SIEMENS

SIMATIC

System Software

for M7-300 and M7-400
System and Standard
Functions, Volume 1

Reference Manual

This manual is part of the documentation
package with the order number:

6ES7802-0FA14-8BA0

C79000-G7076—-C852-02

Preface, Table of Contents

Function Groups

Type ldentifiers

Data Structures

Error Codes and Messages

M7 API

RMOS API

Index

o o A W DN

Safety Guidelines

This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning

triangle and are marked as follows according to the level of danger:

Danger
indicates that death, severe personal injury or substantial property damage will result if proper precau-

tions are not taken.

Warning
indicates that death, severe personal injury or substantial property damage can result if proper precau-

tions are not taken.

Caution
indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a

particular part of the documentation.

Qualified Personnel

Only qualifiedpersonnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys—
tems in accordance with established safety practices and standards.

Correct Usage
Note the following:

Warning

This device and its components may only be used for the applications described in the catalog or the
technical description, and only in connection with devices or components from other manufacturers which
have been approved or recommended by Siemens.

This product can only function correctly and safetly if it is transported, stored, set up and installed cor-
rectly, and operated and maintained as recommended.

Trademarks

SIMATIC®, SIMATIC HMI® and SIMATIC NET® are registered trademarks of SIEMENS AG.

Some of the other designations used in these documents are also registered trademarks; the owner’s
rights may be violated if they are used by third parties for their own purposes.

Copyright Siemens AG 1998 All rights reserved

The reproduction, transmission or use of this document or its contents is not
permitted without express written authority. Offenders will be liable for
damages. All rights, including rights created by patent grant or registration of
a utility model or design, are reserved.

Siemens AG

Automation and Drives Group
Industrial Automation Systems
P.O.Box 4848, D- 90327 Nuremberg

Disclaimer of Liability

We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be preclu-
ded entirely, we cannot guarantee full agreement. However, the data in
this manual are reviewed regularly and any necessary corrections inc-
luded in subsequent editions. Suggestions for improvement are welco-
med.

© Siemens AG 1998
Technical data subject to change.

Siemens Aktiengesellschaft

C79000-G7076-C852-02

Preface

Purpose This manual supports you when programming M7 300 and M7 400 automa-
tion computers in C under the M7 RMOS32 operating system. It provides
you with detailed information on the range of functions for the call interface
of M7 RMOS32. The information contained in the manual includes:

¢ Notations and data types

¢ Functional classification of the various calls
¢ Data structures used

e Error codes and messages

¢ Detailed information on the function calls

Audience This manual is intended primarily for C programmers of M7 300 and M7 400
automation computers.

Scope of this Ma- This manual is valid for M7 300 and M7 400 automation computers with the
nual system software M7-SYS RT from V 4.0.
Scope of the The system software for automation computers M7 300 and M7 400 with M7
Documentation RMOS32 is documented in several manuals, which can be ordered separately
Package from each product. The manuals are listed in the following table.

Manual Contents

System Software for M7-300/400Installation and operation of M7-300/400 automation
Installation and Operation, User | computers.
Manual

System Software for M7-300/400Design and creation of C/C++ programs
Program Design,
Programming Manual

System Software for M7-300/400Detailed information for programming with M7
System and Standard RMOS32.
Functions, Reference Manual

System Software for M7-300/400Designing and writing loadable device drivers for
Writing Loadable Drivers M7 RMOS32, programming and reference informa
Electronic Manual tion.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 n

Preface

How to Use this This Reference Manual supports you primarily when programming applica-

Manual tions for M7 RMOS32. It is your main reference document for programming,
testing and checking the source code. The manual is divided into two volu-
mes containing the following:

Volume 1
Function groups

Chapter 1 provides an introduction and presents the programming functions
in logical order. If you are looking for a function to perform a specific task,
you can find it here.

This chapter also describes the conditions required for the use of the individ-
ual groups of calls. You will find a detailed description of the individual
functions in Chapters |5 and 6 of Volume 1 and Chapters 1 to 3 of Volume 2 .

Type identifiers

The second chapter contains the main type identifiers used when program-
ming. It lists the identifiers for the system messages, S7 objects and data
types used.

Data structures

The third chapter describes the data structures used in the RMOS API, M7
API and socket calls.

Error codes and messages

The fourth chapter explains the error codes and messages returned by the M7
RMOS32 kernel and the individual function calls.

Description of the function calls

Chapters 5 and 6 provide a detailed description, in alphabetical order, of the
M7 APl and RMOS API calls.

Volume 2
Libraries

Chapters 1, 2 and 3 provide a detailed description, in alphabetical order, of
the C runtime librarycalls, the socket library calls and miscellaneous function
calls.

Index

Each volume contains an index which helps you to find text relating to im-
portant topics quickly.

Manual and Online This manual is available both in printed form and in electronic format as part

Help of the SIMATC Manual Collection. Its contents is also available in the on-
line help file M7SYS40B.HLP in the S7BIN directory of STEP 7. You can
include this file in the search range of the OpenHelp function of the Borland
IDE for context—sensitive support during programming.

. System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
v C79000-G7076-C852-02

Preface

Feedback We need your help to enable us to provide you and future M7-SYS users with
optimum documentation. If you have any questions or comments on this
manualor theonline help please fill in the remarks form at the end of the
manual and return it to the address shown on the form. We would be grateful
if you could also take the time to answer the questions giving your personal
opinion of the manual.

SIMATIC Customer Contactable worldwide round the clock:
Support Hotline

Nuremberg Johnson City

SIMATIC BASIC Hotline SIMATIC BASIC Hotline

Localtime: Mo.-Fr. 8:00 to 18:00 Localtime: Mo.-Fr. 8:00 to 17:00

Phone: +49 (911) 895-7000 Phone: +1423461-2522

Fax: +49 (911) 895-7002 Fax: +1423461-2231

E-Mail: simatic.support@ E-Mail: simatic.hotline@
nbgm.siemens.de sea.siemens.com

SIMATIC Premium Hotline Singapore

(Calls billed, only with SIMATIC BASIC Hotline

SIMATIC Card) Localtime: Mo.-Fr. 8:30 to 17:30

Time: Mo.-Fr. 0:00 to 24:00 Phone: +65740-7000
Phone: +49 (911)895-7777 Fax: +65740-7001
Fax: +49 (911) 895-7001

E-Mail: simatic@
singnet.com.sg

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 Vv

Preface

SIMATIC Customer
Support Online
Services

SIMATIC Training
Center

Further Support

vi

The SIMATIC Customer Support team provides you with comprehensive
additional information on SIMATIC products via its online services:

¢ You can obtain general current information:
— On thelnternet athttp://www.ad.siemens.de/simatic
— Usingfax polling no. 08765-93 02 77 95 00

e Current Product Information leaflets and downloads which you may find
useful for your product are available:

— On thelnternet athttp://www.ad.siemens.de/support/
htmI-00/

— Via theBulletin Board System (BBS) in NurembergIMATIC Cus-
tomer Support Mailboxat the number +49 (911) 895-7100.

To access the mailbox, use a modem with up to V.34 (28.8 kbps),
whose parameters you should set as follows: 8, N, 1, ANSI, or dial in
using ISDN (x.75, 64 kbps).

Siemens also offers a number of training courses to introduce you to the Sl-
MATIC S7 and M7 automation systems. Please contact your regional training
center or the central training center in Nuremberg, Germany for details:

D-90327 Nuremberg, Tel. (+49) (911) 895 3154.

If you have any further questions about SIMATIC products, please contact
your Siemens partner at your local Siemens representative’s or regional of-
fice. You will find the addresses in our catalogs and in Compusgove (
autforum)

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Table of Contents

1 FUNCHION GrOUPS oottt e e e e e e e
1.1 OV BIVIBW . o o et et e e e e e e e e e
1.2 RMOS API FUNCHONS . .ottt e e e e e e e s
1.2.1 Information on RMOS API FUNCLIONS oot e
1.2.2 Brief Description of the RMOS API Functions
1.2.3 RMOS API Calls in MS-DOS Applicationst
1.3 M7 APl FUNCLIONS . ..t e e e e e e
1.3.1 Information on M7 APl Functions
1.3.2 Brief Description of the M7 APl Functions
1.4 DOS Interface FUNCLIONSo e e
15 Functions of the C Runtime Library
151 OV BIVIBW . o ottt e e e e e e e e e e e e
152 /O OPEratioNSottt e e e
153 Character Management Functionso iiiiiinin.n.
154 String OpPerations ot
155 Memory OperationScuuiii
156 Memory AllOCatioNot
15.7 Mathematical FUNCLIONSot e e
1.5.8 Time and Date FUNCLIONSttt e e
159 Control FUNCHIONS ..ottt e e e e e e e
1510 ErrorHandling
1.5.11 Other FUNCHIONS . ..ttt e e e e e e e
1.6 Functions of the Socket Interface
1.7 Serial Interface FUNCLIONSot
1.8 Other FUNCHIONS . ..ttt e e e e e e e e
1.8.1 Functions for interrupt working
1.8.2 Functions for hardware—orientated I/O—operations

2 Type ldentifiers
21 System Messages of the M7 Server i,
2.2 Identifiers for S7 Objectsand Data TypesSccviiivnenn..

3 Data StTUCTUNES . oo e e e e
3.1 Data Types of the RMOS API e
3.2 Data Structures of the RMOS APl i
3.3 Data Types of the M7 APl i
3.3.1 General Data Types of the M7 APl i i
3.3.2 FRB — Data Types of the M7 Server i,
3.3.3 Other Data Types of the M7 Server

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

1-2

1-3
1-3
1-5
1-9

1-12
1-12
1-12

1-22

1-23
1-23
1-24
1-29
1-30
1-31
1-31
1-32
1-33
1-34
1-34
1-35

1-36
1-37

1-38
1-38
1-38

2-1
2-2
2-5

3-1
3-2
3-2

3-21
3-21
3-22
3-23

Vi

Table of Contents

3.4 Data Structures of the M7 APl 3-23
35 Data Structures of the Socket Interface 3-34
3.6 Parameter Data Records for the IF 961-AIO/DIO Interface Modules |3-38
4 Error Codes and MeSSagesS .. .o ittt e 4-1
4.1 Error Messages of the M7 RMOS32 Kernel, 4-2
4.2 M7 RMOS32 Exception Handler 4-5
4.3 Error Codes of RMOS APICalls ... 4-6
4.4 Error Codes of M7 APICalls ... i 4-10
4.5 Error Codes for Loadable Driverso i 4-15
4.6 Error codes of C Runtime Library i i 4-17
4.7 Error Codes of the Socket Interface o .. 4-19
5 A 5-1
6 RMOS AP 6-1
Index
Tables
1-1 Overview of FUNCHON GroUPS vv e e 1-2
1-2 General Data Types of C i e 1-4
1-3 Functions for Memory Management, 1-5
1-4 Functions for Task Control i 1-6
1-5 Functions for Cataloging Resourcesccoiiiiiiiinninn.. 1-7
1-6 Functions for Message Exchange il 1-7
1-7 Functions for Message Exchange via Mailboxes 1-7
1-8 Functions for Coordination with Event Flags 1-8
1-9 Functions for Semaphore Handling, 1-8
1-10 Functions for Interrupt Handling i i 1-8
1-11 Functions for loadable drivers o i 1-9
1-12 Other FUNCLIONSo e e 1-9
1-13 RMOS API Calls Which are Not Supported 1-10
1-14 Special Properties of RMOS APICalls it 1-11
1-15 Function for Initialization 1-12
1-16 Functions for Access to Process /0SS 1-13
1-17 Functions for FRB Handlingcoo i 1-14
1-18 Functions for Alarm Processing (Slave Functions) 1-14
1-19 Functions for the Management of S7 Objects 1-14
1-20 Calls for the Management of Callback Functions 1-15
1-21 Functions for Alarm Handling o i 1-16
1-22 Functions for Time Handling i, 1-17
1-23 Functions for Operating State Handling oa.. 1-17
1-24 Functions for Cycle Control Point and “Free Cycle” 1-18
1-25 Functions for Controllingthe User LED, 1-18
1-26 Functions for Application Link Management 1-18
1-27 Communikations FUNCLIONSot i 1-19
1-28 MMI FUNCLIONS . ..o e 1-19

viii

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Table of Contents

1-29
1-30
1-31
1-32
1-33
1-34
1-35
1-36
1-37
1-38
1-39
1-40
1-41
1-42
1-43
1-44
1-45
1-46
1-47
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
3-1
3-2
3-3

3-5
3-6

Object Management FUNCLIONSt 1-20
Functions for Reading/Settingthe Time, 1-20
Functions for the Diagnostics Serverc. i, 1-21
Other FUNCHIONS e et e et 1-21
Functions for DOS Communication iiiiinenann.. 1-22
Input/Output Operationst i e 1-26
Character Management Functions oviiiiiennennn. 1-29
String Operationst e 1-30
Memory OperationSt 1-31
Memory Allocation Operations 1-31
Mathematical FUNCtions i 1-32
Time and Date FUNCLIONSt i e 1-33
Control FUNCLIONS e e e e e 1-34
Error Handling FUNCLIONS oo 1-34
Other FUNCHIONSo e e e e e 1-35
Functions of the Socket Interface 1-36
Serial Interface Functions i 1-37
Functions for interrupt working i 1-38
Functions for hardware—orientated I/O—operations 1-38
Messages of the OST Serverco i 2-2
Messages of the S7 Object Server i, 2-3
Message of the Time-Servers i, 2-3
Message of the FC Server 2-3
Messages of the Alarm Server i 2-4
Messages of the K Bus Subsystem 2-4
Objects Supported onthe M7 i 2-5
Subarea Numbers for S7 Objectso it 2-6
Data Type Identifiers for Accessing S7 Objects 2-6
Block Type Identifierso 2-7
GeneralData Type Definitions of the RMOS APl 3-2
General Data Types ofthe M7 APl i, 3-21
FRB Definitions for M7 APl 3-22
Other Data Types of the M7 APl i it 3-23
Parameters for the IF 961-AlO Interface Module 3-38
Parameters for the IF 961-DIO Interface Module 3-39

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1 .
C79000-G7076-C852-02 iX

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Function Groups

In this Chapter

Section Contents Page
11 Overview 1-2
1.2 RMOS API Functions 1-3
1.3 M7 API Functions 1-12
1.4 DOS Interface Functions 1-22
15 Functions of the C Runtime Library 1-23
1.6 Functions of the Socket Interface 1-36
1.7 Serial Interface Functions 1-37
18 Other Functions 1-38

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1 11

C79000-G7076-C852-02

Function Groups

1.1 Overview

What is Described
in this Chapter?

Libraries and Hea-
der Files

1-2

The following sections describe the functions used when programming with
M7-SYS RT. The individual calls are subdivided into logical function groups.

If functions from a group are to be used in M7 RMOS32 tasks, the header file
belonging to the group must be included and the corresponding library linked,
as specified in the following table:

Table 1-1 Overview of Function Groups

Function Group Header File Library
RMOS API functions RMAPI.H RMFHLI.LIB
M7 API functions M7API.H M7APIBL.LIB
MS-DOS Interface functions RM3DOS.H RMFDOSIB.LIB
C Library functions ANSI-compliant RMFCRIFB.LIB
Socket Interface functions SOCKET.H RMFSK2IB.LIB
Serial Interface functions SERIAL.H RMFSER.LIB
Other functions MISC86.H RM3BCC.LIB

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Function Groups

1.2 RMOS API Functions

1.2.1 Information on RMOS API Functions

General
Information

Information for
Programming in C

M7 RMOS32 presents a pure function interface for accessing the services of
the M7 RMOS32 kernel. The functions return values which indicate whether
or not the functions have been successfully executed. Special calls also return
additional information.

RMAPI.H is included as the header file with the prototypes for the API. The
file is automatically included when creating M7 RMOS32 applications in the
integrated development environment. RMAPI.H in turn includes the files
RMTYPES.H (RMOS-API-specific type definitions) alRMDEF.H (general
definitions such as error codes, etc.)

Note

M7 RMOS32 applications are created in the FLAT memory model, that is all
pointers consist only of a 32-bit offset.

There is no protection in the FLAT memory model for address areas of exter-
nal tasks or tasks of the M7 RMOS32 kernel. Special care should therefore be
exercised when using pointers, if problems are to be avoided.

Examples of code in C are used to illustrate the RMOS API calls.

The C interface is described by RMAPI.H in the INC directory. All the func-
tion prototypes of the RMOS API are contained there. The files RMDEF.H and
RMTYPES.H are also included. RMDEF.H contains the define constants and
RMTYPES.H contains the data types and structures for programming the sys-
tem calls.

In order to prevent problems arising from parameter errors, the defined
constants from RMDEF.H should be used.

The parameters are always passed on the stack; the return value contains the
error code of the RMOS API call. If no error occurs, RM_OK (=0) is returned.
In the event of an error, a value greater than 0 is returned. Certain RMOS API
calls also have negative return values; these are used for additional informa-
tion. For example, RmSetFlag returns RM_FLAG_ALREADY_SET if the flag
was already set.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

1-3

Function Groups

Example of an This call allocates a memory area of 1000 bytes which is not freed automati-
RMOS-API-Call cally and is thus not allocated to a specific task. If insufficient memory is avail-
able, the system does not wait for memory to be released.
main()
{
int Error;
void *Pointer;

Error = RmAlloc(RM_CONTINUE, RM_NOAUTOFREE, 1000ul, &Pointer)

General Data The following data types can be used for programming RMOS API calls.
Types

Table 1-2 General Data Types of C

Data Type Description
char Character : 8 bits
short Integer: 16 bits
int Integer: 32 bits
long Integer: 32 bits
void * Pointer (FLAT): 32 bits
enum Enumerator type: 32 bits
float Floating-point number: 32 bits
double Floating-point number: 64 bits

The RMOS API-specific data types (which are shown in Table 3-1 and defined
in header file RMTYPES.H) should be used, in addition to the general C data
types, for RMOS API calls.

Interrupt Numbers In all RMOS API calls for checking, installing and deinstalling interrupt han-
dlers, the interrupt number can be specified in two different ways:

1. Number between 0 and 255
The interrupt is treated as a software interrupt.

2. IRQ<n>
The number <n> is entered directly, e.g. IRQ1, IRQ2. The interrupt is inter-
preted as a hardware interrupt.
The values IRQ1, IRQ2, etc. are defined in an include file. The IRQ(x)
macro can be used to pass the IRQ number to a variable. The value of (x)
can be between 0 and the highest available interrupt. The value range of
0..15is valid on the PC.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
1-4 C79000-G7076-C852-02

Function Groups

Information for
Timer
Programming

If you use timeout values in your program, these are entered in the timer queue
according to their execution time (in the order of the timer ticks). If several
timeout requests are registered for the same timer tick, these are executed ac-
cording to the_ast In First Outprinciple.

