RM_OK Function successfully executed.

RM_TASK_WAITING Function had to wait for memeoy allocation

Error Code Meaning

RM_INVALID_SIZE Size=0 or Size greater than memory pool

RM_INVALID_ID No memory pool exists for the specified ID

RM_OUT_OF_MEMORY No memory area of the specified size is available

RM_GOT_TIMEOUT A suitable memory area could not be allocated in the
specified time

RmAlloc, RmCreateMemPool, RmDeleteMemPool, RmFree, RmFreeAll,
RmGetSize, RmReAlloc

Description

Return Value

Error Codes

See Also

RMOS APIRmMemPoolAlloc

6-75
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmPauseTask

Pause for time interval

#include <rmapi.h>
int RmPauseTask(ulong TimeValue);

Parameter Name Meaning

TimeValue Duration of the pause

0 ... RM_MAXTIME Time interval in ms. .

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait for (ms) milliseconds

 RmPauseTask causes a task to pause for a defined time interval. If
TimeValue=0, the task pauses until the start of the next system scan cycle.

A task interrupted by RmPauseTask can be switched prematurely from the
BLOCKED state to READY with RmResumeTask.

RM_OK Function successfully executed.

RM_TASK_RESUMED Task was resumed with
RmResumeTask.

RmRestartTask, RmResumeTask

Function

Syntax

Parameters

Description

Return Value

See Also

RMOS API RmPauseTask

6-76
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmQueueStartTask

Add task to queue. The task is started immediately it switches to the
DORMANT state.

#include <rmapi.h>
int RmQueueStartTask(

uint Wait,
uint TaskID,
uint Priority,
uint RegVal1,
uint RegVal2);

Parameter Name Meaning

Wait RM_NO_WAIT Start destination task and continue
task.

RM_WAIT_READY Wait until destination task is in
READY state.

RM_WAIT_END Wait until destination task has fi-
nished.

TaskID Destination task ID

Priority 0..255 Set defined value

RM_TCDPRI Take priority from TCD

RM_CURPRI Use current priority of the calling task

RM_MAXPRI Set maximum (RM_TCDPRI,
RM_CURPRI)

RegVal1 Parameter 1 (passed in EAX of destination task)

RegVal2 Parameter 2 (passed in EBX of destination task)

 RmQueueStartTask starts a task. The function requires the same parame-
ters as RmStartTask .

 This function differs from RmStartTask in that the start call is entered in
an internal system queue, and is executed as soon as the task switches to the
DORMANT state.

If the task to be started is already in the DORMANT state, the effect of
RmQueueStartTask is identical to RmStartTask .

RM_OK Function successfully executed; the destination task
switched from the DORMANT state to READY, or the
start request was entered in the internal system queue.

Function

Syntax

Parameters

Description

Return Value

RMOS APIRmQueueStartTask

6-77
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_INVALID_ID An invalid TaskID was passed.

RM_TASK_KILLED The destination task was switched to the DORMANT
state or deleted before the READY state was attained
or before it was terminated with RmKillTask .

RM_INVALID_TYPE An invalid parameter (Priority)was passed.

RmEndTask, RmStartTask

Error Codes

See Also

RMOS API RmQueueStartTask

6-78
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmReadMessage

Read message from message queue

#include <rmapi.h>
int RmReadMessage (

ulong TimeOutValue,
uint * pMessage,
void **pMessageParam)

Parameter Name Meaning

TimeOutValue Specifies how long to wait for the arrival of a message when
the message queue is empty.

RM_CONTINUE Continue task without waiting for the
message to arrive.

RM_WAIT Wait for the message to arrive.

0 ... RM_MAXTIME Time interval in ms. The task waits
until either the message has arrived or
the time has expired.

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait for (ms) milliseconds

pMessage Address of a variable in which the message ID is stored.

pMessageParam Address of a pointer to the message parameter.

Fetches the message with the highest priority from the message queue of the
calling task.

The memory locations for the message ID and a pointer to the message pa-
rameters must be allocated by the calling task.

RmReadMessage enters the message ID in *pMessage, and enters the
pointer to the actual message parameters in *pMessageParam.

If no messages exist, the function waits for the TimeOutValue. If a message is
not received during this period, the function is canceled with a timeout.

RM_OK Function successfully executed; a message was read out
from the message queue. The *pMessage parameter con-
tains the message ID and *pMessageParam contains a
valid pointer to the transmitted message.

Function

Syntax

Parameters

Description

Return Value

RMOS APIRmReadMessage

6-79
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_GOT_TIMEOUT A message was not received within the specified
time.

RM_INVALID_POINTER A pointer was invalid.

RM_NO_MESSAGE The message does not contain a message (only if
TimeOutValue = RM_CONTINUE)

RM_QUEUE_NOT_EXIST The message queue does not exist.

RmCreateMessageQueue, RmDeleteMessageQueue, RmSendMessage

Error Codes

See Also

RMOS API RmReadMessage

6-80
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmReAlloc

Change the size of a memory area

#include <rmapi.h>
int RmReAlloc (

ulong TimeOutValue,
uint Mode,
ulong NewSize,
void ** ppMemory)

Parameter Name Meaning

TimeOutValue Maximum time to wait for execution

RM_CONTINUE Continue task without waiting for me-
mory allocation.

RM_WAIT Wait for memory allocation.

0 ... RM_MAXTIME Time interval in ms.

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait for (ms) milliseconds

Mode Allocation method for memory:

RM_AUTOFREE The memory is freed automati-
cally with RmFreeAll . It is as-
signed to a specific task.

RM_NOAUTOFREE The memory is not freed automa-
tically with RmFreeAll .

NewSize New size of the memory area.

ppMemory Address of pointer to a memory area.

The function increases or reduces the memory area specified by *ppMemory
without changing its contents. *ppMemory contains a valid pointer to the
modified memory area. This pointer does not have to match the passed
pointer, because the memory area may have been moved in certain circum-
stances.

If the original memory area *ppMemory was requested from a pool, the same
pool is used for RmReAlloc .

RM_OK Function successfully executed.

RM_TASK_WAITING Function had to wait for memeoy allocation

Function

Syntax

Parameters

Description

Return Value

RMOS APIRmReAlloc

6-81
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_INVALID_POINTER A pointer was invalid.

RM_INVALID_SIZE Size=0 or Size greater than heap/memory pool

RM_OUT_OF_MEMORY No memory area of the specified size is available

RM_GOT_TIMEOUT A suitable memory area could not be allocated in the
specified time

RmAlloc, RmCreateMemPool, RmDeleteMemPool, RmFree, RmFreeAll,
RmGetSize, RmMemPoolAlloc

Error Codes

See Also

RMOS API RmReAlloc

6-82
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmReceiveMail

Receive message from local mailbox

#include <rmapi.h>
int RmReceiveMail(

ulong TimeOutValue,
uint MailboxID,
void *pMail);

Parameter Name Meaning

TimeOutValue Maximum time to wait for execution

RM_CONTINUE Continue task without waiting for
message to arrive.

RM_WAIT Wait for message to arrive.

0 ... RM_MAXTIME Time interval in ms. The task waits
until either the message has arrived or
the time has expired.

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait for (ms) milliseconds

Mode Allocation method for memory:

RM_AUTOFREE The memory is freed automati-
cally with RmFreeAll . It is as-
signed to a specific task.

RM_NOAUTOFREE The memory is not freed automa-
tically with RmFreeAll .

MailboxID Mailbox ID

pMail Pointer to 12-byte buffer

RmReceiveMail copies the 3-word message with the highest priority from
a mailbox to a user buffer, and deletes the message from the mailbox.

A user buffer with a capacity of 3 words must be allocated by the calling
task.

RM_OK Contents of *pMail contain message.

Function

Syntax

Parameters

Description

Return Value

RMOS APIRmReceiveMail

6-83
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_INVALID_ID Mailbox ID invalid.

RM_INVALID_POINTER A pointer was invalid.

RM_NO_MESSAGE The mailbox does not contain a message (only if
TimeOutValue = RM_CONTINUE).

RM_GOT_TIMEOUT The call was canceled after the configured timeout
time.

A 3-word message normally contains either the actual message or a pointer to
the actual message block. In the latter case, the sender task fetches the mes-
sage block for the actual information from a memory pool, and the task
which reads the message from the mailbox returns it to the memory pool.
The word length is 32 bits.