If a timer tick lies between two timeout requests of the same length, these re-
quests are distributed across different timer ticks.

Example:
Timeout requests 1, 2, 3 within one timer tick; timeout requests 4, 5, 6 within
the next timer tick. The order in the timer queue is 3, 2, 1, 6, 5, 4.

In order to ensure that all timer calls occur within one timer tick, you should
proceed as follows:

1. Set a very high priority for the task (the highest system priority), to prevent
it from being interrupted by other tasks.

2. Initiate a pause call with O for synchronization with the next timer tick.
3. Inititate timeout requests.
4. Reset the task priority to the initial value.

Please note that the entire process must be executed completely within a timer
tick.

1.2.2 Brief Description of the RMOS API Functions

Overview

Memory
Managament

In the form of a C interface, the RMOS API provides M7 RMOS32 applica-
tions with all the functions necessary to implement a multitasking system.
RMOS API functions present the interface to the M7 RMOS32 kernel.

You will find a detailed description of these functions in Chapter 6.

The following table lists all the functions for memory management, together
with a brief description.

Table 1-3 Functions for Memory Management
Function Brief Description

RmAlloc Allocate memory from heap
RmCreateMemPool Create memory pool from heap
RmDeleteMemPool Delete memory pool

RmFree Free memory area

RmFreeAll Free all memory areas of a task
RmGetMemPoollnfo Get memory pool information
RmGetSize Get the size of a memory area
RmMapMemory Map physical memory

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

1-5

Function Groups

Task Control

1-6

Table 1-3

Functions for Memory Management

Function

Brief Description

RmMemPoolAlloc

Allocate memory area from memory pool

RmReAlloc

Increase size of memory area

The following table 1-4lists all the functions you can use for task control, to-
gether with a brief description.

Table 1-4 Functions for Task Control

Function Brief Description
RmActivateTask Set task to READY state
RmCreateTask Create task
RmCreateTaskEx Create task

RmCreateChildTask

Create child task

RmDeleteTask

Terminate calling task (and delete)

RmDisableScheduler

Disable scheduler

RmEnableScheduler

Enable scheduler

RmEndTask

End calling task (without deletion)

RmGetTaskID

Get the ID of a task

D

art

RmGetTaskPriority Get task priority

RmGetTaskState Get task state

RmKillTask Set task to DORMANT or NOTEXISTENT state

RmPauseTask Pause calling task

RmQueueStartTask Add task to queue.
The task is started immediately it switches to the
DORMANT state

RmRestartTask Terminate the calling task and automatically st
it again after a given interval

RmResumeTask Resume task execution after an interval com-
mencing withRmPauseTask

RmSetTaskPriority Change the priority of a task

RmStartTask Request the start of a task currently in the DOR
MANT state

RmSuspendTask Set task to BLOCKED state

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

Function Groups

Resource The following table lists all the functions you can use for the management of
Management resources, together with a brief description.
Table 1-5 Functions for Cataloging Resources
Function Brief Description
RmCatalog Enter resources in resource catalog
RmGetEntry Get entry (ID) in resource catalog
RmGetName Get name in resource catalog
RmList List entries in resource catalog
RmUncatalog Delete entries from resource catalog
RmGetAbsTime Get absolute system time
Message The following table lists all the functions you can use for message exchange,
Exchange together with a brief description.
Table 1-6 Functions for Message Exchange
Function Brief Description
RmCreateMessageQueue Create message queue
RmDeleteMessageQueue Delete message queue
RmReadMessage Read message from message queue
RmSendMessage Store message in message queue
RmSetMessageQueueSize Limit the length of the message queue

Mailboxes The following table lists all the functions you can use for message exchange
via mailboxes, together with a brief description.

Table 1-7 Functions for Message Exchange via Mailboxes
Funktion Brief Description

RmCreateMailbox Create mailbox

RmDeleteMailbox Delete mailbox

RmReceiveMail Read message from mailbox

RmSendMail Store message in mailbox

RmSendMailCancel Cancel delayed message storage

RmSendMailDelayed Delayed message storage in mailbox

RmSetMailboxSize Limit length of mailbox

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 1-7

Function Groups

Event Flags

Semaphore
Handling

Interrupt Handling

1-8

The following table lists all the functions you can use for coordination with
event flags, together with a brief description.

Table 1-8 Functions for Coordination with Event Flags
Function Brief Description
RmCreateFlagGrp Create flag group
RmbDeleteFlagGrp Delete flag group
RmGetFlag Test bit in flag group
RmResetFlag Reset bit in flag group
RmSetFlag Set bit in flag group
RmSetFlagDelayed Set bhits in flag group after interval

The following table lists all the functions you can use for semaphore handling,

together with a brief description.

Table 1-9 Functions for Semaphore Handling

Function

Brief Description

RmCreateBinSemaphore

Create semaphore

RmDeleteBinSemaphore

Delete semaphore

RmGetBinSemaphore

Assign semaphore

RmReleaseBinSemaphore

Release semaphore

The following table lists all the functions you can use for interrupt handling,

together with a brief description.

Table 1-10 Functions for Interrupt Handling

Function

Brief Description

RmGetIintHandler

Get current interrupt handler

RmSetIntDefHandler

Deinstall interrupt handler

RmSetIntiISHandler

Install interrupt handler for | and S states

RmSetIntMailboxHandler

Install mailbox interrupt handler

RmSetIintTaskHandler

Install interrupt handler for task start

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

Function Groups

Loadable Drivers

Other Calls

The following table lists all functions for loadable drivers with a brief descrip-

tion.
Table 1-11 Functions for loadable drivers
Function Brief Description
RmIOClose Close Unit
RmIOControl Control functions for loadable drivers
RmIOOpen Open Unit
RmIORead Read from Unit
RmIOWrite Write on Unit
RmLoadDevice Load driver

The following table lists all other RMOS API calls, together with a brief de-

scription.
Table 1-12 Other Functions
Function Brief Description
get2ndparm Read EBX start parameter of task
getdword Read start parameter of task in long format
getparm Read start parameter of task as pointer

1.2.3 RMOS API Calls in MS-DOS Applications

General
Information

Header Files and
Conventions

RMOS also provides an API which can be used by MS-DOS applications. This
enables DOS applications to issue system calls to the RMOS kernel (not to M7
servers!), to start an RMOS task, for example, or send messages to a mailbox
or the message queue of a task.

The RMOS API for MS-DOS applications is not for further development!

MS-DOS programs which use the interface must include the prototypes of hea-
der file RMAPI.H .

MS-DOS can only use the 16-bit real mode call interface under M7 RMOS32.
The definition of data formats, types and structures conforms to the real mode
programming of MS-DOS.

C prototypes and macros of the RMOS API interface are defined in the file
RMAPI.H or the flesRMDEF.H andRMTYPES.H. TheRM3 switch is used
to select whether the file for M7 RMOS32 or for MS-DOS applications is
used.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

1-9

Function Groups

Including in DOS- Consequently, the switches must be set, as shown below, before the RMAPI.H
Programs include statement in an MS-DOS program:

#define RM3 0
#include “RMAPI.H”

Libraries An appropriate interface library must be included in the link statement for the
program. This is the librafpOSHLIB.LIB for MS-DOS programs.

Data Conversion M7 RMOS32 converts the parameters internally to the M7 RMOS32 format on
an RMOS API call from a DOS program.

Data types which are 16 bits wide, and 32 bits wide with M7 RMOS32, are
“zero extended”, that is bits 31 to 16 are set to 0 and transmitted to the RMOS
kernel.

Interrupt Number An RMOS API call is invoked from an MS-DOS program using a software
interrupt. The interrupt vector used is configured permaneni#@ldsThis
interrupt may therefore not be reassigned by MS—-DOS applications.

RMOS API Calls The following table lists the RMOS API calls which may not be used in MS-
Which are Not DOS programs. If they are used, the call returns an error message.
Supported

Table 1-13 RMOS API Calls Which are Not Supported

RMOS API Calls Cause
RmAlloc, RmMemPoolAlloc, It is not permitted for RMOS to manage a
RmFree, RmFreeAll, memory pool within the memory area addressed
RmReAllocMem, by MS-DOS. Therefore each RMOS memory
RmMapMemory pool must be situated above this area.
RmSetISHandler, The RMOS-API calls for interrupt management
RmSetIntTaskHandler, are used to set interrupt vectors in the RMOS
RmSetIntMailboxHandler, environment
RmSetintDefHandler The functions available under MS-DOS must be

used in order to change or enter an interrupt vec-
tor in the MS-DOS environment.

RmEndTask, An MS-DOS program cannot terminate itself
RmRestartTask with these calls.
RmCreateTask An MS-DOS program cannot create another

task, since no task can be created within the
memory area managed by MS-DOS.

RmReadMessage, Using these calls, specifical operating system

RmSendMessage, pointers are transmited , which may be not con-

RmCreateMessageQueue, verted automatically, Instead of this the commu-

RmDeleteMessageQueue, nication may be effected by mailboxes (see table
1-7)

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
1-10 C79000-G7076-C852-02

Function Groups

Special Properties The following table shows the special properties of RMOS API calls in an MS-
of RMOS API Calls DOS environment. Failure to handle these calls correctly will cause system
errors.

Table 1-14 Special Properties of RMOS API Calls

RMOS API Call Cause
RmDeleteTask Although an MS-DOS program can delete anothern
RMOS task with this call, it cannot delete itself.

Calls with Task_ID equal to RM_OWN_TASK are
illegal.

RmSetTaskPriority Although an MS-DOS program can change the prior-
ity of another RMOS task with this call, it cannot
change its own priority.

Calls with Task_ID equal to RM_OWN_TASK are

illegal.
Communication Please also note the following points for communication between RMOS and
using Mailbox MS-DOS programs via mailboxes (see Table 1-7):

Services The mailbox call RmSendMail transfers the contents of a “3-word buffer”

(message). This buffer is 12 bytes long in M7 RMOS32.

If the RmSendMail call is issued by an RMOS task under M7 RMOS32, a
12-byte data area is also transferred internally to the mailbox addressed.

If an MS-DOS program now reads the message from the mailbox, 12 bytes are
also transferred to the memory area of the MS-DOS program. You should
therefore make sure that the “3-word buffer” in an MS-DOS program is also

12 bytes in length.

A pointer in a message is not converted by the RMOS kernel, that is a flat
pointer (linear address under M7 RMOS32) is not converted to a real mode
pointer (physical address under MS-DOS).

Note

If a blocking call is issued within the MS-DOS program, the DOS task, that is
the entire DOS machine, is blocked (task state: BLOCKED).

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 1-11

Function Groups

1.3 M7 API Functions

1.3.1 Information on M7 API Functions

Conventions and M7 RMOS32 programs must include header l#iAP1.H as the header file

Header Files for for the prototypes of the functions.

XI? ﬁgﬁ;‘? You will also find all the data type and structure definitions and the error codes
PP in M7APLH.

General Data Ty- In order to facilitate future porting of programs to other systems, the M7 API

pes of the M7 API environment also uses its own type definitions instead of machine-specific data

type identifiers such as int or long. The data types are defined in header file
M7API.H (see Table 3-2)

1.3.2 Brief Description of the M7 API Functions

Overview The M7 API provides all the functions necessary for solving an automation
task to the M7 RMOS32 applications in the shape of a C interface.

As well as access to the process 1/Os, the M7 API presents functions for the
management of internal S7 objects, calls for communication with other au-
tomation components, and further functions for the transparent integration of
your M7 automation computer in an S7 programmable controller system.

You will find a detailed description of these functions in Section 5.

Initialization The following table shows the function for task-specific initialization of the
M7 API.

Table 1-15 Function for Initialization

Function Brief Description
M7InitAPI Initialize M7 API

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
1-12 C79000-G7076-C852-02

Function Groups

Access to Process
I/0s

The following table lists all the functions you can use to access process |/Os,

together with a brief description.

Table 1-16 Functions for Access to Process I/Os

Function Brief Description
M7ClearPI Clear process image
M7LoadBit Load bit from process image
M7LoadByte Load byte from process image
M7LoadDWord Load doubleword from process image

M7LoadDirect

Read data direct from 1/O area

M7LoadDirectByte

Read byte direct from I/O

M7LoadDirectDWord

Read doubleword direct from 1/O

M7LoadDirectWord

Read word direct from I/O

M7LoadISAByte

Read byte from ISA bus I/O

M7LoadlSADWord

Read doubleword from ISA bus I/O

M7LoadISAWord

Read word from ISA bus I/O

M7LoadPII Update process image of inputs
M7LoadRecord Read data record from signal module
M7LoadRecordEx Read data record from signal module
M7LoadWord Load word from process image
M7StoreBit Overwrite bit in process image
M7StoreByte Overwrite byte in process image
M7StoreDWord Overwrite doubleword in process image

M7StoreDirect

Transfer data direct to 1/O area

M7StoreDirectByte

Write byte direct to 1/0

M7StoreDirectDWord

Write doubleword direct to 1/0

M7StoreDirectWord

Write word direct to I1/O

M7StorelSAByte

Write byte to ISA bus 1/O

M7StorelSAWord

Write word to ISA bus 1/0O

M7StorelSADWord

Write doubleword to ISA bus I/O

M7StorePIQ Update I/O from process image of outputs
M7StoreRecord Transfer data record to signal module
M7StoreWord Overwrite word in process image

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

1-13

Function Groups

FRB Handling

Alarm Handling
(Slave Functions)

Management of S7
Objects

1-14

The following table lists the calls for the general handling of FRBs (Function
Request Blocks).

Table 1-17 Functions for FRB Handling

Function Brief Description
M7GetFRBErrCode Get error code from FRB header
M7GetFRBTag Get tag from FRB header
M7SetFRBTag Set tag in FRB header

The following table lists all the functions for sending alarms and checking the
alarm handling status, together with a brief description.

Table 1-18 Functions for Alarm Processing (Slave Functions)
Function Brief Description
M7GetDiagAlarmBusy Check status of a diagnostics alarm
M7GetlOAlarmBusy Check status of a process alarm
M7SendDiagAlarm Send diagnostics alarm to CPU

M7SendIOAlarm

Send process alarm to CPU

The following table lists all the functions you can use for the management of
S7 objects, together with a brief description.

=

—

Table 1-19 Functions for the Management of S7 Objects

Function Brief Description
M7CreateObject S7-Objekt erzeugen
M7DeleteObject Delete S7 object from working memory and “pe

manent load memory”

M7GetFlags Get access type for S7 object from OBJFRB
M7GetObjectinfo Read information on data structure of S7 objeg
M7GetObjType Get type identifier of S7 object from OBJFRB
M7GetPart Get subarea number of S7 object from OBJFRB
M7LinkDataAccess Link OBJFRB for access to S7 object
M7LocateObject Move S7 object in working memory
M7Read Read S7 data area
M7ReadBit Read byte from S7 object

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

Function Groups

Callback Function
Calls for S7 Object
Access

Table 1-19 Functions for the Management of S7 Objects
Function Brief Description

M7ReadByte Read word from S7 object

M7ReadWord Read doubleword from S7 object

M7ReadDWord Read doubleword from S7 object

M7ReadReal Read floating point number from S7 object

M7RelocateObject Transmit S7 object to object server

M7RemoveObject Delete S7 object from “read-onlgr “permanent
load memory”

M7StoreObject Store S7 object in “read-only” or “permanent
load memory”

M7UnLinkDataAccess Unlink OBJFRB for access to S7 object

M7Write Copy user data to S7 data area

M7WriteBit Overwrite bit in S7 object

M7WriteByte Overwrite byte in S7 object

M7WriteWord Overwrite word in S7 object

M7WriteDWord Overwrite doubleword in S7 object

M7WriteReal Overwrite floating point number in S7 object

The following table lists all the functions you can use for linking callback

functions and evaluating the access information within the callback function,

together with a brief description.

Table 1-20 Calls for the Management of Callback Functions

Function Brief Description
M7GetCBBiItOffset Get bit offset from CBFRB
M7GetCBBuffer Get read or write buffer from CBFRB
M7GetCBByteOffset Byte Offset aus CBFRB ermitteln
M7GetCBCount Get number of elements from CBFRB
M7GetCBDataType Get data type from CBFRB
M7GetCBFlags Get access type from CBFRB
M7GetCBODbjType Get type identifier of S7 object from CBFRB
M7GetCBPart Get subarea number of S7 object from CBFRB
M7LinkDataAccessCB Link callback function for S7 object access
M7UnLinkDataAccessCB Unlink callback function for S7 object access

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

1-15

Function Groups

Alarm Handling The following table lists all the functions you can use for alarm handling as
(Master Functions) master, together with a brief description.

Table 1-21 Functions for Alarm Handling

1-16

Function Brief Description
M7ConfirmDiagAlarm Confirm diagnostics alarm
M7ConfirmlOAlarm Confirm process alarm
M7ConfirmSAlarm Confirm of drawing/ streching
M7DPNormDiagnose Get DP standard diagnostics for a DP station
M7GetDiagAlarmAddr Get base address of module from DIAGFRB
M7GetDiagAlarminfo Get alarm information from DIAGFRB
M7GetDiagAlarmPType Get I/O type of module from DIAGFRB
M7GetlOAlarmAddr Get base address of module from IOFRB
M7GetlOAlarmMask Get alarm mask from IOFRB
M7GetlOAlarmState Get alarm information from IOFRB
M7GetlOAlarmPType Get I/O type of module from IOFRB

M7GetPIErrorAddr

Get address of I/0 type with transfer error

M7GetPIErrorPIType

Get I/O type with transfer error

M7GetZSAlarmAddr

Get base address of module from ZSFRB

M7GetZSAlarmldent

Get identifier of a module

M7GetZSAlarmIMRBaddr

Get base address of IMR module, which was
signed on for the alarm of drawing/ streching

M7GetZSAlarmMode Get mode of module from ZSFRB
M7GetZSAlarmPType Get I/O type of module from ZSFRB
M7GetZSAlarmRackNo Get rack number from ZSFRB
M7LinkDiagAlarm Link diagnostics alarm for handling

M7LinkIOAlarm

Sign on process alarm for working

M7LinkPIError

Initializise FRB for transfer of 1/0 type

M7LinkZSAlarm

Link ZS alarm for handling

M7UnLinkDiagAlarm

Unlink diagnostics alarm

M7UnLinklOAlarm

Unlink process alarm

M7UnlinkPIError

Unlink FRB for transfer of I/O type

M7UnlinkZSAlarm

Unlink ZS alarm

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

Function Groups

Time Handling

Operating State

Handling

The following table lists all the functions you can use for time handling, toge-

ther with a brief description.

Table 1-22

Functions for Time Handling

Function

Brief Description

M7ConfirmPeriodicTimer

Confirm periodic time signal

M7GetLostPeriods Check lost periodic time messages
M7GetPeriod Get multiple of time base from TFRB
M7GetTime Read out date/time
M7GetTimeBase Get time base from TFRB
M7LinkDate Link time-controlled time message
M7LinkOneShotTimer Link one-shot time message

M7LinkPeriodicTimer

Link periodic time message

M7SetTime Set date/time

M7UnLinkDate Unlink time-controlled time message
M7UnLinkOneShotTimer Unlink one-shot time message
M7UnLinkPeriodTimer Unlink periodic time message

The following table lists all the functions you can use for monitoring the ope-

rating state, together with a brief description.

Table 1-23

Functions for Operating State Handling

Function

Brief Description

M7ConfirmTransition

Confirm operating state transition message

M7GetState Check operating state

M7GetTSReason Get reason for transition from TSFRB

M7GetTSType Get operating state from TSFRB

M7LinkBatteryFailure Link a BAFFRB for battery alarm

M7LinkState Request a message on a specific operating state

M7LinkTransition Request a message on a specific operating state
transition

M7RequestState Request operating state change

M7UnLinkBatteryFailure

Unlink BAFFRB for battery alarm

M7UnLinkState

Unlink a TSFRB linked with M7LinkState

M7UnLinkTransition

Unlink a TSFRB linked witiM7LinkTransi-
tion

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

1-17

Function Groups

Free Cycle

User LED Control

Application
Link Management

1-18

The following table lists all the functions you can use for linking and unlinking
the start-up, cycle control point, “free cycle” and cycle timeout, together with a

brief description.

Table 1-24 Functions for Cycle Control Point and “Free Cycle”

Function Brief Description

M7ConfirmCycle Confirm a message

M7GetFSCTyp Get type of message from FSCFRB

M7LinkCycle Request message for start-up, cycle control pqint,
“free cycle” and cycle timeout

M7RetriggerCycle Retrigger cycle monitoring

M7UnLinkCycle Unlink message for start-up, cycle control point,
“free cycle” and cycle timeout

The following table shows the function for controlling the user LEDs on the

M7:

Table 1-25 Functions for Controlling the User LED

Function

Brief Description

M7SetUserLED

Set user LED

The following table lists the functions for initiating, aborting and legitimizing a

communication bus application link, together with a brief description.

Table 1-26 Functions for Application Link Management

Function Brief Description
M7GetConnStatus Interrogate state of application link
M7KAbort Close an application link
M7KInitiate Set up application link
M7KPassWord Password for functions with special protection
level
M7GetPduSize Get PDU size

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

Function Groups

Communications The following table lists the communications functions, together with a brief
Functions description.

Table 1-27 Communikations Functions

Function Brief Description

M7PBKBrcv Receive data from partner

(double-ended communication function)
M7PBKBsend Send data to partner

(double-ended communication function)
M7PBKCancel CancelM7PBKBsendor M7PBKBrcv job
M7PBKGet Request data from partner

(single-ended communication function)
M7PBKIAbort Close an application link
M7PBKIGet Start asynchronous reading with a variable
M7PBKIPut Sart asynchronous writing with a variable
M7PBKPrint Send dates with a description of format
M7PBKPut Send data to partner

(single-ended communication function)
M7PBKResume Request resume all user programs
M7PBKStart Request start all user programs
M7PBKStatus Check “virtual device status”
M7PBKStop Request stop all user programs
M7PBKUrev Uncoordinated receiving by planning connections
M7PBKUsend Uncoordinated sending by planning connections
M7PBKXAbort Close an application link
M7PBKXCancel Stop actual job of receiving from M7PBKXrv
M7PBKXGet Start asynchronous reading of a variable
M7PBKXPut Start asynchronous writing of a variable

MMI Functions The following table lists the MMI functions, together with a brief description.

Table 1-28 MMI Functions

Function Brief Description
M7BUBCycRead Set up MMI job for cyclical read
M7BUBCycReadDelete Delete MM job for cyclical read
M7BUBCycReadStart Start MMI job for cyclical read
M7BUBCycReadStop Stop cyclical read

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 1-19

Function Groups

Object Manage-
ment Functions

Time Functions

1-20

Table 1-28 MMI Functions

Function Brief Description
M7BUBRead One-shot MMI variable read
M7BUBWrite One-shot MMI variable write

The following table lists the functions of the object management system
(OVS), together with a brief description.

Table 1-29 Object Management Functions
Function Brief Description
M70VSCompress Compress load memory
M70VSDelete Delete a block
M70OVSFindFirst Read out first entry from block directory
M70VSFindNext Read out next entry from block directory
M70VSLinkin Link a block
M70VSMemMode Set memory mode
M70VSRead Load a block
M70VSSetObjectHeader Set an S7 object header
M7QVSWrite Copy a block

The following table lists the functions for reading and setting the time, together

with a brief description.

Table 1-30 Functions for Reading/Setting the Time

Function Brief Description
M7KReadTime Read time via K bus
M7KWriteTime Set time via K bus

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

Function Groups

Diagnostics Server

Other Functions

The following table lists the functions for the diagnostics server, together with
a brief description.

Table 1-31 Functions for the Diagnostics Server

Function Brief Description
M7DiagMode Link for sending diagnostics events via K bus
M7SZLRead Read out system state list via K bus
M7WriteDiagnose Write user entry to local diagnostics server

The following table lists the other functions, together with a brief description.

Table 1-32 Other Functions

Function Brief Description
M7GetCommRequest Get job number from COMMFRB
M7GetCommStatus Get data communication status from COMMFRB
M7KEvent Fetch data after a message

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

1-21

Function Groups

1.4 DOS Interface Functions

Introduction

Memory Manage-
ment

Header Files and
Libraries

Brief Description
of Functions

1-22

A memory area shared by M7 RMOS32 and MS-DOS is provided for fast ex-
change of large volumes of data. Attention should be paid, however, to the
memory allocation between the MS-DOS and M7 RMOS32 operating systems
and the different interpretation of address pointers (real-mode versus flat).

The DOS interface functions are not for further development!

Because MS-DOS applications can generally only access the address area be-
low 1 Mbyte, but the private memory area of M7 RMOS32 tasks always lies
over the 1 Mbyte threshold, M7 RMOS32 provides a special memory manage-
ment system.

The TSR program RM3_TSR is used to create a transfer buffer below 1
Mbyte, from which RMOS tasks can allocate or release memory areas.

In order to use the memory management functions of the transfer buffer in M7
RMOS32 applications, you have to include Rid3DOS.H header file in
your C programs.

You should also include the corresponding liblaMFDOSIB.LIB in the
link statement.

The following table lists all the functions that can be used by M7 RMOS32
tasks for communication with MS-DOS applications, together with a brief de-
scription.

You will find a detailed description of these functions in Chapter 6.

Table 1-33 Functions for DOS Communication

Function Brief Description

x_dos_cpyin Allocate a memory area from the transfer buffgr
and copy data to it.

x_dos_cpyout Copy data from a previously allocated area in the
transfer buffer and then release the area.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Function Groups

1.5 Functions of the C Runtime Library

1.5.1 Overview

Introduction

Memory Manage-
ment Require-
ments

Initialization of the
C Runtime Support

The preconfigured C runtime support presents all functions in compliance with
the ANSI Draft International Standard ISO/IEC DIS 9899 (published in 1990).

The following memory capacity is required for any task which requests C run-
time support:

e Approximately 1.3 Kbytes when calling the initialization functian
nitt . This request is also made implicitly if a task uses C functions, but
does not calkinitt

e Approximately 1 Kbyte for each stream opened, if the size of the buffer for
this stream has not been redimensioned with the funcitabuf or

The memory required for initialization and the stream buffers is taken from
theheap.

e Each task which uses C functions from the runtime library also needs an
additional stack area of approximately 1 Kbyte.

The functionxinitt must also be called at the beginning of each task, in
order to initialize task-specific data. Only then are the functions of the C li-
brary actually available.

Note

If thexinitc is missing, the initialization is performed automatically.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

1-23

Function Groups

Functions of the The C library includes functions and macros organized according to the follo-
C Library wing criteria or function classes (these function classes are mainly identical to
those used in technical documentation currently available):

¢ |/O operations, e.g. hard disk, terminal, printer, etc.
¢ Character management

* String operations

e Memory operations

e Memory allocation

e Mathematical functions

¢ Time and date functions

e Control functions

e Error handling

e Other functions

1.5.2 1/O Operations

Introduction The largest function class of the C library is devoted to I/O operations. It con-
tains functions used to perform input and output from C programs.

It also contains functions for checking and formating input/output and for file
management. The functions are declared in the headelQildsand

STDIO.H.
Current Working The functions for opening, renaming and deleting files require the specification
Directory of a file or directory name.

This name always refers to a current working directory (CWD), whose alloca-
tion is task-specific. At first, however, the CWD is not initialized for a task.
The initialization of the CWD is performed with the functichrdir

Rules for File and The following rules apply to the specification of file or directory names:

Directory Names ¢ The colon "’ is used to separate the drive name and the file or directory

name. It may only be entered as the second or third character in a path
name, and may not be entered at any other point. This means that drive
names may only be one or two characters in length.

Example:R:TEST

e The characters '\’ and '/’ are inserted between different directory names or
between a directory and a file name.
Example:R:TEST\DIR1/DIR2\FILE

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
1-24 C79000-G7076-C852-02

Function Groups

Text Mode/Binary
Mode

Path names that begin with a drive name (that is the second or third charac-
ter is a colon '’ preceded by the name of a drive) are absolute path names.
Example:R:TEST\DIR1\DIR2\FILE

Path names that begin with a '\’ or '/’ are a special form of absolute path
name. In this case, the drive letter only is taken from the CWD and placed
in front of the specified path name.

The CWD must always be initialized when using this type of path name.
Example:

R:TEST (CWD)

\TEST2\DIR1\DIR2\FILE (Specified path name)
R:TEST2\DIR1\DIR2\FILE (Resultant path name)

One variant is to specify the path “\" or “/". This addresses the core direc-
tory of the drive specified in the CWD, and can be used with the function
chdir(“\\") or chdir(“/")

Path names that begin neither with '\’ nor '/’ are relative path names refer-
ring to the CWD.

Example:
R:TEST (CWD)
DIR2\FILE (Specified path name)

R:TEST\DIR2\FILE (Resultant path name)

Path names that begin with . .<delimiter> are a special form of relative path
name. In this case, the path refers to the parent directory of the CWD.

Example:
R:TEST\DIR1 (CWD)
.\DIR2\FILE (Specified path name)

R:TEST\DIR2\FILE (Resultant path name)

One variant is to specify the path . This addresses the directory which
is one level closer to the drive name than the CWD, and can be used with
the functionchdir(®..”)

Note

If the CWD has not been initialized for a task, absolute path names must be
used.

As in the MS-DOS file system, it is not necessary to distinguish between up-
per and lower case letters.

With the functionfopen , fduopen , freopen , fdureopen andopen,
you specify whether a stream or a handle is to be opened in text mode or bi-
nary mode.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

1-25

Function Groups

NUL File

1-26

If a stream or handle is opened in text mode, all '\n’ references (New Line) are
converted to '\r\n’ (Carriage Return - New Line) for write operations, and the
opposite is performed for read operations (that is all \r\n’ references are con-
verted to '\n’).

No conversion takes place for streams or handles that are opened in binary
mode.

A NUL file can be opened which does not actually exist physically. All opera-
tions permitted with normal files can be performed when the NUL file is ope-
ned.

The difference is that read and write calls are terminated immediately without
performing input/output operations.

All write operations on the NUL file are terminated without signaling an error
(errno, errno2, etc.). Read operations always retB@F (End of File).

TheNUL file is addressed if NUL (in any combination of upper and lower
case letters) is specified for file or path names, (egpn(“NUL”,"w”)).

Table 1-34 Input/Output Operations

Call Meaning Header File
access Check file access rights of user IO.H
changevib Qhange description block on a data storage dé©.H

vice
chdir Change the CWD DIRECT.H
checkpoint Write back the (HSFS) buffer of a file IO.H
chmod Change the attributes of a file IO.H
clearerr Clear the error status of a stream STDIO.H
close Close an open file, a unit of a loadable driver|dO.H
a socket
createvib Create new description block on a data storagéO.H
device
dismount Dismount an HSFS device IO.H
duread Read character via RMOS driver IO.H
duwrite Write character via RMOS driver IO.H
efsstop Cancel connection between network unit and| 10.H
server unit
efsuse Set up connection between network unit and | I0.H
server unit
fclose Close a stream STDIO.H
fduopen Open a stream via RMOS driver STDIO.H
fdureopen Redirect stream to RMOS driver STDIO.H

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Function Groups

Table 1-34 Input/Output Operations
Call Meaning Header File

feof Check whether end of file has been reached | STDIO.H
ferror Check stream status STDIO.H
fflush Empty the buffer of a stream STDIO.H
fgetc Read character from a stream STDIO.H
fgetpos Get position in file STDIO.H
fgets Read string from a stream STDIO.H
fileno Return the file descriptor assigned to the specBTDIO.H

fied stream
fopen Open stream STDIO.H
fprintf Write formatted output to a stream STDIO.H
fputc Write a character to a stream STDIO.H
fputs Write string to a stream STDIO.H
fread Read from a stream STDIO.H
freopen Change the file assigned to a stream STDIO.H
fscanf Read formatted input from a stream STDIO.H
fseek Position file pointer in a stream STDIO.H
fsetpos Set position in a file STDIO.H
ftell Return the distance from the file pointer to the STDIO.H

start of file
fwrite Write to a stream STDIO.H
getc Read a character from a stream STDIO.H
getchar Read a character from stdin STDIO.H
getcwd Get CWD DIRECT.H
gets Read a string from a stream STDIO.H
getvolumestatus| Get status information for a data storage devid®.H
getw Read a word from a stream STDIO.H
ioctl Execute control function for a socket or a unit 10.H

of a loadable driver
Iseek Position file pointer I0.H
mkdir Make directory DIRECT.H
mount Mount HSFS device IO.H
open Open file for reading and/or writing I10.H
printf Write formatted output to stdout STDIO.H
putc Write character to a stream STDIO.H
putchar Write a character to stdout STDIO.H
puts Write a string to a stream STDIO.H
putw Write a word to a stream STDIO.H

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

1-27

Function Groups

Table 1-34 Input/Output Operations

Call Meaning Header File
read Read from a file IO.H
remap Format a data storage device IO.H
remove Delete a file STDIO.H
rename Change the name of a file STDIO.H
rewind Position file pointer at start STDIO.H
rmdir Remove directory DIRECT.H
scanf Read formatted input from stdin STDIO.H
search Find files IO.H
setbuf Allocate buffer to stream STDIO.H
setvbuf Allocate buffer to stream STDIO.H
sprintf Write formatted output to a string STDIO.H
sscanf Read formatted input from a string STDIO.H
tmpfile Create temporary file STDIO.H
tmpnam Create name for temporary file STDIO.H
ungetc Write character back to stream STDIO.H
unlink Delete file IO.H
vfprintf Output formatted varargs argument list STDIO.H
vprintf Output formatted varargs argument list STDIO.H
vsprintf Output formatted varargs argument list STDIO.H
write Write to file IO.H

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
1-28 C79000-G7076-C852-02

Function Groups

1.5.3 Character Management Functions

The character management system provides functions for the conversion and
classification of character types. It is declared in headeCTiNPE.H.

Table 1-35 Character Management Functions

Call Meaning Header File
_tolower Convert upper case to lower case CTYPE.H
_toupper Convert lower case to upper case CTYPE.H
isalnum Specify character type (alphanumeric) CTYPE.H
isalpha Specify character type (alpha character) | CTYPE.H
isascii Specify character type (ASCII code 0-127)CTYPE.H
iscntrl Specify character type CTYPE.H
(ASCII-Code > 127 or < 32)

isdigit Specify character type (decimal number | CTYPE.H
(0-9)

isgraph Specify character type (decimal number | CTYPE.H
(0-9)

islower Specify character type (printable characterCTYPE.H
no Space characters)

isprint Specify character type CTYPE.H
(ASCII-Code 32 - 126)

ispunct Specify character type (punctuation) CTYPE.H

isspace Specify character type CTYPE.H
(Space character, Tab character,...)

isupper Specify character type (upper case letter)] CTYPE.H

isxdigit Specify character type CTYPE.H
(hexadecimal number 0 -9, A—-F, a—f)

toascii Mask all non-ASCII bits CTYPE.H

tolower Convert upper case to lower case CTYPE.H

toupper Convert lower case to upper case CTYPE.H

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 1-29

Function Groups

1.5.4 String Operations

The string operations can be used to check, handle and process character or
byte strings. They are declared in header H#iERING.H andSTDLIB.H .

Table 1-36 String Operations

Call Meaning Header File
atof Convert string to double number STDLIB.H
atoi Convert string to integer number STDLIB.H
atol Convert string to long number STDLIB.H
strcat Concatenate two strings STRING.H
strchr Get a character in a string STRING.H
stremp Compare two strings STRING.H
strcpy Copy one string into another STRING.H
strcspn Indicate to what extent one string matches STRING.H
another

strlen Indicate to what extent one string matches STRING.H
another

strncat Return the number of characters in a stringSTRING.H

strncmp Append up to n characters from one string STRING.H
to another

strncpy Copy one string into another, up to n charr STRING.H
acters

strpbrk Search a string for the first appearance of $TRING.H
character

strrchr Search a string for the last appearance off & TRING.H
character

strspn Return the length of the substring in StringSTRING.H
1 consisting exclusively of the characters
specified in String 2

strstr Find the first match between String 1 and| STRING.H
String 2

strtod Convert string to a double number STDLIB.H

strtok Search a string for the first of several char-STRING.H
acter sequences

strtol Convert a string to a long number STDLIB.H

strtoul Convert string to an unsigned long numberSTDLIB.H

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
1-30 C79000-G7076-C852-02

Function Groups

1.5.5 Memory Operations

Memory operations are used to copy characters, and to compare or write
memory areas. The memory operations are declared in header files
STRING.H andMEMORY.H.