RmCreateMailbox, RmDeleteMailbox, RmSendMail,
RmSendMailCancel, RmSendMailDelayed

Error Codes

Note

See Also

RMOS API RmReceiveMail

6-84
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmReleaseBinSemaphore

Reset semaphore

#include <rmapi.h>
int RmReleaseBinSemaphore(uint SemaphoreID);

Parameter Name Meaning

SemaphoreID Semaphore ID

RmReleaseBinSemaphore resets the SemaphoreID semaphore.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID An invalid SemphoreID was passed.

The allocation and release of semaphores are not task-specific.

RmCreateBinSemaphore, RmDeleteBinSemaphore,
RmGetBinSemaphore, automatic priority change through semaphore pos-
session in the Programming Manual

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS APIRmReleaseBinSemaphore

6-85
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmResetFlag

Reset event flag

#include <rmapi.h>
int RmResetFlag(

uint FlagGrpID,
uint FlagMask);

Parameter Name Meaning

FlagGrpID Event flag group ID. 0 specifies the local flag group.

FlagMask The mask defines which bits are reset.

RmResetFlag resets the event flags specified in the flag mask, and indi-
cates whether they were already set.

RM_OK Function successful no bits reset.

RM_FLAG_RESET At least one bit was reset.

Error Code Meaning

RM_INVALID_ID An invalid FlagGrpID was passed.

RmCreateFlag, RmDeleteFlag, RmGetFlag, RmSetFlag,
RmSetFlagDelayed

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmResetFlag

6-86
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmRestartTask

Terminate task and restart after time interval

#include <rmapi.h>
int RmRestartTask(

uint Mode,
ulong TimeValue);

Parameter Name Meaning

Mode RM_LAST_READY_TIME Refer time calculation to
last change to READY
state

RM_CURRENT_TIME Refer time calculation to
current time

TimeValue Wait time until restart

0... RM_MAXTIME Time interval in ms.

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait (ms) Sekunden

RmRestartTask terminates execution of the task and restarts it when a
time interval has expired.

If TimeValue=0, the task is switched to the READY state on the next timer
interrupt.

RM_OK Function successfully executed.

RmRestartTask switches a task to the BLOCKED state and not to the
DORMANT state. In contrast to RmPauseTask, the task is started when the
time defined in RmRestartTask expires; that is program execution begins
at the entry address of the task.

A task interrupted by RmRestartTask can only be switched to the
READY state once the time interval has expired.

It is not possible to pass parameters in EAX or EBX to a task on restart with
RmRestartTask .The parameters can be passed and stored the first time the
task is started (with another start command). These parameters can then be
reused following any subsequent task start initiated by RmRestartTask .

Function

Syntax

Parameters

Description

Return Value

Note

RMOS APIRmRestartTask

6-87
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

If a task (main()) was started by the CLI, it may not be restarted with
RmRestartTask .

RmActivateTask, RmPauseTask, RmResumeTask, starting, interruption,
termination of tasks

See Also

RMOS API RmRestartTask

6-88
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmResumeTask

Resume task halted by RmPauseTask or RmSuspendTask .

#include <rmapi.h>
int RmResumeTask(uint TaskID);

Parameter Name Meaning

TaskID Task ID

RmResumeTask switches a task, which has been changed to the BLOCKED
state by RmSuspendTask or RmPauseTask call.

In contrast to RmRestartTask , program execution resumes immediately
after the RmSuspendTask or RmPauseTask call.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID An invalid TaskID was passed.

RM_TASK_NOT_PAUSED Task to be resumed by RmResumeTask was
not halted by RmPauseTask or is no longer in
the BLOCKED state.

RmActivateTask, RmPauseTask, RmRestartTask, RmSuspendTask

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmResumeTask

6-89
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmSendMail

Send message to a mailbox

#include <rmapi.h>
int RmSendMail(

ulong TimeOutValue,
uint Priority,
uint MailboxID,
void *pMail);

Parameter Name Meaning

TimeOutValue Maximum time to wait for execution

RM_CONTINUE Continue task without waiting for
message to be fetched.

RM_WAIT Wait for message to be fetched.

0 ... RM_MAXTIME Time interval in ms. The task waits
until either the message has been fet-
ched or the time has expired.

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time
is 2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait (ms) Sekunden

Priority 0..255 Set defined value

RM_TCDPRI Take priority from TCD

RM_CURPRI Use current priority of the calling
task

MailboxID Mailbox ID

pMail Pointer to 3-word buffer

RmSendMail copies a 3-word-long prioritized message to a mailbox. The
task can be switched to the BLOCKED state until the message has been
fetched or the call has been canceled by a timeout.

The message format is freely selectable. For example, a 3-word (32-bit) long
message or the address and length of a message with the following configura-
tion can be specified:

Message word 1: Address of the message block
Message word 2: Anything
Message word 3: Length of the message block in byte

Function

Syntax

Parameters

Description

RMOS API RmSendMail

6-90
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RM_OK Function successfully executed, the message was copied
to the mailbox.

Error Code Meaning

RM_INVALID_ID An invalid MailboxID was passed.

RM_INVALID_TYPE An invalid parameter (Priority) was passed.

RM_INVALID_POINTER A pointer was invalid.

RM_GOT_TIMEOUT The call was canceled after the configured timeout.

RM_BOUND_REACHED The request exceeds the limit entered for the mail-
box (see RmSetMailboxSize) .

RmCreateMailbox, RmDeleteMailbox, RmReceiveMail, RmSetMailbox-
Size

Return Value

Error Codes

See Also

RMOS APIRmSendMail

6-91
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmSendMailCancel

 Cancel message started with RmSendMailDelayed .

#include <rmapi.h>
int RmSendMailCancel (

RmMailIDStruct * pMailID,
void *pMail);

Parameter Name Meaning

pMailID Pointer to a structure of the type RmMailIDStruct (see chap-
ter 3). The RmSendMailDelayed function returns the
pointer to the accompanying RmMailIDStruct .

pMail Pointer to a buffer to which the previously dispatched mes-
sage is written back. The length of the message is 12 bytes.

The function cancels a message started with RmSendMailDelayed . It is
only possible to cancel the message before the time interval has expired or the
specified message has been fetched. In the latter case, the message is deleted
from the mailbox.

The preceding RmSendMailDelayed call returns information in an
RmMailIDStruct structure. The address of this structure must be passed with
the RmSendMailCancel call.

The contents of the message are returned to the calling task, so that the infor-
mation in the message can be evaluated if necessary.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID An invalid message was passed in pMailID.This
error is also output if a dispatched message has al-
ready been fetched. The memory defined by pMail
is undefined.

RM_INVALID_POINTER A pointer was invalid.

RmCreateMailbox, RmDeleteMailbox, RmReceiveMail, RmSendMail,
RmSendMailDelayed, RmSetMailboxSize

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmSendMailCancel

6-92
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmSendMailDelayed

Send mail to a mailbox after a delay

#include <rmapi.h>
int RmSendMailDelayed (

ulong TimeValue,
uint Priority,
uint MailboxID,
void *pMail,
RmMailIDStruct * pMailID);

Parameter Name Meaning

TimeValue Time until message is sent.

0 ... RM_MAXTIME Time interval in ms.

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time
is 2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wartet (ms) Sekunden

Priority 0..255 Set defined value

RM_TCDPRI Take priority from TCD

RM_CURPRI Use current priority of the calling task

MailboxID Mailbox ID

pMail Pointer to message. The length of the message is 12 bytes.

pMailID Pointer to a structure of the type RmMailIDStruct (see
chapter 3).

 RmSendMailDelayed sends mail to a mailbox after a delay. The calling
task must pass the address of a memory area of the type RmMailIDStruct.

The function enters an identification code in this memory area. The identifica-
tion code can be used to cancel the action with RmSendMailCancel .

RM_OK Function successfully executed, the RmMailIDStruct
variable contains the identification of the accompanying
job.

Function

Syntax

Parameters

Description

Return Value

RMOS APIRmSendMailDelayed

6-93
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_INVALID_TYPE An invalid parameter (Priority) was passed.

RM_INVALID_ID Invalid flag group.

RM_INVALID_POINTER A pointer was invalid.

A limit, defined by RmSetMailboxSize , that restricts the number of mes-
sages waiting to be fetched from a mailbox, is ignored when the message is
dispatched with RmSendMailDelayed .

It is possible for the mailbox to which the message is dispatched to be deleted
by the system call RmDeleteMailbox before the time interval has expired.
In this case, the message is discarded without an error being indicated.

RmCreateMailbox, RmDeleteMailbox, RmReceiveMail, RmSendMail,
RmSendMailCancel, RmSetMailboxSize

Error Codes

Note

See Also

RMOS API RmSendMailDelayed

6-94
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmSendMessage

Add message to message queue

#include <rmapi.h>
int RmSendMessage (

ulong TimeOutValue,
uint Priority,
uint TaskID,
uint Message,
void *pMessageParam)

Parameter Name Meaning

TimeOutValue Specifies how long to wait for message to be fetched.