Table 1-37 Memory Operations

Call Meaning Header File
memccpy Copy character from source area to destin&TRING.H,
tion area MEMORY.H
memchr Find a character in a memory area STRING.H,
MEMORY.H
memcmp Compare two memory areas STRING.H,
MEMORY.H
memcpy Copy character from source area to destin&TRING.H,
tion area MEMORY.H
memmove Move character from source area to destin&TRING.H,
tion area MEMORY.H
memset Write a character to a memory area n timeSTRING.H,
MEMORY.H

1.5.6 Memory Allocation

These functions can be used to allocate memory from the heap. You will find
the function declarations in header fid&LLOC.H andSTDLIB.H.

Table 1-38 Memory Allocation Operations

Call Meaning Header File

calloc Allocate memory for a number n elements MALLOC.C,
of a specified size STDLIB.H

free Free memory MALLOC.C,
STDLIB.H

malloc Allocate memory MALLOC.C,
STDLIB.H

realloc Change the size of a previously allocated| MALLOC.C,
memory area STDLIB.H

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 1-31

Function Groups

1.5.7 Mathematical Functions

The functions declared in header 8@ DLIB.H can only be used on integers.
Floating-point functions are declared in headerNMIKTH.H.

Table 1-39 Mathematical Functions

Call Meaning Header File
abs Get absolute value of an integer STDLIB.H
acos Calculate arc cosine of a double number | MATH.H
asin Calculate arc sine of a double number MATH.H
atan Calculate arc tangent of a double number, MATH.H
atan2 Calculate arc tangent of two double num-| MATH.H
bers allowing for all four quadrants

ceil Round up to the nearest whole double numMATH.H
ber

cos Calculate the cosine of a double number | MATH.H

cosh Calculate the hyperbolic cosine of a doubleMATH.H
number

div Divide two integers STDLIB.H

exp Calculate & of a double number MATH.H

fabs Calculate the absolute value of a double | MATH.H
number

floor Round down to the nearest whole double| MATH.H
number

fmod Calculate the remainder from the division |oMATH.H

two double numbers

frexp Return the mantissa and binary exponent| MATH.H

labs Get the absolute value of a long number | STDLIB.H

Idexp Calculate double number#pteger MATH.H

Idiv Divide two integers STDLIB.H

log Calculate the natural logarithm of a double MATH.H
number

log10 Calculate the logarithm to base 10 of a MATH.H

double number

matherr User-specific function for error handling in MATH.H
numeric functions

modf Subdivides a double number into mantissa MATH.H
and exponent

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
1-32 C79000-G7076-C852-02

Function Groups

Table 1-39 Mathematical Functions

Call Meaning Header File
pow Calculate the power of two double numbersMATH.H
rand Generate a random integer STDLIB.H
sin Calculate the sine of a double number MATH.H
sinh Calculate the hyperbolic sine of a double | MATH.H
number

sqrt Calculate the square root of a double num-MATH.H
ber

srand Initialization value for pseudorandom numnj- STDLIB.H
bers

tan Calculate the tangent of a double number, MATH.H

tanh Calculate the hyperbolic tangent of a doublMATH.H
number

1.5.8 Time and Date Functions

These functions can be used to convert time and date parameters, for example
to adapt them to different time zones. The functions are declared in header file
TIME.H.

Table 1-40 Time and Date Functions

Call Meaning Header File
asctime Convert a time parameter to a string TIME.H
ctime Convert date and time to a string TIME.H
difftime Find the difference between two times TIME.H
gmtime Convert time to Greenwich Mean Time TIME.H

(GMT)
localtime Correct local time according to time zone| TIME.H
differences
mktime Convert time TIME.H
strftime Formatted output of date and time TIME.H
time Get system time TIME.H
tzset Calculate time zone conversion TIME.H

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 1-33

Function Groups

1.5.9 Control Functions

The control functions are needed in order to terminate tasks. They are declared
in header fileSTDLIB.H .

Table 1-41 Control Functions

Call Meaning Header File
abort Send SIGABRT signal to calling task STDLIB.H
assert Check a condition and abort task if not ful- ASSERT.H
filled

atexit Define routines to be called at the end of a STDLIB.H
task

exit Resolve task and terminate with defined steé8TDLIB.H
tus

x_cr_killtsk Delete task TASK.H

1.5.10Error Handling

errno anderrno2 (RMOS extension) are both available.

Table 1-42 Error Handling Functions

Call Meaning Header File
errno, errno2 Error number ERRNO.H
perror Output operating system error messages | STDIO.H
strerror Return a pointer to an error text STRING.H
sys_nerr Return the number of error messages in | ERRNO.H

sys_errlist
sys_errlist Return a string array with error messages ERRNO.H

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
1-34 C79000-G7076-C852-02

Function Groups

1.5.11 Other Functions

The following functions are not allocated to any specific class.

Table 1-43 Other Functions
Call Meaning Header File

bsearch Binary search in a sorted table STDLIB.H

getenv Get contents of an environment variable | STDLIB.H

longjmp Perform a non-local jump SETIJMP.H

putenv Change an environment variable or add g STDLIB.H
new one

gsort Sort data elements in the specified order | STDLIB.H

raise Pass control to a signal handler SIGNAL.H

setjmp _Set the label for a subsequent non-local | SETIMP.H
Jump

signal Install a signal handler for exception han-| SIGNAL.H
dling

sleep Stop task for a specified time TIME.H

X_cr_gettaskid Get the ID of the calling task TASK.H

x_cr_gettaskparam | Getstdin , stdout ,stderr andtask | TASK.H
environment

X_Cr_initenv Initialize task environment TASK.H

X_Cr_setexit Set task-specific exit handler TASK.H

xinitc Initialize C library TASK.H

Xinitt Perform task-specific initialization of C li- | TASK.H

brary

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

1-35

Function Groups

1.6 Functions of the Socket Interface

General Informa-
tion

1-36

M7-SYS RT presents the Socket Interface functions for TCP/IP communica-
tions. In order to use these functions you have to includs@E&KET.H
header file in your M7 RMOS32 applications. You should also include the
library RMFSK2IB.LIB in the link statement.

Table 1-44 Functions of the Socket Interface
Call Meaning

accept Accept a connection on a socket

bind Bind a name to a socket

connect Request a connection on a socket

endhostent Close the HOSTS file

endnet Release the task-related resources of sockets
endservent Close the SERVICES file

gethostbyaddr Read a communication host entry from the HOSTS file
gethostbyname Read a communication host entry from the HOSTS file
gethostent Read an entry from the HOSTS file

getpeername Read the name of the peer associated with the socket
getservbyname Read communication service entry from SERVICES file
getservbyport Read a communication service entry from the SERVICES

file

getservent Read an entry from SERVICES file

getsockname Read socket name

getsockopt Read socket options

htons Convert a value from host byte order to network byte orgder
listen Prepare a socket to establish a passive connection
nselect Wait for events simultaneously on several sockets
ntohs Convert a value from network byte order to host byte orgder
recv Receive a message from a socket

recvfrom Receive a datagram

send Send a message to a connected socket

sendto Send a message to a socket with a specific address
sethostent Open the HOSTS file

setservent Open the SERVICES file

setsockopt Set socket options

shutdown Close a socket for sending messages

socket Create an end point for communication

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

Function Groups

1.7 Serial Interface Functions

General Informa- RMOS presents an API for serial functions. In order to use these functions you
tion have to include th8ERIAL.H header file in your M7 RMOS32 applications.
You should also include the libraRMFSER.LIB in the link statement.

Table 1-45 Serial Interface Functions

Call Meaning
SerialCheckChar Read in single character from unit
SerialCheckString | Read string from unit
SerialClose Close a connection to a unit of a order
SerialGetChar Read in single character from unit
SerialGetString Read string from unit
Seriallnit Initialize unit
SeriallnitEx Extended initialization of unit
SerialOpen Establish a connection to a unit of a driver
SerialPutChar Write a single character to a unit
SerialPutString Write characters to the unit

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 1-37

Function Groups

1.8 Other Functions

General Informa- RMOS presents other functions for hardware—orientated I/O—operations and
tion interrupt working. The header fidISC86.H must be included from M7
RMOS32—-programmes as an header file for prototyps of the functions.

1.8.1 Functions for interrupt working

The following functions are available for interrupt working

Table 1-46 Functions for interrupt working

Call Meaning
causeinterrupt Generate Software—Interrupt
geniinterrupt Generate Software—Interrupt

1.8.2 Functions for hardware—orientated I/O—operations

The following functions are available for hardware—orientated I/O—operations.

Table 1-47 Functions for hardware—orientated 1/O—operations

Call Meaning
disable Disable hardware—interrupts
enable Enable hardware—interrupts
inbyte Read byte from a hardware port
inp Read byte from a hardware port
inport Read word from a hardware port
inport b Read byte from a hardware port
inpw Read a word from a hardware port
inword Read a word from a hardware port
outbyte Output a byte to a hardware port
outp Output a byte to a hardware port
outport Output a word to a hardware port
outportb Output a byte to a hardware port
outpw Output a word to a hardware port
outword Output a word to a hardware port

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
1-38 C79000-G7076-C852-02

Type ldentifiers

In this chapter Section Contents Page
2.1 System Messages of the M7 Server 2-2
2.2 Identifiers for S7 Objects and Data Types 2-5

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02 2-1

Type Identifiers

2.1 System Messages of the M7 Server

Notes

OST Server

The identifiers for the system messages of the M7 servers are listed below in
ascending numerical order. The M7 RMOS32 tasks can register themselves
on M7 servers, so that they can receive a message when an event occurs.

The M7 servers send the messages with the accompanying identifier to the
task message queue. The tasks read the message using the famdRiead-
Message , and evaluate the message identifier passed iMéssagevari-

able, for example using a “switch” statement.

In the parametepMessageParanall messages also contain the address of
the FRB referenced on registration with M@&Link... (..) call.

The constants listed below are defined inMi@APIL.H file. All numeric
constants in the header file are “cast” explicitly in the C typsigned int
The following list shows the numeric constants withitis cast.

The following table shows the message identifiers passed Mebksagepa-
rameter for messages sent from the OST (Operating State Transition) server
to M7 RMOS32 tasks.

Table 2-1 Messages of the OST Server

Identifier

Description

M7MSG_TRANSITION

The message is sent from the OST server before the transition to a new operating
state. Th@MessageParawariable references thé7TSFRB passed on registra-
tion with M7LinkTransition

M7MSG_STATE

The message is sent from the OST server immediately after the transition to a
new operating state. TipMessageParawariable references tiw7TSFRB
passed on registration wilii7LinkState

M7MSG_REQ_FINISHED

The message is sent from the OST server immediaftelythe transition to or
denial of the new operating state requested pMessageParawariable refer-
ences thiM7TSFRB passed on registration wilth7 RequestState.

M7MSG_BATTERY_FAILURE | The message is sent from the OST server immediafielythe battery voltage

drops below the threshold limit. TpdlessageParawariable references the
M7TSFRB passed on registration wih7LinkBatteryFailure

2-2

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Type Identifiers

S7 Object Server

server to M7 RMOS32 tasks.

Table 2-2

Messages of the S7 Object Server

Identifier

Description

M7MSG_DATA_ACCESS_R

The message is sent from the S7 object server immedidtehthe read
access to an S7 object. TpidessageParawariable references the
M70BJFRB passed on registration with7LinkDataAccess

M7MSG_DATA_ACCESS W

The message is sent from the S7 object server immediditetythe write
access to an S7 object. ThidessageParawariable references the
M70BJFRB passed on registration wiiTLinkDataAccess.

M7MSG_DATA_ACCESS_CREATE

The message is sent from the S7 object server immediditehthe cre-
ationof a new S7 object. TheMessagePara variable references the
M70BJFRB passed on registration wiiTLinkDataAccess.

M7MSG_DATA_ACCESS_DEL

The message is sent from the S7 object server immediditetythe dele-
tion of an S7 object. TheMessageParawariable references the
M70BJFRB passed on registration with M7LinkDataAccess.

M7MSG_DATA_ACCESS_LINK

The message is sent from the S7 object server immediditehthe link-
ing of an S7 object. TheMessageParawariable references the
M70BJFRB passed on registration with7LinkDataAccess

Time Server

to M7 RMOS32 tasks.

Table 2-3

Message of the Time-Servers

The following table shows the message identifiers sent from the S7 object

The following table shows the message identifiers sent from the time server

Identifier

Description

M7MSG_TIMESERVER

The message is sent from the S7 object server immediditehthe time
event. TheoMessageParawariable references tihd7TFRB passed on
registration wittM7Link..

FC Server

Cycle) server to M7 RMOS32 tasks.

Table 2-4

Message of the FC Server

The following table shows the message identifiers sent from the FC (Free

Identifier

Description

M7MSG_CYCLE

The message is sent from the FC server at the beginning of a state
(STARTUP, FREECYCLE, ZKP).

M7MSG_PI_ERROR The message is sent from the FC server after the appearing of an I/D type
transfererror.
System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852—-02 2-3

Type Identifiers

Alarm Server The following table shows the message identifiers sent from the alarm server
to M7 RMOS32 tasks.

Table 2-5 Messages of the Alarm Server
Identifier Description
M7MSG_IO_ALARM The message is sent from the alarm server immedéftelyan I/O alarm is sig-

naled by the corresponding module. PhéessageParawariable references the
M7I0FR B passed on registration with7LinkIOAlarm .

M7MSG_DIAG_ALARM The message is sent from the alarm server immededtelya diagnostics alarm is
signaled by the corresponding module. PMessagePararariable references
theM7DIAGFRB passed on registration wilth7LinkDiagAlarm

M7MSG_ZS_ALARM The message is sent from the alarm server immedgftelyan insert/remove mo-
dule alarm is signaled by the corresponding module pMessagePara variable
references the17ZSFRB passed on registration wili7LinkZSAlarm .

K Bus Subsystem The following list shows the message identifiers sent from the communica-
tion bus subsystem to M7 RMOS32 tasks.

Table 2-6 Messages of the K Bus Subsystem

Identifier Description

M7MSG_DIAG_MSG The message from the K BUS subsystem indicates the receipt of a diagnostics mes-
sage, which can be read out by the M7 RMOS32 task withl ftkEvent call.

M7MSG_BUB_NDR The message from the K BUS subsystem indicates the receipt of new MMI data,
which can be read out by the M7 RMOS32 task withMA&Event call.

M7MSG_PBK_NDR The message from the K BUS subsystem indicates the receipt of new data after an
M7PBKBrcvcall.

M7MSG_PBK_DONE The message from the K BUS subsystem indicates the completion of a
M7PBKBsendcall.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
2-4 C79000-G7076-C852-02

Type Identifiers

2.2 ldentifiers for S7 Objects and Data Types

Type ldentifiers

The S7 objects listed in the following table are supported by the S7 object
server on an M7 automation computer. The type identifiers listed below are
defined in header filM7API.H , and are required in the corresponding M7
API function calls, in order to address S7 objects.

The accompanying numerical values are cad7API.H in the M7 data
type UBYTE.

Table 2-7 Objects Supported on the M7

S7 Object Type Identifier Initialization
I/O area M7D_I0O Automatic
Processimage of inputs M7D_PII Automatic
Process image of outputs M7D_PIQ Automatic
Flag area M7D_M C user program
Data block M7D_DB C user program

Data records, read *
(for communication only for
MMI functions)

M7D_PAR_READ | C user program

Data records, write *
(for communication only for
MMI functions)

M7D_PAR_WRITE | C user program

* The attributes “Read” and “Write” for data records are considered on a FM
from the view of the CPU. The FM read the data records — for example data
records of parameter — which were written by the CPU (Type Identifier
M7D_PAR_WRITE). On the other side the FM write data records — for ex-
ample data records of diagnosis — which shall be read by the CPU (Type
Identifier M7D_PAR_READ).

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

2-5

Type Identifiers

Subarea Number The following table lists the subarea numbers for the individual S7 objects.
The listed subarea numbers are required in the corresponding M7 API func-
tion calls, in order to address S7 objects of an S7 CPU or an M7.

Table 2-8 Subarea Numbers for S7 Objects

S7 Object Type Identifier Subarea Value Range
Number
I/O area M7D_IO 0 0...0xFFFF
Process image of inputs | M7D_PII 0 0...255 or 511
Process image of outputs | M7D_PIQ 0 0...255 or 511
Flag area M7D_M 0 0..65535
Data block M7D_DB DB number| O ... 65 535 for
M7
Data records, read M7D_PAR_R | No. of data | 0 ... 255 for
EAD record M7
Data records, write M7D_PAR_W | No. of data | 0.... 255 for
RITE record M7
Data Type Identi- The identifiers in the following table specify the possible data types of vari-
fiers ables within S7 objects. The identifiers are used in all M7 calls which access

a variable area within an S7 object.

The corresponding M7 data types are listed in the following table.

Table 2-9 Data Type Identifiers for Accessing S7 Objects

M7 Data Type Type Identifier
BOOL M7DT_BOOL
UBYTE M7DT_BYTE
UBYTE M7DT_CHAR
UWORD M7DT_WORD
SWORD M7DT_INT
UDWORD M7DT_DWORD
SDWORD M7DT_DINT
REAL M7DT_REAL
UBYTE M7DT_OCTET

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
2-6 C79000-G7076-C852-02

Type Identifiers

Block Type Identi- The identifiers in the table specify the possible block types which can be
fiers stored in the working memory of an S7 CPU or M7. The identifiers are used
in M7 calls to the object management system.

Table 2-10 Block Type Identifiers

Block Type Type Identifier Remarks
OB organization block M7BLKTYP_OB S7-CPU only
Data block M7BLKTYP_DB M7 and S7-CPU
Function call M7BLKTYP_FC S7-CPU only
System function call M7BLKTYP_SFC S7-CPU only
Function block M7BLKTYP_FB S7-CPU only
System function block M7BLKTYP_SFB S7-CPU only

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 2-7

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Data Structures

In this chapter Section Contents Page
3.1 Data Types of the RMOS API 3-2
3.2 Data Structures of the RMOS API 3-2
3.3 Data Types of the M7 API 3-21
3.4 Data Structures of the M7 API 3-23
35 Data Structures of the Socket Interface 3-34
3.6 Parameter Data Records for the IF 961-AlO/DIO Interface3-38

Modules

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02 3-1

Data Structures

3.1 Data Types of the RMOS API

Notes The following general data types are defined in headeRdYPES.H of
the RMOS API. These data types should be used instead of the general C
data types for the appropriate RMOS API calls.

Table 3-1 GeneralData Type Definitions of the RMOS API

Name Type Definition Meaning

uchar unsigned char Unsigned char
(value range: 0 ... 255)

ushort unsigned short Unsigned 16-bit integer
(value range: 0 ... 65 535)

uint unsigned int Unsigned 32-bit integer
(valuerange: 0...2732-1)

ulong unsigned long Unsigned 32-bit integer
(valuerange:0...2732-1)

rmproc void(*rmproc)(void) Pointer to function with no input or retur
parameters T

3.2 Data Structures of the RMOS API

Notes The following general data structures are defined in header file
RMTYPES.H of the RMOS API. These data structures are used in the
corresponding RMOS API calls.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
3-2 C79000-G7076-C852-02

Data Structures

Rm3964InitStruct

Syntax

Description

#include <drv3964.h>

typedef struct tagRm3964InitStruct

{
ushort irq;
ushort base;
ulong mode_baud;
uchar mode_parity;
uchar mode_data;
uchar mode_stop;
uchar mode_fill;
int prot3964r;
int master,;

} Rm3964InitStruct;

The Rm3964InitStruct structure contains the configuration data for the
initialization of a unit for 3964(R) communication. The configuration is
performed with th&(RmlOControl control function RM_IOCTL_INIT.

Field Type Meaning

irq ushort | IRQ number of the interface (e.g. 4 for COM1)
The IRQ parameter is only evaluated the first time the
unitis initialized. It is ignored on further calls of contral
function RM_IOCTL_INIT.

base ushort | 1/0 base address of the 8250 chip (e.g. 0x3F8 for COM1)
The base address is only evaluated the first time the unit

is initialized. It is ignored on further calls of control func-
tion RM_IOCTL_INIT.

mode_baud ulong | Baud rate (numeric value, e.g. 19200)

mode_parity uchar | Control of the parity bit. The following are permitted:
RM_IOCTL_MODE_PARITYNONE

No parity check

RM_IOCTL_MODE_PARITYEVEN

Even parity

RM_IOCTL_MODE_PARITYODD

Odd parity

RM_IOCTL_MODE_PARITYO

Parity bit always 0

RM_IOCTL_MODE_PARITY1
Parity bit always 1

mode_data uchar | Number of data bits (possible values: 5,6,7,8)
mode_stop uchar | Number of stop bits.
RM_IOCTL_MODE_STOP1 1 stop bit
RM_IOCTL_MODE_STOP2 2 stop bits
RM_IOCTL_MODE_STOP15 1.5 stop bits

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

3-3

Data Structures

Field Type Meaning
mode_fill uchar | Reserved
prot3964r int Protocol selection
0 3964—Protokoll
1 3964R—Protokoll
master int Master/slave definition
0 Slave
1 Master
Example int iostatus;
int status;
Rm3964InitStruct parameter;
parameter.irq =4,
parameter.base = Ox3F8;
parameter.mode_baud = 19200;
parameter.mode_parity = RM_IOCTL_MODE_PARITY-
NONE;
parameter.mode_data =8;
parameter.mode_stop = RM_IOCTL_MODE_STOP1,;
parameter.prot3964r =1,
parameter.master =1;
status = RmIOControl(RM_WAIT, 0, handle,
RM_IOCTL_INIT,
¶meter, &iostatus);
See Also RmIOControl
System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

3-4

C79000-G7076-C852-02

Data Structures

RmAbsTimeStruct
Syntax #include <rmtypes.h>
typedef struct RmAbsTimeStruct
{
ulong lotime;
ulong hitime;
}RmMAbsTimeStruct;
Description This structure contains the absolute system time in milliseconds since the last

complete restart and it is used by BmGetAbsTime function call.

Field Type Meaning
lotime ulong Low-order part of the absolute time
hitime ulong High-order part of the absolute time
See Also RmGetAbsTime

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 3-5

Data Structures

RmEntryStruct
Syntax #include <rmtypes.h>
typedef struct _ RmEntryStruct
{
uchar slen;
char string[16];
uchar type;
ulong ide;
ushort id;
}RmEntryStruct;
Description The RmEntryStruct structure is used in RMOS API calsnList and
RmGetEntry , in order to read items from the resource catalog.
Field Type Meaning
slen uchar Length of following character string.
string char[16] | Character string containing the name of a resource.
type uchar Specifies the type of source.
The following values are possible:
Value Define Meaning
0 RM_CATALOG_TASK Task
1 RM_CATALOG_DEVICE Device driver
2 RM_CATALOG_POOL Memory pool
3 RM_CATALOG_SEMAPHORE Semaphore
4 RM_CATALOG_EVENTFLAG Global event flag
5 RM_CATALOG_CNTRL Monitored program
access
6 RM_CATALOG_ Local mailbox
LOCALMAILBOX
7 RM_CATALOG_MISC Reserved
8 RM_CATALOG_USER User-defined type
10 RM_CATALOG_UNIT Unit
11 RM_CATALOG_MESSAGE Messages
255 RM_CATALOG_ALL
ide ulong Specifies the extended ID of the resource. The value range de-
pends on the type and the maximum values configured.
id ushort | Specifies the ID of the resource. The value range depends on the
type and the maximum values configured.
Note Resource type RM_CATALOG_USER is not reserved for specific RMOS

resources, and can be used by the programmer for any purposes of his own. It

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
3-6 C79000-G7076-C852-02

Data Structures

could be used, for example, to display the availability of specific library
modules by cataloging them under the library name and the RM_CAT-
ALOG_USER type.

See Also RmCatalog, RmList, RmGetEntry, RmGetName

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 3-7

Data Structures

RmintrhandMailStruct

Syntax #include <rmtypes.h>
typedef struct _RmintrhandMailStruct
{
uint int_no ;
uint int_vec :8;
uint int_kind 1,
uint lost_int_overflow 1;
uint dummy_2 22
ushort lost_int;
ushort dummy_3;
IRmIntrhandMailStruct;
Description The RmSetintMailboxHandler call of the RMOS API can be used to
define interrupt handlers for sending a message to a mailbox. The
RmintrhandMailStruct structure defines the format of this message,
which is stored in the mailbox when the interrupt is triggered. The structure
incorporates a total of three 32-bit words.
Field Typ Meaning
int_no uint Identifies the number of current interrupt received.
int_vec 8 bits Specifies the interrupt vector.
int_kind 1 bit Identifiers the type of interrupt:
Value Meaning
0 Hardware interrupt
1 Software interrupt
lost_int_ 1 bit This bit is enabled (= 1) if interrupts are lost.
overflow
dummy_2 22 bits | Reserved
lost_int ushort | Specifies the number of lost interrupts.
dummy_3 ushort | Reserved
See Also RmSetIntMailboxHandler
System Software for M7-300 and M7—400, System and Standard Functions, Volume 1
3-8 C79000-G7076-C852-02

Data Structures

RmIOCTLModeSerialStruct

Syntax

Description

Example

See Also

#include <rmapi.h>
typedef struct tagRmIOCTLModeSerialStruct
{
ulong baud;
uchar parity;
uchar data;
uchar stop;
}RmIOCTLModeSerialStruct;

The RmIOCTLModeSerialStruct structure contains the configuration
data for drivers for serial interfaces (e.g. 8250). It is required with the
RmIOControl control function RM_IOCTL_MODE in order to reconfigure
the unit.

Field Type Meaning
baud ulong | Transmissionrate (numeric value, e.g. 19200)
parity uchar | Control of the parity bit. The following are permitted:
RM_IOCTL_MODE_PARITYNONE No parity check
RM_IOCTL_MODE_PARITYEVEN Even parity
RM_IOCTL_MODE_PARITYODD Odd parity
RM_IOCTL_MODE_PARITYO Parity bit always Q
RM_IOCTL_MODE_PARITY1 Parity bit always 1
data uchar | Number of data bits (numeric value, e.g. 8)
stop uchar | Number of stop bits. The following are permitted:
RM_IOCTL_MODE_STOP1 1 stop bit
RM_IOCTL_MODE_STOP2 2 stop bits
RM_IOCTL_MODE_STOP15 1.5 stop bits
int iostatus;
int status;
RmIOCTLModeSerialStruct param;
param.baud = 19200ul;
param.parity = RM_IOCTL_MODE_PARITYNONE;
param.data =8;
param.stop = RM_IOCTL_MODE_STOP1;

status = RmIOControl(RM_WAIT, 0, handle, RM_IOCTL_MODE,
(void *) ¶m, &iostatus);

RmIOControl

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

3-9

Data Structures

RmIOCTLPropertiesStruct

Syntax #include <rmapi.h>

typedef struct tagRmIOCTLPropertiesStruct
{
uint block _device : 1;
uint convert : 1;
uint protocol : 1;
uint terminal : 1;

uint hsfs : 1;
uint serial : 1;
uint buffer : 1;

uint reservedl : 9;

uint reserved? : 16;

uint ioctl_lock : 1;

uint ioctl_get_status : 1;

uint ioctl_verify : 1;

uint ioctl_linemode : 1

uint ioctl_readterm : 1

uint ioctl_writeterm : 1

uint ioctl_readstop : 1;

uint ioctl_writestop : 1

uint ioctl_readtout : 1:

uint ioctl_writetout : 1;

uint ioctl_echo : 1;

uint ioctl_line_feed : 1;

uint ioctl_form_feed : 1;

uint ioctl_abortchar : 1;

uint ioctl_terminal : 1;

uint reserved3 : 1;

uint reserved4 : 16;

ulong block_size;

ulong number_of_blocks;

ulong reserved5;

ulong reserved6;

ulong reserved?;
}RmIOCTLPropertiesStruct ;

’
l
)

Description The RmIOCTLPropertiesStruct structure contains information about
the function scope of the loadable driver.

Field Type Meaning
block_device 1 bit Type of driver
0: Character—orienteddriver
1 Block—oriented driver
convert 1 bit Reserved

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
3-10 C79000-G7076-C852-02

Data Structures

Field Type Meaning

protocol 1 bit Protocol driver (e.g. 3964R)
1=yes,0=no

terminal 1 bit Terminal driver
1=yes,0=no

hsfs 1 bit Mass storage driver (e.g. for hard disk)
1=yes,0=no

serial 1 bit Driver for serial interface
1=yes,0=no

buffer 1 bit Background buffer exists?
1=yes,0=no

reservedl 9 bits Reserved

reserved2 16 bits | Reserved

ioctl_lock 1 bit Lock function (RM_IOCTL_LOCK) exists
1=yes,0=no

ioctl_get_status 1 bit RM_IOCTL_GET_STATUS exists
1=yes,0=no

ioctl_verify 1 bit Verify function (RM_IOCTL_VERIFY_ON/
OFF)
1=yes,0=no

ioctl_linemode 1 bit Line—oriented reading
(RM_IOCTL_LINEMODE_ON/ OFF)
1=yes,0=no

ioctl_readterm 1 bit Terminator character for reading
(RM_IOCTL_READTERM_ON / OFF)
1=yes,0=no

ioctl_writeterm 1 bit Terminator character for writing
(RM_IOCTL_WRITETERM_ON / OFF)
1=yes,0=no

ioctl_readstop 1 bit Stop character for reading
(RM_IOCTL_READSTOP) and maximum num
ber of characters (RM_IOCTL_READLEN)
1=yes,0=no

ioctl_writestop 1 bit Stop character for writing
(RM_IOCTL_WRITESTOP)
1=yes,0=no

ioctl_readtout 1 bit Timeout for reading
(RM_IOCTL_READTIMEOUT)
1=yes,0=no

ioctl_writetout 1 bit Delay for writing

(RM_IOCTL_WRITEDELAY)
1=yes,0=no

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

3-11

Data Structures

Field Type Meaning

ioctl_echo 1 bit Activate/deactivate echo function
(RM_IOCTL_ECHO_ON / OFF)

1=yes,0=no

ioctl_line_feed 1 bit Line feed (RM_IOCTL_LINE_FEED)
1=yes,0=no
ioctl_form_feed 1 bit Form feed (RM_IOCTL_FORM_FEED)

1=yes,0=no

ioctl_abort_char 1 bit Abort character
(RM_IOCTL_ABORTCHAR_ON / OFF)

1=yes,0=no

ioctl_terminal 1 bit Select terminal/transparent mode
(RM_IOCTL_TERMINAL_ON / OFF)

1=yes,0=no

reserved3 1 bit Reserved
reserved4 16 bits | Reserved
block_size ulong Block size for block—oriented drivers (Bytes)

number_of_blocks ulong Number of blocks for block—oriented drivers

reserved5 ulong Reserved

reserved6 ulong Reserved

reserved? ulong Reserved
See Also RmlOControl

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
3-12 C79000-G7076-C852-02

Data Structures

RmIOCTLVersionStruct

Syntax #include <rmapi.h>

typedef struct tagRmIOCTLVersionStruct

{

int MajorVersion;
int MinorVersion;

int Driverinfol;
int DriverInfo2;
char Name[RM_MAXCATALOGLEN+1];

IRmIOCTLVersionStruct;

Description The structurekRmIOCTLVersionStruct

a loadable driver.

Feld Typ Bedeutung

Major\Version int Version of the driver (value before the point). Fo
example for Version 1.0 is the MajorVersion 1

MinorVersion int Version of the driver (value after the point). For
example for Version 1.0 is the MinorVersion 0

Driverinfol int Dependent information of the driver (For
SER8250.DRV and 3964.DRV always 0)

Driverinfo2 int Dependent Information of the driver (For
SER8250.DRV and 3964.DRV always 0)

Name charArray | Name of the driver, which is registered in the cat
log (SER8250 or. 3964).

See Also RmlOControl

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

3-13

is used to find out the version of

[
I

Data Structures

RmMailboxStruct

Syntax #include <rmtypes.h>

typedef struct _RmMailboxStruct
{
void *adr;
ushort adr_res;
ushort pad;
uint len;
}RmMailboxStruct;

Description RmMailboxStruct is used to send a message indirectly via the mailbox by
passing the memory address and length of the message to the mailbox,
instead of the message itself.

Field Type Meaning
adr void * Contains a pointer to the memory address of the mes-
sage
adr_res ushort Padding word for FLAT model
pad ushort Is padded up to 64 bits
len uint Specifies the length of the message
See Also RmSendMail, RmReceiveMalil

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
3-14 C79000-G7076-C852-02

Data Structures

RmMaillDStruct

Syntax

Description

See Also

#include <rmtypes.h>

typedef struct _RmMaillDStruct

{

ulong low;

ulong high;
}RmMaillDStruct;

Return value of th&mSendMailDelayed

required, for example, to delete send-delayed mail.

function. This return value is

Field Type Meaning
low ulong Least-significantpart of mail ID
high ulong Most significant part of mail ID

RmSendMailCancel, RmSendMailDelayed

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

3-15

Data Structures

RmMemPoolInfoStruct

Syntax #include <rmtypes.h>
typedef struct RmMemPoollnfoStruct

{
ulong pool_size;
ulong avail_mem_size;
ulong max_block_size;
ulong reserved[5]
IRmMemPoolInfoStruct;

Description Return value oRmGetMemPoollnfo function. The return value contains
information on the specified memory pool.

Field Type Meaning
pool_size ulong Total size of memory pool
avail_mem_size ulong Total size of memory available
max_block_size ulong Size of the largest block of memory available
(always -1)
See Also RmGetMemPoollnfo

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
3-16 C79000-G7076-C852-02

Data Structures

Ser8250InitStruct

Syntax #include <ser8250.h>
typedef struct tagSer8250InitStruct
{
ushort irq;
ushort base;
ulong mode_baud;
uchar mode_parity;
uchar mode_data;
uchar mode_stop;
uchar mode_fill;
ulong buffer_size;
} Ser8250InitStruct;

Description The Ser8250InitStruct structure contains the configuration data for
initializing a unit for the driver of a serial interface. The configuration is
performed with th&(RmlOControl control function RM_IOCTL_INIT.

Field Type Meaning

irq ushort | IRQ number of the interface (e.g. 4 for COM1)
The IRQ parameter is only evaluated the first time the unit
is initialized. It is ignored on further calls of control func
tion RM_IOCTL_INIT.

base ushort | I/0 base address of the 8250 chip (e.g. 0x3F8 for COM1)

The base address is only evaluated the first time the unit is
initialized. It is ignored on further calls of control function
RM_IOCTL_INIT.

mode_baud ulong | Baud rate (numeric value, e.g. 19200)

mode_parity uchar | Control of the parity bit. The following are permitted:
RM_IOCTL_MODE_PARITYNONE

No parity check

RM_IOCTL_MODE_PARITYEVEN

Even parity

RM_IOCTL_MODE_PARITYODD

Odd parity

RM_IOCTL_MODE_PARITYO

Parity bit always 0

RM_IOCTL_MODE_PARITY1
Parity bit always 1

mode_data uchar | Number of data bits (possible values 5,6,7,8)
mode_stop uchar | Number of stop bits.
RM_IOCTL_MODE_STOP1 1 stop bit
RM_IOCTL_MODE_STOP2 2 stop bits
RM_IOCTL_MODE_STOP15 1.5 stop bits

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 3-17

Data Structures

Example

See Also

3-18

Field Type Meaning
mode_fill uchar | Ignored
buffer_size ulong | Size of the background buffer of the driver (number of
characters)
int iostatus;
int status;
Ser8250InitStruct parameter;
parameter.irq =4,
parameter.base = Ox3F8;
parameter.mode_baud = 19200;
parameter.mode_parity = RM_IOCTL_MODE_PARITY-
NONE;
parameter.mode_data =8;
parameter.mode_stop = RM_IOCTL_MODE_STOP1;
parameter.buffer_size = 256;
status = RmlOControl(RM_WAIT, 0, handle,

RM_IOCTL_INIT,
¶meter, &iostatus);

RmIOControl

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Data Structures

STDSTRUCT

Syntax #include <task.h>

struct std_struct

{

int stdin_dev;
int stdin_unit;
int stdout_dev;
int stdout_unit;
int stderr_dev;
int stderr_unit;

char *stdin_fname;

unsigned short stdin_fill;

char *stdout_fname;

unsigned short stdout_fill;

char *stderr_fname;

unsigned short stderr_fill;
char *tmp_path;
unsigned short tmp_fill;

3

typedef struct std_struct STDSTRUCT,

Description The STDSTRUCT structure defines the input and output chanstls,
stdout, and the error output chanrettlerr of a program. A channel can be
defined by specifying either a device/unit number combination or a file

name.

Field

Type

Meaning

stdxx_dev

int

A value >= 0 defines the number of an I/O driver (d
vice number). Values < 0 have the following meanin

Value
-1

Meaning

The file name specified stdxx_fnameis
used. In the case of stdout and stderr, a ne
file is createdstdxx_unitis not used.