RM_CONTINUE Continue task without waiting for the
message to be fetched.

RM_WAIT Wait for the message to be fetched.

0 ... RM_MAXTIME Time interval in ms. The task waits
until either the message has been fet-
ched or the time has expired.

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time
is 2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait for (ms) milliseconds

Priority 0..255 Set defined value

RM_TCDPRI Take priority from TCD

RM_CURPRI Use current priority of the calling
task

TaskID Destination task ID

Message Message identifier

The message identifiers are defined as follows:

RM_MSG_USER..RM_MSG_MAX
reserved for the user

pMessageParam Pointer to the contents of the message.

The call inserts Message, together with the pointer to the message parameters
and with the defined priority, at the appropriate point in the message queue of
the task specified by TaskID. The TimeOutValue parameter specifies whether
the task is to wait for the message to be fetched and, if so, how long.

Function

Syntax

Parameters

Description

RMOS APIRmSendMessage

6-95
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

When calling RmSendMessage with TimeOutValue=RM_WAIT, the following
may occur:

If the task is woken up (e.g. with RmActivateTask) while RmSendMessage is
waiting for the message to be fetched, RmSendMessage returns success al-
though it is not sure wether the message has been fetched or not.

RM_OK Function successfully executed, the message was copied
to the task’s own message queue.

Error Code Meaning

RM_GOT_TIMEOUT The message was not fetched within the speci-
fied period.

RM_INVALID_ID Task ID invalid

RM_INVALID_POINTER Invalid pointer

RM_INVALID_TYPE An invalid parameter (Priority) was passed.

RM_QUEUE_NOT_EXIST The message queue does not exist.

RM_BOUND_REACHED The message queue is full.

RmCreateMessageQueue, RmDeleteMessageQueue, RmReadMessage,

Note

Return Value

Error Codes

See Also

RMOS API RmSendMessage

6-96
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmSetFlag

Set event flag

#include <rmapi.h>
int RmSetFlag(

uint FlagGrpID,
uint FlagMask);

Parameter Name Meaning

FlagGrpID Flag group ID. 0 specifies the local flag group.

FlagMask The mask specifies which bits are set

RmSetFlag sets the event flags specified in the flag mask, and indicates
whether they were already set.

RM_OK Function successful, no bits set.

RM_FLAG_SET At least one bit was set.

Error Code Meaning

RM_INVALID_ID An invalid FlagGrpID was passed.

RmCreateFlagGrp, RmDeleteFlagGrp, RmGetFlag, RmResetFlag

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmSetFlag

6-97
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmSetFlagDelayed

Set event flag after interval

#include <rmapi.h>
int RmSetFlagDelayed(

ulong TimeValue,
uint FlagGrpID,
uint FlagMask);

Parameter Name Meaning

TimeValue Delay time until flag is set

0 ... RM_MAXTIME Time interval in ms.

The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time
is 2^31 milliseconds.

RM_HOUR(hour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECOND(sec) Wait for (sec) seconds

RM_MILLISECOND(ms) Wait for (ms) milliseconds

FlagGrpID Flag group ID. 0 specifies the local flag group.

FlagMask The mask defines which bits are manipulated.

 RmSetFlagDelayed clears the bits specified by FlagMask , and sets them
when the time interval has expired. Bits which are not set and bits specified
byFlagMask with the same FlagGrpID are checked. The timer values of these
bits are set to the new value if necessary.

A second RmSetFlagDelayed function with an identical FlagGrpID and
FlagMask overwrites the first RmSetFlagDelayed if the time parameter is
positive and deletes it if the time parameter = 0.

An RmResetFlag has no effect on RmSetFlagDelayed .

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID An invalid FlagGrpID was passed.

RM_PARAMETER_ERROR Incorrect parameters were passed to the func-
tion (FlagMask=0).

RmCreateFlagGrp, RmDeleteFlagGrp, RmGetFlag, RmResetFlag,
RmSetFlag

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmSetFlagDelayed

6-98
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmSetIntDefHandler

Install default interrupt handler

#include <rmapi.h>
int RmSetIntDefHandler (uint IntNum);

Parameter Name Meaning

IntNum SW-Interrupt Number (0–255)

IRQx (x=0 to 63) Hardware interrupt

IRQ(n) (n=0 to 63) Hardware interrupt

The hardware interrupts on M7-300/400 are at 0 to 15.

This function is used to deinstall a dedicated interrupt handler for the specified
interrupt IntNum, and reallocate the default interrupt handler to this interrupt.

The interrupt number indexes the entries in the interrupt descriptor table, that
is the interrupt number corresponds to the selector of the associated descriptor.
The entry address of the associated interrupt handler is entered in the descrip-
tor.

RM_OK Function successfully executed, the dedicated interrupt
handler was deinstalled.

Error Code Meaning

RM_INVALID_INTERRUPT_NUMBER Invalid interrupt number

RM_INVALID_IRQ_NUMBER IRQx invalid, PIC not defined

RmGetIntHandler, RmSetIntISHandler, RmSetIntMailboxHandler,
RmSetIntTaskHandler

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmSetIntDefHandler

6-99
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmSetIntISHandler

Initialize S or I interrupt handler

#include <rmapi.h>
int RmSetIntISHandler (

uint IntNum,
rmfarproc IHandlerEntry,
rmfarproc SHandlerEntry);

Parameter Name Meaning

IntNum SW-Interrupt Number (0–255)

IRQx (x=0 to 63) Hardware interrupt

IRQ(n) (n=0 to 63) Hardware interrupt

The hardware interrupts on M7-300/400 are at 0 to 15.

IHandlerEntry Entry address of the I interrupt handler

SHandlerEntry Entry address of the S interrupt handler

The call defines an I and/or S interrupt handler.

If the interrupt is a hardware interrupt, such as IRQ1, this is masked automati-
cally.

While a new interrupt handler is being initialized, an interrupt must not occur
for this handler.

The interrupt handler specified in IHandlerEntry or SHandlerEntry is activated in
I or S state immediately after an interrupt. If a handler is not to be installed,
NUL should be specified.

The SHandlerEntry is only called if the return value of the I state ≠ 0. If the re-
turn value is equal to 0, a transition to the S state does not occur.

The interrupt number indexes the entries in the interrupt descriptor table, that
is the interrupt number corresponds to the selector of the associated descriptor.
The entry address of the associated interrupt handler is entered in the descrip-
tor.

RmSetIntISHandler enters an interrupt gate in the IDT.

The header and trailer are generated by the operating system kernel. The han-
dlers can be simple procedures. The memory required for an interrupt handler
is approximately 130 bytes, and is allocated from the heap.

RM_OK Function successfully executed.

Function

Syntax

Parameters

Description

Return Value

RMOS API RmSetIntISHandler

6-100
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

RM_OUT_OF_MEMORY Insufficient memory available

RM_INVALID_INTERRUPT_NUMBER Invalid interrupt number

RM_INVALID_IRQ_NUMBER IRQx invalid, PIC not defined

RM_INVALID_POINTER Invalid pointer

If the function call is not successfully executed, the previous interrupt handler
remains active.

A user program runs on the M7 system at the ”user level”. Write access is pos-
sible only for the user data whereas code and system areas are write–protected
for a user task.

An I handler or S handler is executed at ”system level”, i.e. memory protection
is removed within an interrupt handler.

RmGetIntHandler, RmSetIntDefHandler, RmSetIntMailboxHandler,
RmSetIntTaskHandler

Error Codes

Note

See Also

RMOS APIRmSetIntISHandler

6-101
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmSetIntMailboxHandler

Initialize mailbox interrupt handler

#include <rmapi.h>
int RmSetIntMailboxHandler (

uint IntNum,
uint MailboxID,
uint MailPriority);

Parameter Name Meaning

IntNum SW-Interrupt Number (0–255)

IRQx (x=0 to 63) Hardware interrupt

IRQ(n) (n=0 to 63) Hardware interrupt

The hardware interrupts on M7-300/400 are at 0 to 15.

MailboxID Mailbox ID
A message is sent to the mailbox specified by MailBoxID. If
this mailbox is limited to an RmSetMailboxSize , that is
if only a certain number of messages can wait to be fetched
in the mailbox, and if this number has already been reached,
no message is sent. In this case, the interrupt is lost. The
RmIntrhandMailStruct structure is described in chapter 3.

MailPriority Priority of the message

The call defines a handler for sending a message.

If the interrupt is a hardware interrupt, such as IRQ1, this is masked automati-
cally.