The file name specified stdxx_fnames
used. In the case of stdout and stderr, the
puts are appended to the end of the file if i
already existsstdxx_unitis not used.

Users should treat this value in exactly the
same way as the valsédxx_dev= -2, be-
cause it only has the following meaning for
the interactive CLI command START: The
output file was inherited by the calling job
and may not be passed down further.

D
T

W

out-

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

3-19

Data Structures

Note

3-20

eS a

Field Type Meaning
stdxx_unit | int If stdxx_devhas a value >= Gtdxx_unitdefines
the number of an 1/O device (unit number). If
stdxx_devhas a value < Gtdxx_unitis ignored.
stdxx_fname| char * Pointer to a file name character string. The file iden
fied by the file name is usedstdxx_devhas a value
<0, as described above.
stdxx_fill unsigned Reserved, padding word for FLAT model
short
tmp_path char* Pointer to a file name character string which specifi
file for temporary data.
tmp_fill unsigned Reserved, padding word for FLAT model
short

The values —2 and -3 described abovesfdkx_dev
CLI. Thex_cr_gettaskparam

stdxx_dev

, are only relevant to
function always returns values >= -1 for

The file name defined by thtenp_path field is identical to the name speci-
fied for the temporary file in theinitt function.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

Data Structures

3.3 Data Types of the M7 API

3.3.1 General Data Types of the M7 API

Notes

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

The following general data types are defined in headeMAPI.H of the

M7 API. These data types should be used instead of the general C data types

for the appropriate RMOS API calls.

The following table lists the names of the basic M7 data types used in the M7

API environment. Their definitions can be found in MéAPI.H header

file.

Table 3-2 General Data Types of the M7 API

Name Type Definition Meaning
UBYTE unsigned char Unsigned character
(value range: 0 ... 255)
UWORD unsigned short Unsigned 16-bit integer
(value range: 0 ... 65535)
UDWORD unsigned long Unsigned 32-bit integer
(value range: 0...2"32 - 1)
SBYTE signed char Signed character
(value range: —128...127)
SWORD signed short Signed 16-bit integer
(valuerange:
—32 768...32 767)
SDWORD signed long Signed 32-bit integer
(valuerange:
-2731...2"31 -1)
BOOL unsigned int Boolean value
REAL float 32-bit floating point number
BYTE UBYTE Unsigned character
(value range: 0...255)
UBYTE_PTR UBYTE * Pointer to UBYTE
WORD UWORD Unsigned 16-bit integer
(value range: 0...32 767)
DWORD UDWORD Unsigned 32-bit integer
(value range: 0... 232 -1)
M7ERR_CODE int Error return value

M7ERR_CODE_PTR

M7ERR_CODE *

Pointer to M7ERR_CODE vari-
able

M710_LOGADDR UWORD Logical address of a signal
M710_BASEADDR UWORD Base address of an 1/0 module
M7CONNID UWORD ID of an application connection

3-21

Data Structures

3.3.2 FRB - Data Types of the M7 Server

Notes The following FRB (Function Request Block) structures are defined in
header fileM7API.H of the M7 API. The FRBs are required when register-
ing on the corresponding M7 servers. The following table lists the FRB struc-

tures and the accompanying pointer definitions.

Information in the FRBs is accessed exclusively by means of macros. These
are also defined in header filé7API.H.

3-22

Table 3-3 FRB Definitions for M7 API
Type Definition Meaning
M7FRBHEADER Header of any FRB. Contains general manage-

mentinformation

M7FRBHEADER_PTR

Pointer to an FRB header

M7CBFRB

FRB for registering a callback function on th
S7 object server

M7CBFRB_PTR

Pointer to an FRB of type M7CFRB

M70BJFRB

FRB for registering the access message from

the S7 object server

M70BJFRB_PTR

Pointer to an FRB of type M7OBJFRB

M7I0ALARM_FRB

FRB for registering the message for an /O
alarm from the alarm server

M7I0OALARM_FRB_PTR

Pointer to an FRB of type
M7I0ALARM_FRB

M7DIAGALARM_FRB FRB for registering the message for a diagnos-
tics alarm from the alarm server

M7DIAGALARM_FRB_PTR Pointer to an FRB of type M7SDIAGA-
LARM_FRB

M7ZSALARM_FRB FRB for registering the message for an insert/
remove alarm from the alarm server

M7ZSALARM_FRB_PTR Pointer to an FRB of type
M7ZSALARM_FRB

M7TFRB FRB for registering the message for time
events from the time server

M7TFRB_PTR Pointer to an FRB of type M7TFRB

M7TSFRB FRB for registering the message for new oper-
ating states or operating state transitions from

the OST server

M7TSFRB_PTR

Pointer to an FRB of type M7TSFRB

M7FSCFRB

FRB for registering the message for free cycle,

cycle control point, STARTUP and cycle tim
monitoring from the FC (Free Cycle) server

M7FSCFRB_PTR

Pointer to an FRB of type M7FSCFRB

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Data Structures

Table 3-3 FRB Definitions for M7 API

Type Definition

Meaning

M7COMMFRB

Required when calling single-ended PBK
functions

M7COMMFRB_PTR

Pointer to an FRB of type M7COMMFRB

3.3.3 Other Data Types of the M7 Server

Notes The table lists other data types of the M7 API. The structures for the data

types are not described in detail here, because the individual items are ac-

cessed exclusively by means of macros.

Table 3-4 Other Data Types of the M7 API

Type Definition

Meaning

M7I0_DESC

Data structure for recording the descriptor information
for access to ISA modules

M7I0_DESC_PTR

Pointer to an ISA module descriptor

3.4 Data Structures of the M7 API

Notes The following general data structures are defined in header file M7API.H of

the M7 API. These data structures are used in the corresponding M7 API

calls.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

3-23

Data Structures

M7BLKINFO
Syntax #include <m7api.h>
typedef struct tagM7BIkInfo
{
UWORD Language
UWORD BIktyp;
UWORD Blknum;
UBYTE Bitmap
UBYTE filler;
IM7BLKINFO;
typedef M7BLKINFO * M7BLKINFO_PTR
Description The M7BLKINFO structure is used by object management functions when
reading the block directory from an S7 CPU or M7. The call uses the struc-
ture to return information about a block.
Field Type Meaning
Language | UWORD | The field returns the identifier of the language in which a
block has been created from the block header.
Blktyp UWORD | Block type: The identifiers of the possible block types are
listed in Table .
Blknum UWORD | Number of the block
Bitmap UBYTE The individual bits can be “rounded” using predefined
constants, and checked if not equal to zero.
M7BLKINFO_PASSIV
Block is copied (passive), that is in the temporary load
memory
M7BLKINFO_ACTIVE
Block is linked (active), that is in the working memory
M7BLKINFO_RAM
Block is in RAM memory or RAM mode
M7BLKINFO_EPROM
Block is in EPROM memory or EPROM mode
M7BLKINFO_BESY
Block is in operating system
filler UBYTE Reserved
See Also M70VSFindFirst, M70OVSFindNext

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
3-24 C79000-G7076-C852-02

Data Structures

M7BLKLIST

Syntax

Description

See Also

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

#include <m7api.h>
typedef struct tagM7BIKList

{

UWORD BIktyp;

UWORD Blknum;

IM7BLKLIST;

typedef M7BLKLIST * M7BLKLIST_PTR

The M7BLKLIST structure is used by object management functions for the
simultaneous linking or deletion of multiple blocks.

D

Field Type Meaning
Blktyp UWORD | Type of block. The identifiers of the possible block types
are listed in Table .
Blknum UWORD | Number of the block

M70VSLinkin, M70VSDelete

3-25

Data Structures

M7CBRet

Syntax

Description

Note

See Also

3-26

#include <m7api.h>

typedef struct tagM7CBRet
{
UBYTE process;
UBYTE result;
UBYTE errcls;
UBYTE errcode
IM7CBRet;

A callback function which is registered by a task througiMahinkDa-

taAccessCB call must pass thel7CBRet structure back to the M7 API in

the return parameter.

The callback function uses the return value to determine whether or not fur-

ther processing is desired on the S7 object server.

Field Type Meaning
process UBYTE | TRUE: Object server performs further processing
FALSE: Processing by callback function completed
result UBYTE | Error number iprocess =FALSE
errcls UBYTE | Notrelevant
errcode UBYTE | Notrelevant

Processing by the object server takes place bgttodess

resultz 0.

M7LinkDataAccessCB

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

= FALSE and if

C79000-G7076-C852-02

Data Structures

M7KTIME

Syntax #include <m7api.h>

typedef struct tagM7KTime
{
UWORD TimeState;
UBYTE Year;
UBYTE Month;
UBYTE Day;
UBYTE Hour;
UBYTE Minute;
UBYTE Second;
unsigned intm_sec_10;
unsigned intm_sec_10@;
unsigned intWeekday;
unsigned intm_sec_1:4;
IM7KTIME;

typedef M7KTIME * M7KTIME_PTR

Description The M7KTIME structure is used by the M7 API functions to read and write
the time on the K bus.

Field Type Meaning
TimeState UWORD Time state.

The use offimeState with the following prede-
fined constants and evaluation for not equal to zero
produces the following state values:
M7KTIME_SYA

Time synchronization performed
M7KTIME_ESY

Substitute time synchronization performed on LAN
M7KTIME_UZS

Time jump performed

M7KTIME_ZNA

Time value is not up-to-date

M7KTIME_KMASK

Mask for correction value for summer, winter and
world time in 1/2 hours

If TimeState is used with the mask
M7KTIME_UA_MASK and subsequently
compared if equal to the following constants, the
time resolution is as follows:

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 3-27

Data Structures

Field Type Meaning

M7KTIME_UA M_SEC_1
Resolution 1 msec

M7KTIME_UA M_SEC_10
Resolution 10 msec

M7KTIME_UA_M_SEC_100
Resolution 100 msec

M7KTIME_UA_SECOND
Resolution 1 sec

Year UBYTE Specifies year: 00 ... 99 (BCD number)
Month UBYTE Specifies month: 01 ... 12 (BCD number)
Day UBYTE Specifies day: 01 ... 31 (BCD number)
Hour UBYTE Specifies hours: 00 ... 23 (BCD number)
Minute UBYTE Specifies minutes: 00 ... 59 (BCD number)
Second UBYTE Specifies seconds: 00 ... 59 (BCD number)

m_sec_10 unsigned int | Specifies 1/100 seconds: 0 ... 9
When reading time only, during writing = 0

m_sec_100 |unsignedint | Specifies 1/10 seconds:0...9
When reading time only, during writing = 0

Weekday unsigned int | Specifies weekday:

1: Sunday

2: Monday

3: Tuesday

4: Wednesday
5: Thursday
6: Friday

7: Saturday

m_sec_1 unsigned int | Specifies 1/1000 seconds: 0...9
When reading time only, during writing = 0

See Also M7KReadTime, M7KWriteTime

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
3-28 C79000-G7076-C852-02

Data Structures

M70BJ_INFO

Syntax

Description

See Also

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

#include <m7api.h>

typedef struct tagM70bjinfo
{
UWORD Size;
UWORD Attrib;
unsigned longData;
UBYTE External;
IM70BJ_INFO;

typedef M70BJ_INFO * M70BJ_INFO_PTR

The M70OBJ_INFO structure is used in tHd7GetObjectinfo call to get
information on an S7 object.

Field Type Meaning
Size UWORD Length of S7 object in bytes
Attrib UWORD Objectattributes
0x00 Object allocated by the user
0x01 Object allocated by the Object Server

0x02 Objectin SRAM

0x10 Object in RAM—Mode

0x20 Object in ROM—Mode

0x40 Object in BESY-Mode

The value of Attrib can also contains a combination of
the values above.

For example the value 0x11 means, that the S7 Objekt is
in RAM—Mode and is allocated by the Objekt Server.

Data unsigned Pointer to the data of an S7 object. The structure element
long has to be casted to the required pointer type by the user.
External UBYTE TRUE: Memory for the S7 object was allocated
by M7 RMOS32 task.
FALSE: Memory for the S7 object was allocated
by S7 object server.

M7GetObjectinfo

3-29

Data Structures

M7PBKSTATUS

Syntax

Description

See Also

3-30

#include <m7api.h>

typedef struct tagM7PBKStatus

{

UBYTE Logical_state;
UBYTE Physical_state;
UBYTE LocalSupplement[16];

IM7PBKSTATUS;

typedef M7PBKSTATUS * M7PBKSTATUS_PTR

The structure is used by the M7 AMFPBKStatus function to specify the

virtual device.

Field

Type

Meaning

Logical_state

UBYTE

Specifiesthe logical state of the virtual device.
The following logical states are possible:

M7LSTATE_OK
Operating state changes are permitted

Physical_state

UBYTE

Specifies the physical state of the virtual device

The following physical states are possible:
M7PSTATE_OPERATIONAL
Device operational

M7PSTATE_NEED_SERVICE
Device needs service

LocalSupplement

UBYTE

Supplementary information.
Within byte 0 of the supplementary information
the following state data is transmitted :
M7LSUPPL_STOP:

Device is in STOP operating state
M7LSUPPL_START

Device is in START operating state
M7LSUPPL_RUN

Device is in RUN operating state
M7LSUPPL_RESTART

Device is in RESTART operating state
M7LSUPPL_HALT

Device is in HALT operating state

M7LSUPPL_DEFECT
Device is non-operational

M7PBKStatus

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

Data Structures

M7TIME_DATE
Syntax #include <m7api.h>
typedef struct tagM7Time_Date
{
UBYTE Hour;
UBYTE Minute;
UBYTE Second
UBYTE HSecond
UBYTE Day;
UBYTE Month;
UWORD Year;
UBYTE DayOfWeek;
IM7TIME_DATE;
typedef M7TIME_DATE * M7TIME_DATE_PTR
Description The M7TIME_DATE structure is used by the M7 API functions to read and
set the internal system time.
Field Type Meaning
Hour UBYTE Specifies hours: 0 ... 23
Minute UBYTE Specifies minutes: 0 ... 59
Second UBYTE Specifies seconds: 0 ... 59
HSecond UBYTE Specifies seconds: 0 ... 99
When reading time only
Day UBYTE Specifiesday: 1 ... 31
Month UBYTE Specifies month: 1 ... 12
Year UWORD Specifies year e.g.: 1997
DayOfWeek UBYTE Specifies weekday:
0: Sunday
1: Monday
2: Tuesday
3: Wednesday
4: Thursday
5: Friday
6: Saturday
See Also M7GetTime, M7SetTime

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 3-31

Data Structures

M7VARADDR
Syntax #include <m7api.h>
typedef struct tagM7VarAddr
{
UBYTE Syntax
UBYTE DataType
UWORD Length
UWORD Part;
UBYTE Area;
UBYTE filler;
UDWORD Offset
IM7VARADDR;
typedef M7VARADDR * M7VARADDR_PTR
Description The M7VARADDR structure is used by PBK and MMI functions to address
a contiguous number of items within an S7 object.
Field Type Meaning
Syntax UBYTE Must always be set to value: 0x10 for this data structure
DataType |UBYTE Specifies the data type of an item within the addressed
S7 object. The identifiers for the possible M7 data types
are listed in Table .
Length UWORD Number of items. For data type M7DT_BOOL is only
available the value 1 for the parameter LENGTH.
Part UWORD Specifies the subarea number (DB number, etc.) of an
S7 object. The possible subarea numbers for the indi-
vidual S7 objects are listed in Table .
Area UBYTE Specifies the type identifier of the S7 object. The pos-
sible type identifiers are listed in Table .
filler UBYTE Reserved; must be set to 0x00.
Offset UDWORD | Specifies the address offset of the first item within the
S7 object. The address offset must always be a multiple
of the bit length of the specified data type (Beta-
Type).
For data records byte 0 and 1 (Intel format) specify the
logical module address, byte 2 specifies whether Input—
or Output address (0 for input, 1 for Output).
See Also M7PBKPut, M7PBKGet, M7PBKBsend, M7PBKBrcv, M7BUBRead,

M7BUBWrite, M7BUBCycRead

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

3-32

Data Structures

M7VARDATA

Syntax

Description

See Also

#include <m7api.h>
typedef struct tagM7VarData
{
UBYTE_PTR Buffer,
UDWORD Length
UBYTE AccessResult;
UBYTE DataType;
IM7VARDATA,;

typedef M7VARDATA * M7VARDATA_PTR

The M7VARDATA structure is used by MMI functions to specify a buffer.

The specified buffer is used to hold either the values of the addressed vari-
ables (read access) or the data which overwrite the addressed variables (write
access).

Field Typ Meaning

Buffer UBYTE_PTR Pointer to the actual buffer. The user program
must allocate the buffer either in the global
data area or from the heap (remaining
memory pool)

Length UDWORD Length of the data buffer expressed in num-
ber of items

AccessResult UBYTE Specifies the result of the access (read or
write).

Possible error identifiers are:
M7RES_SUCCESS:

Transfer successfully completed
M7RES_HWERROR:

Hardware error
M7RES_NOACCESS:

No access authorization for object
M7RES_INVADDR:

Invalid item addressed in S7 object
M7RES_INVDTYP:

Invalid data type

M7RES_NOOBJECT:
No such object or invalid length

DataType UBYTE Specifies the data type of an item. The pos
sible data types can be found in Table .

M7BUBRead, M7BUBCycRead, M7BUBWr ite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

3-33

Data Structures

3.5 Data Structures of the Socket Interface

The following data structures are defined in header file SOCKET.H of the
socket interface. These data structures are used in the corresponding socket

calls.
HOSTENT
Syntax #include <socket.h>
typedef struct hostent
{
char *h_name
char **h_aliases
short h_addrtype
short h_length
char *h_addr,

} HOSTENT:

Description The HOSTENT structure is used in thethostent , gethostbyname
andgetservbyaddr calls to querry entries in the \ETC\HOSTS file. It
contains the individual fields of the HOSTS file. The meaning of the fields is
as follows:

Field Type Meaning

h_name char* Official name of the host

h_aliases char** | Field with alternative (alias) names for the host (termi-
nated with NULL)

h_addrtype short Address type of the host; always AF_INET

h_length short Address length in bytes

h_addr char* Internet (IP) address of the host; (specified in network
byte order)

See Also gethostent, gethostbyname, gethostbyaddr

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
3-34 C79000-G7076-C852-02

Data Structures

SERVENT
Syntax #include <socket.h>
typedef struct servent
{
char *s_name
char **s_aliases
int s_port
char *s_proto;

} SERVENT,

Description The SERVENT structure is used in thetservent , getservbyname
andgetservbyport calls to querry entries in the SERVICES file. It con-
tains the individual fields of the SERVICES file. The meaning of the fields is
as follows:

Field Type Meaning
S_hame char* Official name of the service
s_aliases char** | Field with alternative (alias) names for the service (termi-
nated with NULL)
s_port int Number of the port over which the service can be accessed
s_proto char* Protocol which must be used to address the service
The port number s_port is represented in host byte order; it must be con-
verted, if necessary, to network byte order vhitbns .
See Also getservent, getservbyname, getservbyport

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 3-35

Data Structures

SOCKADDR

Syntax #include <socket.h>
typedef struct sockaddr
{

short sa_family

short sin_port

char sin_addr[4];
} SOCKADDR;

Description The SOCKADDR structure is used in socket interface calls to specify or
check the addresses of the communication hosts. The meaning of the fields is
as follows:

Field Type Meaning
sa_family short Address family
sin_port short Internet port number
sin_addr char [4] Internet (IP) address
See Also accept, bind, connect, getpeername, getsockname, recvfrom, sendto

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
3-36 C79000-G7076-C852-02

Data Structures

SOCKSEL

Syntax

Description

See Also

#include <socket.h>
typedef struct socksel

{

unsigned shortse_inflags
unsigned shortse_outflags

int se_fd

int se_1reserved
unsigned longse_user

unsigned longse_Z2reserved

} SOCKSEL;

The SOCKSEL structure is used in theelect

call to check events on a

specific socket. The meaning of the fields is as follows:

Field Type Meaning
se_inflags unsigned short Input/request flags
se_outflags unsigned short Output/reply flags
se_fd int Socket descriptor
se_1lreserved int Reserved

se_user

unsigned long

Free for the user

se_2reserved

unsigned long

Reserved

nselect

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

3-37

Data Structures

3.6 Parameter Data Records for the IF 961-AlO/DIO Interface Modules

Options

Analog
Input/Output
Module IF 961-AlO

Table 3-5 Parameters for the IF 961-AlO Interface Module

There are two ways to initialize the interface modules:

1. Using STEP 7

2. By calling theM7StoreRecordunction in the user program

The table below contains the parameters which you may assign the IF
961-Al0O interface module. The interface module has:

* 4 input channels and

e 2 output channels.

Parameter Data Type Value Range Coding Default Byte Bit
Value ADD | ADD
Data record DSO, 2 bytes long
Conversion time FIELD3 {5.7ms|2.8ms| {0|1]2|3|4} | O 0 0
(scan cycle time) 1.3ms|0.6 ms |
0.185ms }
Interrupt generation FIELD1 {No | Yes} {0|1} 0 0 6
Analog conversion FIELD1 { Selective | Cyclic } {0|1} 0 0 7
(method of sampling
the analog channels)
BIT[3] 0 0 3
Interruptselection FIELD2 {None | Process | {0]1]2} 0 1 0
Process +
Diagnostics }
BIT[6] 0 1 2

Process Interrupts
and Diagnostic
Interrupts

3-38

If the IF 961-AlO interface module has been configured for cyclic conversion
(analog conversion = 1), it is possible to initiate process interrupts at the end
of the cycle. It is also possible to initiate a diagnostic interrupt in the event of

a lost process interrupt.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Data Structures

Digital The following table 3-6contains the parameters which you may assign the IF
Input/Output 961-DIO interface module.

Module IF 961-DIO Figure 3-1 shows the structure of data record 1 of the parameters for the IF

961-DIO interface module.

Table 3-6 Parameters for the IF 961-DIO Interface Module

Parameter Data Type Value Range Coding Default Byte Bit
Value ADD | ADD

Data record DSO, 2 bytes long

Input delay FIELDL |{3ms|05ms} 0|1} 0 \ 0 \ 0
Data record DS1, 4 bytes long

Interrupt enable (for pro- | FIELD1 {NO|YES} {0]1} 0 0 7
cessinterrupts)

Interrupt enable on FIELD1 {NO|YES} {0|1} 0 1 0+IC
positive signal edge

Interrupt enable on FIELD1 {NO|YES} {0|1} 0 2 0+IC
negative signal edge

IC = Input channel: [0..7]

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 3-39

Data Structures

Structure of Data A parameter is activated by setting the respective bit to “1”. A “1" in bytes
Record 1 1 and 2 means that the process interrupt is enabled.
7 0 Bitno.
Byeo | [[[[[|]|

Process interrupt enable

76543210
Bytel | | [| | [[[| Processinterrupton positive edge

On channel 0
On channel 1
On channel 2
On channel 3

On channel 4
On channel 5
On channel 6

On channel 7

76543210

Byte2 | [| | [| | [| Processinterrupton negative edge

I

On channel 0

On channel 1
On channel 2
On channel 3
On channel 4
On channel 5
On channel 6
On channel 7

Byte 3 | | Irrelevant

Figure 3-1 Parameter Data Record 1 for the IF 961-DIO Interface Module

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
3-40 C79000-G7076-C852-02

Error Codes and Messages

In this chapter Section Contents Page
4.1 Error Messages of the M7 RMOS32 Kernel 4-2
4.2 M7 RMOS32 Exception Handler 4-5
4.3 Error Codes of RMOS API Calls 4-6
4.4 Error Codes of M7 API Calls 4-10
4.5 Error Codes of loadable drivers 4-15
4.6 Error Codes of the C Runtime Library 4-17
4.7 Error Codes of the Socket Interface 4-19

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076—-C852-02 4-1

Error Codes and Messages

4.1 Error Messages of the M7 RMOS32 Kernel

Missing System
Resources

Exception
Interrupt Handler

4-2

The M7 RMOS32 kernel (nucleus) outputs error messages on the system con-
sole. The default setting for the system console is the serial COM2 interface,
but this can be reconfigured (see User Manual).

The M7 RMOS32 kernel requires system memory blocks for the management
of resources. These are allocated from the heap and are released again dynami-
cally.

The following error messages can be output when there are insufficient system
resources:

*** nuc: <date> <time> no SRBS, SYSTEM HALTED
There are no more system request blocks (SRB) available for the operating
system.

*** nuc: <date> <time> no SMRS, SYSTEM HALTED
There are no more system memory blocks (SMR) available for the operating
system (e.g. driver requests SMR).

*** nuc: <date> <time> SMRS increased
The kernel has increased the number of system memory blocks (SMRs) by 50.

*** nuc: <date> <time> SMRS reached 0

The number of system memory blocks (SMRs) could not be increased again;
the RMOS API call has been delayed. This state only occurs if no memory is
available in the heap, or if the data segment of the kernel could not be in-
creased because of the fragmentation of the heap.

Only tasks which request SMRs indirectly (e.g. through RMOS API calls) are
disabled. Other tasks — even those with lower priorities — continue to run. Dis-
abled tasks are continued immediately SMRs become available again.

The exception interrupt handler logs the processor exceptions of the 80x86
processor, and the unexpected interrupts.

The log output of the processor exception interrupts specifies the time and type
of interrupt in the first line. The second line outputs the error code passed by
the processor to the stack for exception interrupts 8, 10, 11, 12, 13, 14 and 17.
The fourth line provides more detailed information on the cause of the inter-
rupt. Finally, the current register values are shown. The decoded flag register
appears in the last line.

If, for example, an exception interrupt is initiated by a task in A state, the out-
put appears as follows.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Error Codes and Messages

*** nuc: 02—JAN-1980 10:39:44, GENERAL PROTECTION AT ADDRESS:
0270:0000027A
0270:0000027A 64C60000 MOV BYTE PTR FS:[EAX],00

error code: 0

caused by task id: 0x21: 'exep prot’

eax: FFFFFFFF, ebx: 00000000, ecx: 00000280, edx: 00000068

esi: AA55AAS5, edi: 000002B8, ebp: FFFFFF78, esp: FFFFFF64

ss: 0278, ds: 0280, es: 0280, fs: 0000, gs: 0228

cr0: 7FFFFFE3, cr2: 00000000, cr3: 0000C000

eflag: 00010282 (SIGN INTERRUPT IOPL(0) RESUME)

If the exception interrupt was initiated by an interrupt routine in the | state, the
fourth line appears as follows:

caused by interrupt handler in i state, SYSTEM HALTED

If the exception interrupt was initiated by an interrupt routine in the S state, the
fourth line appears as follows:

caused by interrupt handler in s state, SYSTEM HALTED
In both of the last two cases, the exception interrupt handler halts the system.

<Exception-Text> depends on the exception interrupt and represents the fol-
lowing character strings:

INT-NUM CHARACTER STRING

INT O: DIVIDE ERROR AT ADDRESS:

INT 1 DEBUG EXCEPTION NEAR ADDRESS:

INT 3 BREAKPOINT EXCEPTION NEAR ADDRESS:
INT 4 OVERFLOW EXCEPTION NEAR ADDRESS:
INT 5: BOUNDS CHECK NEAR ADDRESS:

INT 6 INVALID OPCODE AT ADDRESS:

INT 7 NO COPROCESSOR AVAILABLE AT ADDRESS:
INT 8 DOUBLE FAULT EXCEPTION AT ADDRESS:
INT 9: NPX SEGMENT OVERRUN NEAR ADDRESS:
INT 10: INVALID TSS AT ADDRESS:

INT 11: SEGMENT NOT PRESENT AT ADDRESS:
INT 12: STACK FAULT AT ADDRESS:

INT 13: GENERAL PROTECTION AT ADDRESS:

INT 14: PAGE FAULT AT ADDRESS:

INT 16: FLOATING-POINT ERROR NEAR ADDRESS:
INT 17: ALIGNMENT CHECK NEAR ADDRESS:

Either AT ADDRESSor NEAR ADDRESSs output, depending on whether
the EIP register contains the address of the initiating command or the address
of the next command.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 4-3

Error Codes and Messages

NMI Interrupt The following character string is output with the NMI interrupt (INT 2):
*** nuc: <date> <time> NM| INTERRUPT

Unexpected The following message is output for unexpected interrupts:

Interrupts wx nuc: <date> <time> UNEXPECTED INTERRUPT

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
4-4 C79000-G7076-C852-02

Error Codes and Messages

4.2 M7 RMOS32 Exception Handler

An exception handler logs all RMOS API calls which are terminated with an
error on the system console. The exception handler is not activated in the de-
fault setting (see User Manual, System Software for M7-300/400, Installation
and Operation):

*** nuc: <date> <time>, svc <name> <state text>
failed: <error number> (<error text>)

The meanings of the above are as follows:

<name> Name of the decoded RMOS API call, enGetFlag

<statetext> Depending on the system state, one of the following texts
is inserted when the RMOS exception handler is called.

1. from task: <name> id: OxXX
2. during system startup
3. in monitor mode

4. in s—state
5. in i-state
<error nummer > Error number
<error text > Decoded error text
Example *** nuc: 14-FEB-1995 16:20:57, svc RmGetEntry from task:

RUN id: 0x29 failed: 36 (Invalid ID)

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 4-5

Error Codes and Messages

4.3 Error Codes of RMOS API Calls

Return Values

Overview: Memos

4-6

In certain circumstances, an RMOS API call can generate antEemarcodes

are therefore returned by all functions of the RMOS API. By checking the re-
turn value, you can determine whether or not the function was performed suc-
cessfully. The data type of the return valumis

The error-free execution of an RMOS API call is indicated by the return value
RM_OK (=0).

RM_OK:
No error has occurred.

Certain RMOS API calls return values which, instead of indicating an error,
serve as memos for the caller. These memos always Imegatveinteger
value (< 0).

Unsuccessful RMOS API calls contain error codes whose integer vglosiis
tive (> 0).

The following return values are memos, not error numbers. They have negative
values.

RM_ENTRY_REMOVED:(-263)
The entry was removed from the catalog.

RM_ERROR_OUT_OF_RANGE:(—265)
Invalid error number.

RM_FLAG_ALREADY_SET:(—258)
A flag was already set.

RM_FLAG_RESET:(-260)
A flag was reset.

RM_FLAG_SET:(-259)
A flag was set.

RM_PRI_NOT_CHANGED:(—261)
The priority was not changed.

RM_TASK_RESUMED:(-256)
The task was resumed.

RM_TASK_WAITING:(-262)
The task had to wait for exception (for BLOCKED mode).

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Error Codes and Messages

Overview: The following list shows the error codes which can be returned by RMOS API
Error Codes calls.

RM_ALL_DEBUGREGISTERS_USED:(45)
All debug registers are already being used.

RM_BOUND_REACHED:(27)
The boundary entered witmSetMailboxSize has been exceeded.

RM_BREAKPOINT_ALREADY_SET:(29)
A breakpoint has already been set for the specified address.

RM_BREAKPOINT_ID_ALREADY_USED:(28)
The specified breakpoint ID has already been used.

RM_CATALOG_EXCEEDED:(100)
The configured number of possible catalog entries has been exceeded.

RM_GOT_TIMEOUT:(4)
An RMOS API call was aborted after the configured timeout.

RM_HEAP_NOT_REDEFINEABLE:(14)
The heap is already defined.

RM_INVALID_DESCRIPTOR:(5)
An invalid descriptor was used.

RM_INVALID_FUNCTION:(44)
An invalid or non-supported function number was passed.

RM_INVALID_ID:(36)
An invalid ID was passed.

RM_INVALID_INTERRUPT_NUMBER:(56)
The interrupt number was outside the valid range (0-255).

RM_INVALID_IRQ_NUMBER:(41)
An IRQ number was used for a PIC which has not been defined.

RM_INVALID_MEMORYBLOCK:(17)
An attempt was made to free an invalid memory area.

RM_INVALID_NULLPOINTER:(10)
A null pointer is not permitted at this point.

RM_INVALID_OFFSET:(39)
The offset was outside the valid range.

RM_INVALID_POINTER:(42)
A pointer was invalid.

RM_INVALID_SEGMENTLENGTH:(6)
An invalid segment length was specified.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 4-7

Error Codes and Messages

RM_INVALID_SELECTOR:(21)
An invalid selector was used.

RM_INVALID_SIZE:(38)
A size parameter was invalid.

RM_INVALID_STRING:(37)
A string is not within the defined size.

RM_INVALID_TASK_ENTRY:(60)
Invalid task entry.

RM_INVALID_TASK_STATE:(22)
An illegal RmKillTask call was activated.

RM_INVALID_TYPE:(35)
An invalid parametemiode type pri_type etc.) was passed.

RM_IS_ALREADY_CATALOGED:(47)
The string to be cataloged has already been entered.

RM_IS_NOT_CATALOGED:(48)
The string is not cataloged.

RM_MEMORY_ALREADY_USED:(25)
The memory block to be reserved is already allocated.

RM_NO_MESSAGE:(43)
The mailbox (message queue) does not contain a message.

RM_NOT_HALTABLE:(46)
The task could not be halted.

RM_OUT_OF _FLAGGROUPS:(12)
The configured number of event flags has been exceeded.

RM_OUT_OF_MAILBOXES:(15)
The configured number of mailboxes has been exceeded.

RM_OUT_OF MEMORY:(3)
No memory area of sufficient size is available.

RM_OUT_OF_MEMORYPOOLS:(13)
The configured number of memory pools has been exceeded.

RM_OUT_OF SEMAPHORES:(16)
The configured number of semaphores has been exceeded.

RM_PARAMETER_ERROR:(2)
Incorrect parameters have been passed.

RM_QUEUE_EXIST:(59)
The message queue already exists.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Error Codes and Messages

RM_QUEUE_NOT_EXIST:(58)
No message queue exists.

RM_RESOURCE_BUSY:(18)
The resource to be deleted is busy.

RM_RESOURCE_NOT_AVAILABLE:(23)
The desired resource is not available.

RM_SVC_NOT_CONFIGURED:(33)

An attempt was made to execute a non-configured RMOS API call. Check the
output of the RMOS exception handler to determine which RMOS API call is
meant.

RM_TASK_DORMANT:(7)
The task is in the DORMANT state.

RM_TASK_KILLED:(49)
The task was deleted with tRenKillTask RMOS API call.

RM_TASK_NOT_DORMANT:(20)
An attempt was made to delete or start a task in the DORMANT state.

RM_TASK_NOT_IN_BP_CONTEXT:(31)
The task was not interrupted by a breakpoint.

RM_TASK_NOT_IN_RTE_HALT:(32)
The task was not interrupted by a runtime error.

RM_TASK_NOT_PAUSED:(26)
The task to be resumed wimResumeTaskwas not halted with
RmPauseTask.

RM_TEST_NOT_OK:(57)
A test was not successfully completed.

RM_TASK_NOT_READY:(30)
An attempt was made to halt a task which is not in the READY state.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

4-9

Error Codes and Messages

4.4 Error Codes of M7 API Calls

Notes

General Errors

PSUB Interface

4-10

Error codes are returned from the functions of the M7 API either in the return
value of the function or — unlike the RMOS API — via a pointer variable.

The data type of the returned error code is M7TERR_CODE and is defined in
theM7API.H file.

Since the functionality of the M7 API is presented by individual M7 servers,
the error codes are classified accordingly.

The following list shows the general error codes returned by M7 API calls. All
constants are defined in tM7API.H header file.

M7SUCCESS:(0)
Function was successfully performed, no error occurred.

M7E_NO_MEM:(-1)
Function must allocate memory dynamically for execution, no memory avail-
able.

M7E_PAR:(-100)
An incorrect parameter was passed in the function call.

M7E_PRIO:(=3)
The priority passed in the function call is outside the valid range.

M7E_RESSOURCE_LIMIT:(-2)
No resources available

The following list shows the error codes returned by P BUS I/O drivers.

M7E_ALARM_GEN_DISABLED:(-121)
Alarm generation was disabled in data record 0.

M7E_Alarm_Pending:(—128)
There is still an Alarm which must be confirmed

M7E_BSY:(-104)
Local bus is busy.

M7E_CMD:(-105)
Local bus command error

M7E_COM_ERROR:(~110)
Module has aborted communication.

M7E_D_ALARM_BUSY:(-117)
Diagnostics alarm was not confirmed by CPU.

M7E_D_ALARM_GEN_DISABLED:(-119)
Diagnostics alarm disabled in data record O

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Error Codes and Messages

M7E_DP_SLAVE_STATE:(-123)
Action is not possible in the actual Slave—Status

M7E_DPX2_FAULT:(-124)
DPX2 call is stopped

M7E_GL_ALARM_DISABLED:(-122)
All alarms are disabled.