While a new interrupt handler is being initialized, an interrupt must not occur
for this handler.

If the number of messages in a mailbox is limited (see RmSetMailbox-
Size), no messages are sent when this limit is reached. The interrupt is lost.

RmSetIntMailboxHandler enters an interrupt gate in the IDT. Existing
entries in the IDT are retained, but can be overwritten by the call.

The code for the interrupt handler for dispatching the message is generated by
the operating system kernel. The memory required for an interrupt handler is
approximately 130 bytes, and is allocated from the heap.

RM_OK Function successfully executed.

Function

Syntax

Parameters

Description

Return Value

RMOS API RmSetIntMailboxHandler

6-102
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Error Code Meaning

RM_OUT_OF_MEMORY Insufficient memory available

RM_INVALID_INTERRUPT_NUMBER Invalid interrupt number

RM_INVALID_IRQ_NUMBER IRQx invalid, PIC not defined

RM_INVALID_ID Invalid mailbox ID

If the function call is not successfully executed, the previous interrupt handler
remains active.

RmGetIntHandler, RmSetIntDefHandler, RmSetIntISHandler,
RmSetIntTaskHandler

Error Codes

Note

See Also

RMOS APIRmSetIntMailboxHandler

6-103
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmSetIntTaskHandler

Initialize interrupt handler for task start

#include <rmapi.h>
int RmSetIntTaskHandler (

uint IntNum,
uint TaskID);

Parameter Name Meaning

IntNum SW-Interrupt Number (0–255)

IRQx (x=0 to 63) Hardware interrupt

IRQ(n) (n=0 to 63) Hardware interrupt

The hardware interrupts on M7-300/400 are at 0 to 15.

TaskID Task ID (RM_OWN_TASK = ID of the calling task)

The call defines a handler for an interrupt-driven task start.

If the interrupt is a hardware interrupt, such as IRQ1, this is masked automati-
cally.

While a new interrupt handler is being initialized, an interrupt must not occur
for this handler.

The task specified in TaskID is activated immediately after an interrupt.

The interrupt number corresponds to the selector of the associated descriptor in
the IDT.

RmSetIntTaskHandler enters an interrupt gate in the IDT.

The code for the interrupt handler for starting the task is generated by the oper-
ating system kernel. The memory required for an interrupt handler is approxi-
mately 130 bytes, and is allocated from the heap.

RM_OK Function successfully executed.

Error Code Meaning

RM_OUT_OF_MEMORY Insufficient memory available

RM_INVALID_INTERRUPT_NUMBER Invalid interrupt number

RM_INVALID_IRQ_NUMBER IRQx invalid, PIC not defined

RM_INVALID_ID Invalid task ID

Function

Syntax

Parameters

Description

Return Value

Error Codes

RMOS API RmSetIntTaskHandler

6-104
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

If the function call is not successfully executed, the previous interrupt handler
remains active.

RmGetIntHandler, RmSetIntDefHandler, RmSetIntISHandler, RmSe-
tIntMailboxHandler

Note

See Also

RMOS APIRmSetIntTaskHandler

6-105
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmSetMailboxSize

Define limit values for mailboxes

#include <rmapi.h>
int RmSetMailboxSize (

uint MailboxID
uint Limit);

Parameter Name Meaning

MailboxID Mailbox ID

Limit 1-0FFFFH Maximum number of messages in queue

0 Indicates that the limit is to be canceled

The function sets a limit for the number of messages which can wait in a mail-
box. The limit value can be modified as required and can be subsequently can-
celed.

When the limit is exceeded, all subsequent attempts to send a message to this
mailbox with the RmSendMail call are rejected. RmSendMail calls are not
accepted again until enough messages are fetched for the number of messages
to fall below the limit again.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID Mailbox ID invalid

The limit set for mailboxes has no effect during the RmSendMailDelayed
system call.

RmReceiveMail, RmSendMail, RmSendMailCancel, RmSendMailDelayed

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS API RmSetMailboxSize

6-106
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmSetMessageQueueSize

Define length of message queue

#include <rmapi.h>
int RmSetMessageQueueSize (

uint TaskID,
uint Limit)

Parameter Name Meaning

TaskID Destination task ID

Limit Number of free places in the message queue

The call defines the size of the message queue of the task specified in TaskID.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID Task ID invalid

RM_INVALID_TYPE An invalid parameter (Limit) was passed.

RM_QUEUE_NOT_EXIST The message queue does not exist.

RmCreateMessageQueue, RmDeleteMessageQueue, RmReadMessage,
RmSendMessage

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmSetMessageQueueSize

6-107
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmSetTaskPriority

Change task priority

#include <rmapi.h>
int RmSetTaskPriority(

uint TaskID,
uint Priority);

Parameter Name Meaning

TaskID Destination task ID (RM_OWN_TASK= own)

Priority 0..255 Set defined value

RM_TCDPRI Take priority from TCD

RM_CURPRI Use current priority of the calling task

RM_INCPRI Increase task priority by 1

RM_DECPRI Decrease task priority by 1

RmSetTaskPriority is used to change the priority of any task.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID TaskID invalid

RM_INVALID_TYPE An invalid parameter (Priority) was passed.

RM_PRI_NOT_CHANGED Priority has not been changed.

RM_TASK_DORMANT Task currently in DORMANT state

RmStartTask, RmQueueStartTask, description of the task priorities in the
Programming Manual

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS API RmSetTaskPriority

6-108
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmStartTask

Start request for tasks in DORMANT state

#include <rmapi.h>
int RmStartTask(

uint Wait,
uint TaskID,
uint Priority,
uint RegVal1,
uint RegVal2);

Parameter Name Meaning

Wait RM_NO_WAIT Start and continue destination
task.

RM_WAIT_READY Wait until destination task is in
READY state.

RM_WAIT_END Wait until destination task has fi-
nished.

TaskID Destination task ID (RM_OWN_TASK = own task).

Priority 0..255 Set defined value

RM_TCDPRI Take priority from TCD

RM_CURPRI Use current priority of the calling task

RM_MAXPRI Set maximum (RM_TCDPRI,
RM_CURPRI)

RegVal1 Parameter 1 (passed in eax of destination task)

RegVal2 Parameter 2 (passed in ebx of destination task)

RmStartTask starts a task. The function requires the same parameters as
RmQueueStartTask .
The difference between this function and RmQueueStartTask is that
RmQueueStartTask enters the start request in a queue if the task is not in
the DORMANT state. The RmStartTask call has no effect in this case,
however.

RM_OK Function successfully executed; the destination task
switched to the READY state.

Error Code Meaning

RM_INVALID_ID An invalid TaskID was passed.

RM_INVALID_TYPE An invalid parameter (Wait) was passed.

Function

Syntax

Parameters

Description

Return Value

Error Codes

RMOS APIRmStartTask

6-109
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Error Code Meaning

RM_TASK_NOT_DORMANT An attempt was made to start a task which
was not in the DORMANT state.

RM_TASK_KILLED The destination task was switched to the
DORMANT state or deleted before the
READY state was attained or before it was
terminated with RmKillTask .

RmQueueStartTaskSee Also

RMOS API RmStartTask

6-110
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

RmSuspendTask

Set task from READY to BLOCKED state

#include <rmapi.h>
int RmSuspendTask(uint TaskID);

Parameter Name Meaning

TaskID Task ID

RmSuspendTask suspends the task specified by TaskID. The suspended task
must be in the READY state, and is subsequently switched to the BLOCKED
state. A task can suspend itself.

RM_OK Function successfully executed.

Error Code Meaning

RM_INVALID_ID TaskID invalid

RM_TASK_NOT_READY Task was not in READY state

RmResumeTask

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

RMOS APIRmSuspendTask

6-111
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RmUncatalog

Delete resources from catalog

#include <rmapi.h>
int RmUncatalog (char *pName)

Parameter Name Meaning

pName Pointer to a character string (the string can be defined in C or
PLM notation).

RmUncatalog deletes the resource identified by a character string from the
catalog.

RM_OK Function successfully executed.

Error Code Meaning

RM_IS_NOT_CATALOGED Entry not found

RM_INVALID_POINTER pName pointer was invalid

RM_INVALID_STRING String length = 0 or > 15

If a resource with various strings is cataloged more than once, all entries for
this resource are deleted from the catalog.

RmCatalog, RmGetEntry, RmGetName, RmList

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS API RmUncatalog

6-112
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

SerialCheckChar

Read in single character from unit

#include <serial.h>
int SerialCheckChar(

RmIOHandle Handle,
char *Char);

Parameter Name Meaning

Handle Descriptor

Char Address of a char where the read character is stored

SerialCheckChar reads a single character from the unit specified by
Handle and stores it at the address specified by Char. Handle is a descriptor
that was generated with SerialOpen .

Unlike the SerialGetChar call, SerialCheckChar does not wait for
the character to arrive. If there is no character in the background buffer of the
unit, SerialCheckChar terminates.

RM_OK The function was successfully executed

Error Code Meaning

RM_IO_NO_DATA No data exist

See “Error Codes for Loadable Drivers” for further error messages

This call can only be used for the SER8250.DRV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialCheckString, SerialGetChar, SerialGetString, SerialOpen

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS APISerialCheckChar

6-113
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

SerialCheckString

Read string from unit

#include <serial.h>
int SerialCheckString(

RmIOHandle Handle,
ulong MaxLen,
char *String,
ulong *Count);

Parameter Name Meaning

Handle Descriptor

MaxLen Maximum number of characters to be read

String Address of memory area where the read characters are stored

Count Address of a ulong in which the number of characters read
is stored.

Value > 0 Number of characters read

Value = 0 Error or no characters exist

SerialCheckString reads MaxLen characters from the unit specified by
Handle and stores them at the address specified by String. Handle is a
descriptor that was generated with SerialOpen .

If the read request is successful, Count contains the number of characters read.
If the read request was not successful or no characters were found, the
parameter contains the value 0.

Unlike SerialGetString , SerialCheckString does not wait for the
character to arrive. If there is no character in the background buffer of the unit,
SerialCheckString terminates.

RM_OK The function was successfully executed

Error Code Meaning

RM_IO_NO_DATA No data exist

See “Error Codes for Loadable Drivers” for further error messages

This call can only be used for the SER8250.DRV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialCheckChar, SerialGetChar, SerialGetString, SerialOpen

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS API SerialCheckString

6-114
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

SerialClose

Close a connection to a unit of a driver

#include <serial.h>
int SerialClose(RmIOHandle Handle);

Parameter Name Meaning

Handle Descriptor

SerialClose closes the connection specified by Handle. Handle is a
descriptor that was generated with SerialOpen .

RM_OK The function was successfully executed

See “Error Codes for Loadable Drivers”

This call can only be used for the SER8250.DRV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialOpen

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS APISerialClose

6-115
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

SerialGetChar

Read in single character from unit

#include <serial.h>
int SerialGetChar(

RmIOHandle Handle,
char *Char);

Parameter Name Meaning

Handle Descriptor

Char Address of a char where the read character is stored

SerialGetChar reads a single character from the unit specified by Handle
and stores it at the address specified by Char. Handle is a descriptor that was
generated with SerialOpen . The call waits for the character to arrive.

RM_OK The function was successfully executed

See “Error Codes for Loadable Drivers”

This call can only be used for the SER8250.DRV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialCheckChar, SerialCheckString, SerialGetString, SerialOpen

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS API SerialGetChar

6-116
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

SerialGetString

Read string from unit

#include <serial.h>
int SerialGetString(

RmIOHandle Handle,
ulong MaxLen,
char *String,
ulong *Count);

Parameter Name Meaning

Handle Descriptor

MaxLen Maximum number of characters to be read

String Address of a memory area where the read characters are
stored

Count Address of a ulong in which the number of characters read
is stored.

Value > 0 Number of characters read

Value = 0 Error or no characters exist

SerialGetString reads a maximum of MaxLen characters from the unit
specified by Handle and stores them at the address specified by String. Handle
is a descriptor that was generated with SerialOpen .

If the read request is successful, Count contains the number of characters read.
If the read request was not successful or no characters were found, the
parameter contains the value 0.

The call waits for the characters to arrive.

RM_OK The function was successfully executed

See “Error Codes for Loadable Drivers”

This call can only be used for the SER8250.DRV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialCheckChar, SerialCheckString, SerialGetChar, SerialOpen

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS APISerialGetString

6-117
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

SerialInit

Initialize unit

#include <serial.h>
int SerialInit(

RmIOHandle Handle,
ulong Baud,
uint Data,
uint Parity,
uint Stop);

Parameter Name Meaning

Handle Descriptor

Baud Baud rate as numeric value (e.g. 19200)

Data Number of data bits as numeric value (e.g. 8)

Parity Parity

SERIAL_PARITYNONE No parity check

SERIAL_PARITYEVEN Even parity

SERIAL_PARITYODD Odd parity

SERIAL_PARITY0 Parity bit always 0

SERIAL_PARITY1 Parity bit always 1

Stop Number of stop bits. The following are permitted:

SERIAL_STOP1 1 stop bit

SERIAL_STOP2 2 stop bits

SERIAL_STOP15 1.5 stop bits

SerialInit is used to initialize the unit of a driver for a serial interface.
The unit is specified by Handle. Handle is a descriptor that was generated with
SerialOpen . The Baud parameter specifies the baud rate. The parameters
Data and Stop specify the number of data and stop bits. The Parity parameter
is used to control the parity.

RM_OK The function was successfully executed

See “Error Codes for Loadable Drivers”

This call can only be used for the SER8250.DRV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialClose, SerialInitEx, SerialOpen

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS API SerialInit

6-118
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

SerialInitEx

Extended initialization of unit

#include <serial.h>
int SerialInitEx(

RmIOHandle Handle,
ulong Baud,
uint Data,
uint Parity,
uint Stop,
ulong BufferSize,
uchar SendStopMode,
uchar SendStop1,
uchar SendStop2,
ulong SendDelay,
uchar RecStopMode,
uchar RecStop1,
uchar RecStop2,
ulong RecTimeout,
ulong RecLen);

Parameter Name Meaning

Handle Descriptor

Baud Baud rate as numeric value (e.g. 19200)

Data Number of data bits as numeric value (e.g. 8)

Parity Parity

SERIAL_PARITYNONE No parity check

SERIAL_PARITYEVEN Even parity

SERIAL_PARITYODD Odd parity

SERIAL_PARITY0 Parity bit always 0

SERIAL_PARITY1 Parity bit always 1

Stop Number of stop bits. The following are permitted:

SERIAL_STOP1 1 stop bit

SERIAL_STOP2 2 stop bits

SERIAL_STOP15 1.5 stop bits

BufferSize Size of background buffer (number of characters)

Function

Syntax

Parameters

RMOS APISerialInitEx

6-119
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Parameter Name Meaning

SendStopMode Specifies which stop character is to terminate write re-
quests. The stop character(s) is (are) transferred after the
user data.

SERIAL_SENDSTOP_OFF
Do not use stop character.

SERIAL_SENDSTOP_CHAR_1
Use stop character 1

SERIAL_SENDSTOP_CHAR_1_2
Use stop characters 1 and 2, that is cancel when the 1st stop
character is followed by the 2nd stop character.

SendStop1 1st stop character for write requests

SendStop2 2nd stop character for write requests

SendDelay Minimum pause between two write requests (in ms). Speci-
fying 0 deactivates the function

RecStopMode Specifies which stop character is to terminate read requests.
The stop character(s) is (are) not transferred to the user
buffer.

SERIAL_RECSTOP_OFF
Do not use stop character.

SERIAL_RECSTOP_CHAR_1
Use stop character 1

SERIAL_RECSTOP_CHAR_1_2
Use stop characters 1 and 2, that is cancel when the 1st stop
character is followed by the 2nd stop character.

SERIAL_RECSTOP_LEN
Terminate read request when the number of characters de-
fined by RecLen has been read in.

RecStop1 1st stop character for write requests

RecStop2 2nd stop character for write requests

RecTimeout Maximum time span which is allowed to elapse between the
reading of two characters (ms). If this time span is ex-
ceeded, the read request is canceled.
Specifying 0 deactivates the function

RecLen Number of characters after which read requests are termi-
nated

SerialInitEx is used for extended initialization of the unit of a driver for a
serial interface. The unit is specified by Handle. Handle is a descriptor that
was generated with SerialOpen .

The Baud parameter specifies the baud rate. The parameters Data and Stop
specify the number of data and stop bits. The Parity parameter is used to
control the parity.

The BufferSize parameter specifies the size of the background buffer.

Description

RMOS API SerialInitEx

6-120
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Parameters SendStopMode, SendStop1 and SendStop2 define the use and type
of stop characters for write requests. The SendDelay parameter specifies the
minimum pause between two write requests.

Parameters RecStopMode, RecStop1 und RecStop2 define the use and type of
stop characters for read requests. The RecTimeout parameter specifies the time
after which a read request is canceled.

The RecLen parameter specifies the number of characters after which read
requests are terminated.

RM_OK The function was successfully executed

See “Error Codes for Loadable Drivers”

This call can only be used for the SER8250.DRV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialClose, SerialInit, SerialOpen

Return Value

Error Codes

Note

See Also

RMOS APISerialInitEx

6-121
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

SerialOpen

Establish a connection to a unit of a driver

#include <serial.h>
int SerialOpen(

const char *UnitName,
RmIOHandle *Handle);

Parameter Name Meaning

UnitName Name of the unit in the RMOS resource catalog. This name
is assigned when the unit is created.

Handle Pointer to a variable of the type RmIOHandle in which a
descriptor for addressing the unit is stored.

SerialOpen establishes a connection to the unit identified by UnitName.

RM_OK The function was successfully executed

See “Error Codes for Loadable Drivers”

This call can only be used for the SER8250.DRV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialClose

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS API SerialOpen

6-122
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

SerialPutChar

Write a single character to a unit

#include <serial.h>
int SerialPutChar(

RmIOHandle Handle,
char Char);

Parameter Name Meaning

Handle Descriptor

Char Character to be written

SerialPutChar writes the character Char to the unit specified by Handle.
Handle is a descriptor that was generated with SerialOpen .

RM_OK The function was successfully executed

See “Error Codes for Loadable Drivers”

This call can only be used for the SER8250.DRV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialGetChar, SerialGetString, SerialPutString

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS APISerialPutChar

6-123
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

SerialPutString

Write characters to the unit

#include <serial.h>
int SerialPutString(

RmIOHandle Handle,
char *String,
ulong MaxLen);

Parameter Name Meaning

Handle Descriptor

String Address of a memory area with the characters to be written

MaxLen Number of characters to be written

SerialPutString writes MaxLen characters from the address String to the
unit specified by Handle. Handle is a descriptor that was generated with
SerialOpen .

RM_OK The function was successfully executed

See “Error Codes for Loadable Drivers”

This call can only be used for the SER8250.DRV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialGetChar, SerialGetString, SerialPutChar

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

RMOS API SerialPutString

6-124
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

x_dos_cpyin

Allocate memory area from transfer buffer and copy in data

#include <rm3dos.h>
char * x_dos_cpyin (

char *buffer,
 int len) ;

Parameter Name Meaning

buffer Pointer to data to be copied into the transfer buffer. Enter
NUL if you only want to allocate the memory area.

len Length in bytes of the memory area to be allocated.

This function first allocates a memory area from the transfer buffer. It then
copies data to the allocated memory.

The transfer buffer is located below 1 Mbyte and is required for data exchange
with the DOS task and with DOS/BIOS system calls.

The allocated memory area can be freed again with the x_dos_cpyout
function.

The size of the transfer buffer can be specified when loading the RM3_TSR
terminate-and-stay-resident program. It can be up to 30 bytes. All areas of the
transfer buffer which are not required should always be freed to ensure that
memory is always available.

The transfer is reinitialized after a warm start, and allocated memory is freed.
In certain circumstances, the transfer buffer may now be located at another
point and data may be lost.

The return value is a pointer.

If bit 31 of the return value is set, that is if the value is negative, the required
memory could not be allocated. In this case, the lower 16 bits specify the larg-
est memory area currently available.

If the pointer is positive (bit 31=0), it contains the physical start address of the
allocated memory area.

Function

Syntax

Parameters

Description

Return Value

RMOS APIx_dos_cpyin

6-125
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

The value returned by the function can not be passed to MS-DOS or the BIOS
in this format. The pointer must first be converted to a real-mode pointer, com-
prising a segment plus offset.

const char filename=“c:\clistart.bat”;
char *pptr;
unsigned short dos_seg;
unsigned short dos_off;

pptr=x_dos_cpyin (filename,strlen(filename));

dos_seg=(unsigned short) (pptr>>4)
dos_off=(unsigned short) (pptr&0xF)

x_dos_cpyout

Note

See Also

RMOS API x_dos_cpyin

6-126
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

x_dos_cpyout

Copy data from allocated memory area in transfer buffer and free the
area

#include <rm3dos.h>
int x_dos_cpyout (

char *addr,
char *anwenderpuffer,
int len) ;

Parameter Name Meaning

addr Pointer to data area in the transfer buffer. This value corre-
sponds to the return value of the x_dos_cpyin function.

anwenderpuffer Pointer to the area to which the data from the transfer buffer
are to be copied. If this value is NUL, the memory area to
which addr points is freed without copying the data.

len Length in bytes of the memory area to be copied. If this
value is less than the actual length of memory allocated, the
entire area is still freed.

This function first copies data from a memory area in the transfer buffer. It
then frees the area.

Length of the freed area.

If this value is 0, an invalid value was passed in the addr parameter.

x_dos_cpyin

Function

Syntax

Parameters

Description

Return Value

See Also

RMOS APIx_dos_cpyout

Index-1
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

Index

A
Application link

close, 5-83
enter password, 5-87
set up, 5-86

B
Battery failure

initialize FRB, 5-90
unlink FRB, 5-212

C
C runtime library

character management functions, 1-29
control functions, 1-34
error handling functions, 1-34
Function classes, 1-24
input/output functions, 1-26
mathematical functions, 1-32
memory allocation operations, 1-31
memory operations, 1-31
other functions, 1-35, 1-38
string operations, 1-30
time and date functions, 1-33

Catalog
delete resources, 6-111
find entry, 6-37
list entries, 6-68
search catalog for entry, 6-43

Configured connections
asynchronous reading, 5-148
asynchronous sending, 5-157
cancel running send or receive job, 5-147
get job number, 5-44
get length of received data, 5-43
get status of remote partner, 5-161
receive data, 5-143
request cold start, 5-160
request STOP, 5-162
send data, 5-145
uncoordinated receive, 5-163
uncoordinated send, 5-165
warm start request, 5-159

Control user LEDs, 5-194
Cycle time, retrigger, 5-189
Cyclical read

delete job, 5-12
set up job, 5-9
start job, 5-13
stop job, 5-14

D
Data, send with format description, 5-155
Data record

read from signal module, 5-122, 5-124
transfer data record to a signal module,

5-207

Index-2
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Data structures
M7BLKINF, 3-24
M7BLKLIST, 3-25
M7CBRet, 3-26
M7KTIME, 3-27
M7OBJ_INFO, 3-29
M7PBKSTATUS, 3-30
M7TIME_DATE, 3-31
M7VARADDR, 3-32
M7VARDATA, 3-33
Rm3964InitStruct, 3-3
RmAbsTimeStruct, 3-5
RmEntryStruct, 3-6
RmIntrhandMailStruct, 3-8
RmIOCTLModeSerialStruct, 3-9
RmIOCTLPropertiesStruct, 3-10
RmIOCTLVersionStruct, 3-13
RmMailboxStruct, 3-14
RmMailIDStruct, 3-15
RmMemPoolInfoStruct, 3-16
Ser8250InitStruct, 3-17
STDSTRUCT, 3-19

Date
read, 5-71
set, 5-193

Diagnostic Interrupt, IF 961-AIO, 3-38
Diagnostics, link or unlink, 5-32
Diagnostics alarm

check status, 5-49
confirm, 5-22
get access type within a callback function,

5-40
get bit offset within a callback function, 5-35
get buffer address within a callback function,

5-36
get byte offset within a callback function,

5-37
get data type within a callback function,

5-39
get number of elements within a callback

function, 5-38
get the subarea number of the S7 object

within a callback function, 5-42
get type identifier of S7 object within a call-

back function, 5-41
link for handling, 5-97
read diagnostics information from FRB, 5-50
read identifier for the signal module from

FRB, 5-51
read logical base address from FRB, 5-48
send diagnostics alarm to S7 CPU, 5-190
unlink, 5-217

Diagnostics buffer, write entry, 5-229
Driver, serial interface

close unit, 6-114
initialize unit, 6-117, 6-118
open unit, 6-121
read character, 6-112, 6-115
read string, 6-113, 6-116
write character, 6-122, 6-123

E
errno, errno2, 1-34
Error codes

C runtime library, 4-17
loadable drivers, 4-15
M7 API calls, 4-10
RMOS API calls, 4-6

Error messages, M7 RMOS32 kernel, 4-2
Exception interrupt handler, 4-2

F
FC server

confirm message, 5-21
initialize FRB, 5-91
read type of message, 5-55
unlink FRB, 5-213

Fetch data of asynchronous messages, 5-84
Flag

reset, 6-85
set, 6-96
set after interval, 6-97
test, 6-39

Flag group
create, 6-15
delete, 6-25

FLAT addresses, 1-3
FLAT memory model, 1-3
FRB

additional error messages, 5-22
read additional error messages, 5-24
read FRBs, 5-53
read identifier, 5-54
read registered access type from FRB, 5-52
set identifier, 5-192

G
Get standard diagnostics for a DP slave, 5-34

Index

Index-3
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

I
I/O area

read byte directly, 5-114
read directly, 5-112
read doubleword directly, 5-115
read word directly, 5-116
write byte directly, 5-198
write data directly, 5-197
write doubleword directly, 5-199
write word directly, 5-200

I/O descriptor, create from logical address, 5-82
Initialize M7 API, 5-81
Insert/remove alarm, confirm , 5-28
Insert/remove module alarm

define base address of IM module, 5-78
get base address of an I/O module, 5-76
get I/O type of an I/O module, 5-80
get identifier of an I/O module, 5-77
get mode of an I/O module, 5-79
link message, 5-108
unlink message, 5-224

Intel/SIMATIC representation
convert doubleword, 5-7
convert word, 5-8

Interrupt handler
for mail, 6-101
for task start, 6-103
initialize S or I interrupt handler, 6-99
install default interrupt handler, 6-98
read out, 6-41

ISA bus I/O
read byte directly, 5-118
read doubleword directly, 5-119
read word directly, 5-120
write byte directly, 5-202
write doubleword directly, 5-203
write word directly, 5-204

L
Loadable driver

control functions, 6-52
open unit, 6-60
read unit, 6-62
release unit, 6-51
write to unit, 6-64

M
M7 API, data types, 1-12

M7 functions
access to process I/Os, 1-13
alarm handling, 1-14, 1-16
application management, 1-18
communications, 1-19
diagnostics, 1-21
FRB handling, 1-14
free cycle, 1-18
initialization, 1-12
management of callback functions, 1-15
management of S7 objects, 1-14
MMI functions, 1-19
object management functions, 1-20
operating state handling, 1-17
other functions, 1-21
setting the time, 1-20
time handling, 1-17
user LED, 1-18

Mailbox
cancel delayed message, 6-91
create, 6-16
define limit values, 6-105
delete, 6-26
receive message, 6-82
send message, 6-89

Memory
address physical memory, 6-72
allocate memory area, 6-73
allocate memory from HEAP, 6-8
free all memory areas of a task, 6-34
get the size of a memory area, 6-45

Memory area
change size, 6-80
free, 6-33

Memory management, 1-22
Memory pool

check information, 6-42
create, 6-17
delete, 6-27

Message, send mail after a delay, 6-92
Message queue

add message to message queue, 6-94
create, 6-19
define length, 6-106
delete, 6-28
read message, 6-78

MMI variable
read, 5-15
write, 5-17

Index

Index-4
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

MS DOS communication
header files, 1-9
mailboxes, 1-11
RMOS API, 1-9

N
Non–configured connections

asynchronous reading, 5-151, 5-169
asynchronous writing, 5-153, 5-171
cancel receive request, 5-168
close application link, 5-150, 5-167
receive data, 5-173
send data, 5-175

O
Objects supported on the M7, 2-5
One-shot time message

link, 5-100
unlink, 5-219

Operating state
check, 5-70
read from an FRB, 5-74
request change, 5-187
request message, 5-105
unlink message, 5-222

Operating state transition
confirm message, 5-27
read reason, 5-73
request message, 5-106
unlink message, 5-223

OVS
compress memory, 5-128
copy block, 5-141
delete blocks, 5-129
link blocks, 5-135
load block, 5-137
read first entry, 5-131
resume reading, 5-134
set memory mode, 5-136

P
Parameter

IF 961-AIO, 3-38
IF 961-DIO, 3-38

Pause for time interval, 6-75
PDU, check maximum size, 5-65

Periodic time message
check number of periodic time messages

lost, 5-61
confirm, 5-26
link, 5-102
unlink, 5-220

Process alarm
check status, 5-57
confirm, 5-24
link for handling, 5-98
read alarm mask, 5-58
read identifier for the signal module from

FRB, 5-60
read logical base address from FRB, 5-56
read supplementary information from FRB,

5-59
send process alarm to S7 CPU, 5-191
unlink, 5-218

Process image
clear, 5-20
load bit, 5-110
load byte, 5-111
load doubleword, 5-117
load word, 5-126
overwrite byte, 5-196
overwrite word, 5-209
set bit state, 5-195
update output signals, 5-206
update process image of inputs, 5-121
write doubleword, 5-201

Process image transfer error, initialize, 5-104
Process Interrupts, IF 961-AIO, 3-38
Process Interrupts at the End of Cycle, IF

961-AIO, 3-38

R
Read start parameter, 6-4–6-7
Read system state list, 5-210
Reset, query cause, 5-69
Resource, enter resource in resource catalog,

6-10
RMOS API exception handler, 4-5

Index

Index-5
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1
C79000–G7076–C852–02

RMOS functions
cataloging, 1-7
DOS communication, 1-22
flags, 1-8
interrupt, 1-8, 1-9
memory management, 1-5
message exchange, 1-7
message exchange (via mailboxes), 1-7
other functions, 1-9
semaphore, 1-8
task control, 1-6

S
S7 data area

copy user data, 5-225
read, 5-178

S7 object
check start address, 5-127
create, 5-29
delete from working memory and delete

BACKDIR, 5-31
delete S7 object from BACKDIR or ROM-

DIR, 5-186
get subarea number, 5-64
get type identifier, 5-63
link callback function, 5-94
overwrite byte, 5-228
overwrite doubleword, 5-230
overwrite word, 5-231, 5-232
read bit from S7 object, 5-180
read byte from S7 object, 5-181
read doubleword from S7 object, 5-182
read information about data structure, 5-62
read word from S7 object, 5-183, 5-184
report access, 5-92
set bit, 5-227
set header, 5-139
store S7 object in BACKDIR or ROMDIR,

5-205
unlink callback function, 5-215
unlink S7 object for access information via

message, 5-214
S7 objects, subarea numbers, 2-6
Scheduler

disable, 6-30
enable, 6-31

Semaphore
create, 6-12
delete, 6-24
reset, 6-84
test and set, 6-36

Serial interface functions, 1-37
System memory block (SMR), 4-2
System messages

alarm server, 2-4
FC server, 2-3
K bus subsystem, 2-4
object server, 2-3
OST server, 2-2
time server, 2-3

System request block (SRB), 4-2

T
Task

activate, 6-7
add start task to queue, 6-76
change task priority, 6-107
create, 6-13, 6-20
delete, 6-29
end, 6-32
get task ID, 6-46
get task priority, 6-47
get task state, 6-48
resume halted task, 6-88
set task from READY to BLOCKED state,

6-110
start tasks in DORMANT state, 6-108
terminate task and restart after time interval,

6-86
Time

read, 5-71, 5-88
set, 5-89, 5-193

time, get absolute system time, 6-35
Time alarm

get multiple of time base, 5-66
get time base, 5-72

Time-controlled time message
link, 5-96
unlink, 5-216

Transfer buffer
allocate memory area from transfer buffer

and copy in data, 6-124
Copy data from allocated memory area in

transfer buffer and free the area, 6-126

U
Unexpected interrupts, 4-4

Index

Index-6
System Software for M7-300 and M7–400, System and Standard Functions, Volume 1

C79000–G7076–C852–02

Index

	Title
	Preface
	Table of Contents
	1 Function Groups
	1.1 Overview
	1.2 RMOS API Functions
	1.2.1 Information on RMOS API Functions
	1.2.2 Brief Description of the RMOS API Functions
	1.2.3 RMOS API Calls in MS-DOS Applications

	1.3 M7 API Functions
	1.3.1 Information on M7 API Functions
	1.3.2 Brief Description of the M7 API Functions

	1.4 DOS Interface Functions
	1.5 Functions of the C Runtime Library
	1.5.1 Overview
	1.5.2 I/O Operations
	1.5.3 Character Management Functions
	1.5.4 String Operations
	1.5.5 Memory Operations
	1.5.6 Memory Allocation
	1.5.7 Mathematical Functions
	1.5.8 Time and Date Functions
	1.5.9 Control Functions
	1.5.10 Error Handling
	1.5.11 Other Functions

	1.6 Functions of the Socket Interface
	1.7 Serial Interface Functions
	1.8 Other Functions
	1.8.1 Functions for interrupt working
	1.8.2 Functions for hardware–orientated I/O–operations

	2 Type Identifiers
	2.1 System Messages of the M7 Server
	2.2 Identifiers for S7 Objects and Data Types

	3 Data Structures
	3.1 Data Types of the RMOS API
	3.2 Data Structures of the RMOS API
	Rm3964InitStruct
	RmAbsTimeStruct
	RmEntryStruct
	RmIntrhandMailStruct
	RmIOCTLModeSerialStruct
	RmIOCTLPropertiesStruct
	RmIOCTLVersionStruct
	RmMailboxStruct
	RmMailIDStruct
	RmMemPoolInfoStruct
	Ser8250InitStruct
	STDSTRUCT

	3.3 Data Types of the M7 API
	3.3.1 General Data Types of the M7 API
	3.3.2 FRB – Data Types of the M7 Server
	3.3.3 Other Data Types of the M7 Server

	3.4 Data Structures of the M7 API
	M7BLKINFO
	M7BLKLIST
	M7CBRet
	M7KTIME
	M7OBJ_INFO
	M7PBKSTATUS
	M7TIME_DATE
	M7VARADDR
	M7VARDATA

	3.5 Data Structures of the Socket Interface
	HOSTENT
	SERVENT
	SOCKADDR
	SOCKSEL

	3.6 Parameter Data Records for the IF 961-AIO/DIO Interface Modules

	4 Error Codes and Messages
	4.1 Error Messages of the M7 RMOS32 Kernel
	4.2 M7 RMOS32 Exception Handler
	4.3 Error Codes of RMOS API Calls
	4.4 Error Codes of M7 API Calls
	4.5 Error Codes for Loadable Drivers
	4.6 Error codes of C Runtime Library
	4.7 Error Codes of the Socket Interface

	5 M7 API
	M7_SWAP_DWORD
	M7_SWAP_WORD
	M7BUBCycRead
	M7BUBCycReadDelete
	M7BUBCycReadStart
	M7BUBCycReadStop
	M7BUBRead
	M7BUBWrite
	M7CheckResource
	M7ClearPI
	M7ConfirmCycle
	M7ConfirmDiagAlarm
	M7ConfirmIOAlarm
	M7ConfirmPeriodicT imer
	M7ConfirmTransition
	M7ConfirmZSAlarm
	M7CreateObject
	M7DeleteObject
	M7DiagMode
	M7DPNormDiagnose
	M7GetCBBitOffset
	M7GetCBBuffer
	M7GetCBByteOffset
	M7GetCBCount
	M7GetCBDataType
	M7GetCBFlags
	M7GetCBObjType
	M7GetCBPart
	M7GetCommRcvLen
	M7GetCommRequest
	M7GetCommStatus
	M7GetConnStatus
	M7GetDiagAlarmAddr
	M7GetDiagAlarmBusy
	M7GetDiagAlarmInfo
	M7GetDiagAlarmPType
	M7GetFlags
	M7GetFRBErrCode
	M7GetFRBTag
	M7GetFSCType
	M7GetIOAlarmAddr
	M7GetIOAlarmBusy
	M7GetIOAlarmMask
	M7GetIOAlarmState
	M7GetIOAlarmPType
	M7GetLostPeriods
	M7GetObjectInfo
	M7GetObjType
	M7GetPart
	M7GetPduSize
	M7GetPeriod
	M7GetPIErrorAddr
	M7GetPIErrorPIType
	M7GetResetCause
	M7GetState
	M7GetTime
	M7GetTimeBase
	M7GetTSReason
	M7GetTSType
	M7GetZSAlarmAddr
	M7GetZSAlarmIdent
	M7GetZSAlarmIMRBaddr
	M7GetZSAlarmMode
	M7GetZSAlarmPType
	M7InitAPI
	M7InitISADesc
	M7KAbort
	M7KEvent
	M7KInitiate
	M7KPassword
	M7KReadTime
	M7KWriteTime
	M7LinkBatteryFailure
	M7LinkCycle
	M7LinkDataAccess
	M7LinkDataAccessCB
	M7LinkDate
	M7LinkDiagAlarm
	M7LinkIOAlarm
	M7LinkOneShotT imer
	M7LinkPeriodicT imer
	M7LinkPIError
	M7LinkState
	M7LinkTransition
	M7LinkZSAlarm
	M7LoadBit
	M7LoadByte
	M7LoadDirect
	M7LoadDirectByte
	M7LoadDirectDW ord
	M7LoadDirectW ord
	M7LoadDW ord
	M7LoadISAByte
	M7LoadISADWord
	M7LoadISAWord
	M7LoadPII
	M7LoadRecord
	M7LoadRecordEx
	M7LoadW ord
	M7LocateObject
	M7OVSCompress
	M7OVSDelete
	M7OVSFindFirst
	M7OVSFindNext
	M7OVSLinkIn
	M7OVSMemMode
	M7OVSRead
	M7OVSSetObjectHeader
	M7OVSWrite
	M7PBKBrcv
	M7PBKBsend
	M7PBKCancel
	M7PBKGet
	M7PBKIAbort
	M7PBKIGet
	M7PBKIPut
	M7PBKPrint
	M7PBKPut
	M7PBKResume
	M7PBKStart
	M7PBKStatus
	M7PBKStop
	M7PBKURcv
	M7PBKUSend
	M7PBKXAbort
	M7PBKXCancel
	M7PBKXGet
	M7PBKXPut
	M7PBKXRcv
	M7PBKXSend
	M7Read
	M7ReadBit
	M7ReadByte
	M7ReadDWord
	M7ReadReal
	M7ReadWord
	M7RelocateObject
	M7RemoveObject
	M7RequestState
	M7RetriggerCycle
	M7SendDiagAlarm
	M7SendIOAlarm
	M7SetFRBTag
	M7SetTime
	M7SetUserLED
	M7StoreBit
	M7StoreByte
	M7StoreDirect
	M7StoreDirectByte
	M7StoreDirectDWord
	M7StoreDirectWord
	M7StoreDWord
	M7StoreISAByte
	M7StoreISADWord
	M7StoreISAWord
	M7StoreObject
	M7StorePIQ
	M7StoreRecord
	M7StoreWord
	M7SZLRead
	M7UnLinkBatteryFailure
	M7UnLinkCycle
	M7UnLinkDataAccess
	M7UnLinkDataAccessCB
	M7UnLinkDate
	M7UnLinkDiagAlarm
	M7UnLinkIOAlarm
	M7UnLinkOneShotT imer
	M7UnLinkPeriodicT imer
	M7UnLinkPIError
	M7UnLinkState
	M7UnLinkTransition
	M7UnLinkZSAlarm
	M7Write
	M7WriteBit
	M7WriteByte
	M7WriteDiagnose
	M7WriteDWord
	M7WriteReal
	M7WriteWord

	6 RMOS API
	get2ndparm
	getdword
	getparm
	RmActivateTask
	RmAlloc
	RmCatalog
	RmCreateBinSemaphore
	RmCreateChildTask
	RmCreateFlagGrp
	RmCreateMailbox
	RmCreateMemPool
	RmCreateMessageQueue
	RmCreateTask
	RmCreateTaskEx
	RmDeleteBinSemaphore
	RmDeleteFlagGrp
	RmDeleteMailbox
	RmDeleteMemPool
	RmDeleteMessageQueue
	RmDeleteTask
	RmDisableScheduler
	RmEnableScheduler
	RmEndTask
	RmFree
	RmFreeAll
	RmGetAbsTime
	RmGetBinSemaphore
	RmGetEntry
	RmGetFlag
	RmGetIntHandler
	RmGetMemPoolInfo
	RmGetName
	RmGetSize
	RmGetTaskID
	RmGetTaskPriority
	RmGetTaskState
	RmIOClose
	RmIOControl
	RmIOOpen
	RmIORead
	RmIOWrite
	RmKillTask
	RmList
	RmLoadDevice
	RmMapMemory
	RmMemPoolAlloc
	RmPauseTask
	RmQueueStartTask
	RmReadMessage
	RmReAlloc
	RmReceiveMail
	RmReleaseBinSemaphore
	RmResetFlag
	RmRestartTask
	RmResumeTask
	RmSendMail
	RmSendMailCancel
	RmSendMailDelayed
	RmSendMessage
	RmSetFlag
	RmSetFlagDelayed
	RmSetIntDefHandler
	RmSetIntISHandler
	RmSetIntMailboxHandler
	RmSetIntTaskHandler
	RmSetMailboxSize
	RmSetMessageQueueSize
	RmSetTaskPriority
	RmStartTask
	RmSuspendTask
	RmUncatalog
	SerialCheckChar
	SerialCheckString
	SerialClose
	SerialGetChar
	SerialGetString
	SerialInit
	SerialInitEx
	SerialOpen
	SerialPutChar
	SerialPutString
	x_dos_cpyin
	x_dos_cpyout

	Index