M7E_HWFAULT:(-101)
General hardware error

M7E_INVAL_DEV:(-126)
Error of Parameter

M7E_IO_DESC:(-109)
Incorrect 1/0O descriptor

M7E_NORM_DIAG:(-127)
Dates of diagnosis are not available

M7E_ODIS:(-120)
CPU has initiated ODIS (Output Disabled) signal.

M7E_P_ALARM_BUSY:(-116)
Process alarm has not yet been acknowledged by CPU.

M7E_P_ALARM_GEN_DISABLED:(-118)
Process alarm disabled in data record 0.

M7E_PARITY:(-106)
Local bus parity error

M7E_PEU:(-102)
Error in I/O expansion unit

M7E_QVZ:(-103)
Local bus timeout

M7E_REC_LENGTH:(-111)
Incorrect data record length

M7E_REC_NUMBER:(-112)
Incorrect data record number

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

4-11

Error Codes and Messages

S7 Object Server The following list shows the error codes returned by the S7 object server.

M7E_BIT_OFFSET:(-203)
The bit offset within a byte is incorrect.

M7E_BLOCK_ROMDIR:(-211)
Cannot read block in ROMDIR directory

M7E_LENGTH:(-208)
The length specified in the read, write or create operation is 0.

M7E_LINK_PAR:(—214)
Parameters passedM¥LinkDataAccess or
M7LinkDataAccessCB calls are incorrect.

M7E_NODIR:(-203)
The directory of S7 objects does not exist or cannot be read.

M7E_OBJ:(-200)
Object type is not supported by S7 object server.

M7E_OBJ_EXISTS:(-205)
The S7 object already exists.

M7E_OFFSET:(-202)
The offset specified in S7 object is incorrect.

M7E_OVS_WRONG_STATE:(-216)
Action is not allowed in the actual working state

M7E_PART:(-201)
The subarea specified for the object type is not available.

M7E_PART_INVALID:(-206)
Specified subarea number is invalid.

M7E_PER_BITS:(-213)
Bit addressing illegal in I1/0O area

M7E_SIZE:(-212)
The length information in the block header and the file length are different.

M7E_TYPE:(—207)
The specified data type is not supported.

M7E_WRITE_PROTECT:(—204)
The S7 object is write-protected.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
4-12 C79000-G7076-C852-02

Error Codes and Messages

OST Server The following list shows the error codes returned by the OPEI@iIng $ate
Transition) server.

M7E_OST_CPU_IN_STOP:(-306)
CPU is in STOP state.

M7E_OST_DENIED:(-308)
The requested operating state transition was denied by at least one task.

M7E_OST_ILLEGAL_PARAM_CPU:(-305)
Invalid CPU parameter

M7E_OST_MODE_SW_IN_STOP:(-304)
Operating mode selector of the module is set to STOP.

M7E_OST_NO_SUCH_FRB:(-301)
Specified TSFRB is not being processed.

M7E_OST_NO_SUCH_STATE:(-302)
Unknown operating state

M7E_OST_NO_SUCH_TRANSITION:(-300)
Unknown operating state transition

M7E_OST_TIMEOUT:(-307)
Requested operating state transition was cancelled with timeout.

M7E_OST_WRONG_STATE:(-303)
Operating state transition is not possible from present operating state.

FC Server The following list shows the error codes returned by the Fe€e(E/cle) ser-
ver.

M7E_FSC_NO_SUCHCYCLE:(-400)
Unknown state

M7E_FSC_NO_SUCHFRB:(-401)
Specified FSCFRB is not being processed

Diagnosis Server The following list shows the returned Error Codes from the Diagnosis—Server.
M7E_DIAG_NUMBER:(-500)
Wrong class (only allowed 0x0a or 0x0b)

M7E_DIAG_STATE:(-501)
Wrong working state

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 4-13

Error Codes and Messages

K BUS Interface The following list shows the error codes returned by the communication func-
tions.

M7E_KSUB_BLOCK_TOO_LARGE:(—604)
Specified buffer has insufficient capacity.

M7E_KSUB_CONN_ACTIVE:(-609)
The connection is active at the moment and may be not closed

M7E_KSUB_CONN_CLOSED:(—602)
Specified connection has already been closed.

M7E_KSUB_EOF:(-607)
End of file or end of directory.

M7E_KSUB_FILEIO:(—606)
Error during file handling.

M7E_KSUB_NO_SRV:(-603)
K BUS is not available.

M7E_KSUB_NO_SUCH_CONN:(-601)
Specified connection ID is invalid.

M7E_KSUB_NO_SUCH_FRB:(-605)
Specified COMMFRB is not being processed.

M7E_KSUB_PARAM:(—600)
Specified parameters are incorrect.

M7E_KSUB_REMOTE:(-608)
Execution error on remote server

M7E_KSUB_SDB_WAS_DELETED:(-611)
Connection deleted by STEP7, connection is no longer active

FRB Handling The following list shows the error codes which may occur during the general
processing of FRBs. The error code can be read out from the header of the
FRB using macré17GetFRBErr .

M7E_FRB_NOT_BUSY:(-700)
Specified FRB is not being processed.

M7E_FRB_NOT_IN_LIST:(-701)
Specified FRB is not in the linked internal FRB list.

M7E_FRB_ALREADY IN_LIST:(-702)
FRB is already included

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
4-14 C79000-G7076-C852-02

Error Codes and Messages

Internal Errors

The following list shows the error codes which may occur during internal pro-
cessing.

M7E_INTERNAL_ERROR:(-9901)

Internal error has occurred.

M7E_NOT_IMPLEMENTED:(-9900)
Server does not exist.

45 Error Codes for Loadable Drivers

Error Codes

This section describes the error codes which can be returned by the calls for
loadable drivers. The corresponding numeric value and a brief explanation is
provided in addition to definition.

The following error codes can occur with all loadable drivers (SER8250.DRYV,
3964.DRV).

RM_EIO_PARAMETER 80401
Parameter error

RM_EIO_INVALID_CONTROL 0x0402
The specified control function is not supported

RM_EIO_INVALID_ACCESS 0x0403
Descriptor is not open for type of access used (Read/Write)

RM_EIO_UNIT_RESERVED 0404
Unit is already reserved or unit was not reserved by the calling task

RM_EIO_CANCEL k0405
Request was canceled by RM_IOCTL_CANCEL

RM_EIO_LOCKED (0406
The unit has been locked by RM_IOCTL_LOCK

RM_EIO_|O_ERROR x0407
Request canceled due to 1/O error

RM_EIO_PARITY_ERROR 0408
Request canceled due to parity error

RM_EIO_OVERRUN_ERROR0409
Request canceled due to overrun error

RM_EIO_TIMEOUT 0x040A
Request canceled with timeout

RM_EIO_INVALID_STATE 0 x040B
An error has occurred during status check of the controller (e.g. parity)

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

4-15

Error Codes and Messages

Notes

Error Codes for
3964(R) Driver

4-16

RM_EIO_NO_HARDWARE040C
Hardware does not exist or is defective

RM_EIO_INIT_FAILED O x040D
Initialization of the unit was not possible

RM_EIO_UNIT_RESET 0x040E
Request canceled by RM_IOCTL_RESET

The following messages can occur as return values

RM_IO_QUEUER —1024
Request appended to queue

RM_IO_IN_PROGRESS-1025
Request currently being processed

RM_IO_NO_DATA —1026
No data exist

The following errors can also occur with the 3964(R) driver (3964.DRV):

RM_EIO_3964 NO_TIMER 0x480
No timer could be started

RM_EIO_3964 BUFFER_OVERFLOW 0x481
More data were received than specified in the read request

RM_EIO_3964 UNEXPECTED_CHARACTER 0x482
Unexpected character received

RM_EIO 3964 CHECKSUM_ERROR 0x483
Error in checksum (with 3964R protocol)

RM_EIO_3964_REQUEST SUSPENDED 0x484
The request was terminated because of an initiation conflict (master and slave
transmitting simultaneously)

RM_EIO_ 3964 CONNECTION_REFUSED 0x485
Reserved

RM_EIO_3964_TRANSFER_ABORT 0x486
The communication partner has canceled the transfer (send or receive) with
NACK

RM_EIO_ 3964 READ_CANCELED 0x487
Read request canceled with RM_IOCTL_CANCEL

RM_EIO_3964_WRITE_CANCELED 0x488
Write request canceled with RM_IOCTL_CANCEL

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Error Codes and Messages

4.6 Error codes of C Runtime Library

Structure of Error

Messages

Error Messages

Error messages of the C runtime library (CRUN) are output as follows:

*** crun: <date> <time>, <error message>
caused by task id: <taskid>: '<taskname>’

<date> Date on which error occurred

<time> Time at which error occurred

<error message> Actual error message

<taskid> ID of task which caused error

<taskname> String used to enter the task which caused the error in the re-

source catalog

Example:

**x - crun: 20-OCT—-94 17:32:20, sin not configured — task aborted
caused by task id: 0x23: 'FLTTEST’

The error messages are also output on the system console.

Error messages of the C runtime library (CRUN)

<function>: cannot allocate memory
No more memory could be allocated for internal operations in CRUN function
<function>.

<function> not configured — task aborted

Function<function> was called by a downloadable task, but is not config-
ured for the interface for downloadable tasks. The calling task was terminated
with exit.

<function>: unknown hsfs return value xxxx
An HSFS call was terminated with the (unexpected) error code xxxx in CRUN
function<function>

automatic xinitc failed — task aborted
The automatic initialization of CRUN (see aldnitc) failed. The task
which caused the automatic CRUN initialization was aborted exith

automatic xinitt failed — task aborted

The automatic initialization of a task within CRUN (see aipitt) failed.
The task which caused the automatic CRUN initialization was aborted with
exit.

catalog entry “ERRLOG" not found

The “ERRLOG” entry was not found in the resource catalog. CRUN can there-
fore not use the error logger task for error output. Instead, it outputs error mes-
sages on the system console via the BYT driver.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

4-17

Error Codes and Messages

4-18

fclose: cannot delete temporary file
A temporary file created with tmpfile could not be deleted when closing with
fclose.

illegal function code Xxxxx —task aborted
The invalid function code xxxx was passed to the interface for downloadable
tasks. The calling task was terminated veiti.

reserved function code Xxxxx —task aborted
The reserved function code xxxx was passed to the interface for downloadable
tasks. The calling task was terminated veiti.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

Error Codes and Messages

4.7 Error Codes of the Socket Interface

This section describes the error codes which can be returned by the calls of the
Socket Interface. The corresponding numeric value and a brief explanation is
provided in addition to definition. In addition standard error codes of the C
Runtime Library may be assigneddono(see description afrrno).

EWOULDBLOCK 61

The sockt is in nonblocking mode and the function cannot be executed

EINPROGRESS 62
The call is now in progress

EALREADY 63
Operation already in progress

EDESTADDRREQ 64
A destination address is required

EMSGSIZE 65
Message too long

EPROTOTYPE 66
Wrong protocol type for socket

ENOPROTOOPT 67
Protocol not available

EPROTONOSUPPORT 68
Protocol not ksupported

ESOCKNOSUPPORT 69
Socket type not supported

EOPNOTSUPP 70
Operation not supported on socket

EPFNOSUPPORT 71
Protocol family not supported

EAFNOSUPPORT 72
Address family not supported

EADDRINUSE 73
Port number or address already in use

EADDRNOTAVAIL 74
Wrong IP address

ENETDOWN 75
Driver not correctly initialised

ENETUNREACH 76
Network is unreachable

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

4-19

Error Codes and Messages

4-20

ENETRESET 77

Network has been reset and connection has been released

ECONNABORTED 78
Die Verbindung ist abgebaut.

ECONNRESET 79
Connection reset by peer

ENOBUFS 80

No more memory available for another socket or another connection

EISCONN 81
Socket is already connected.

ENOTCONN 82
Socket is not connected.

ESHUTDOWN 83
Can’t send after socket shutdown

ETOOMANYREFS 84
Too many references

ETIMEDOUT 85
Connection timed out

ECONNREFUSED 86
Connection refused

EBUFTOOSMALL 87
Buffer too small for this operation

ESMODEXISTS 88
Socket module already exists

ENOTSOCK 89
The socket operation on non-socket.

EDEADLOCK 90
Deadlock

EHOSTDOWN 91
Communication host not active

EHOSTUNREACH 92
Communication host unrachable

ENOURGENTDATA 93
No urgent data available

EMAYBEISO 95
Invalid protocol on peer

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API

In this chapter

Call Brief Description Page
M7_SWAP_DWORD Convert doubleword from Intel to SIMATIC 5-7
representation and vice-versa
M7_SWAP_WORD Convert word from Intel to SIMATIC represent [5-8
tation and vice-versa
M7BUBCycRead Set up job for cyclical read 5-9
M7BUBCycReadDelete | Delete job for cyclical read 5-12
M7BUBCycReadStart Start job for cyclical read 5-13
M7BUBCycReadStop Stop job for cyclical read 5-14
M7BUBRead Read MMl variable 5-15
M7BUBWrite Write MMl variable 5-17
M7CheckResource Check battery and SRAM 5-19
M7ClearPI Clear process image 5-20
M7ConfirmCycle Confirm FC server message 5-21
M7ConfirmDiagAlarm Confirm diagnostics alarm 5-22
M7ConfirmlOAlarm Confirm process alarm 5-24
M7ConfirmPeriodicTimer | Confirm periodic time message 5-26
M7ConfirmTransition Confirm message for operating state transition '5-27
M7ConfirmZSAlarm Confirm message for ZS alarm 5-28
M7CreateObject Create an S7 object 5-29
M7DeleteObject Delete S7 object from working memory and 5-31
delete BACKDIR
M7DiagMode Link or unlink diagnostics 5-32
M7DPNormDiagnose Get standard diagnostics for a DP slave 5-34
M7GetCBBiItOffset Get bit offset within a callback function 5-35
M7GetCBBuffer Get buffer address within a callback function | 5-36
M7GetCBByteOffset Get byte offset within a callback function 5-37
M7GetCBCount C_aet number of elements within a callback fung-5-38
tion
M7GetCBDataType Get data type within a callback function 5-39
M7GetCBFlags Get access type within a callback function 5-40
System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1 51

C79000-G7076-C852-02

M7 API

5-2

Call Brief Description Page

M7GetCBObjType Get type identifier of S7 object within a callbagk 5-41
function

M7GetCBPart Get the subarea number of the S7 object witHin 5-42
a callback function

M7GetCommRcvLen Get length of received data after M7PBKBrcv| 5-43
call

M7GetCommRequest Get job number 5-44

M7GetCommStatus Check return state of an application link 5-45

M7GetConnStatus Scan status of an application link 5-47

M7GetDiagAlarmAddr Read logical base address for diagnostics alarm5-48
from FRB

M7GetDiagAlarmBusy | Check status of a diagnostics alarm from M7/575-4¢
CPU

M7GetDiagAlarminfo Read diagnostics information from FRB 5-50

M7GetDiagAlarmPType | Read identifier for the signal module of a diag- 5-51
nostics alarm from FRB

M7GetFlags Read registered access type from FRB 5-52

M7GetFRBErrCode Read FRBs 5-53

M7GetFRBTag Read identifier of an FRB 5-54

M7GetFSCType Read type of FC server message from FRB 5-55

M7GetlOAlarmAddr Read logical base address for process alarm | 5-5€
from FRB

M7GetlIOAlarmBusy Check status of a process alarm from M7/S7 | 5-57
CPU

M7GetlOAlarmMask Read alarm mask for a process alarm from FIRB5-58

M7GetlOAlarmState Read supplementary information for a process 5-5¢
alarm from FRB

M7GetlOAlarmPType Read identifier for the signal module of a pro-{ 5-6C
cess alarm from FRB

M7GetLostPeriods Check number of periodic time messages los; 5-61

M7GetObijectinfo Read information about data structure of an §7 5-62
object

M7GetObjType Get type identifier for S7 object access 5-63

M7GetPart Get subarea number for S7 object access 5-64

M7GetPdusSize Check maximum PDU size 5-65

M7GetPeriod Get multiple of time base from TFRB 5-6€

M7GetPIErrorAddr Get type of prozess image with transfer error | 5-67

M7GetPIErrorPIType Get address of prozess type identifier with 5-68
transfererror

M7GetResetCause Query cause of reset 5-69

M7GetState Check operating state 5-7C

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API

Call Brief Description Page
M7GetTime Read out date/time 5-71
M7GetTimeBase Get time base from TFRB 5-72
M7GetTSReason Read reason for operating state/transition from 5-73

FRB
M7GetTSType Read operating state from an FRB 5-74
M7GetZSAlarmAddr Get base address of an I/O module 5-76
M7GetZSAlarmldent Get identifier of an I/O module 5-77
M7GetZSAlarmIMRBaddr Get number of rack registered for a ZS alarm| 5-78&
M7GetZSAlarmMode Get mode of an I/O module 5-79
M7GetZSAlarmPType Get I/O type of an I/0O module 5-80
M7InitAPI nitialize M7 API 5-81
M7InitISADesc Create I/O descriptor from logical address 5-82
M7KAbort Close an application link 5-83
M7KEvent Fetch data of asynchronous messages 5-84
M7KInitiate Set up application link for communication via| 5-86
communication bus/MPI
M7KPassword Password for functions with special protection) 5-87
level
M7KReadTime Read time 5-88
M7KWriteTime Settime 5-89
M7LinkBatteryFailure Initialize FRB for battery monitoring and regist 5-90
ter on OST server
M7LinkCycle Initialize FRB and register on FC server 5-91
M7LinkDataAccess Link S7 object for access information via mesr 5-92
sage
M7LinkDataAccessCB | Link callback function for S7 access 5-94
M7LinkDate Link time-controlled time message 5-96
M7LinkDiagAlarm Link diagnostics alarm for handling 5-97
M7LinklIOAlarm Link process alarm for handling 5-9§
M7LinkOneShotTimer Link one-shot time message 5-100
M7LinkPeriodicTimer Link periodic time message 5-102
M7LinkPIError Initialize FRB for prozess image transfer error] |5-104
M7LinkState Request message on specific operating state| |5-105
M7LinkTransition Requ_e_st message on specific operating state| |5-106
transition
M7LinkZSAlarm Link message on insert/remove module event |5-108
M7LoadBit Load bit from process image 5-110
M7LoadByte Load byte from process image 5-111
M7LoadDirect Read I/O area directly 5-112

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-3

M7 API

Call Brief Description Page
M7LoadDirectByte Read byte direct from I/O 5-114
M7LoadDirectbWord Read doubleword direct from 1/O 5-115
M7LoadDirectWord Read word direct from I/O 5-116
M7LoadDWord Load doubleword from process image 5-117
M7LoadlSAByte Read byte direct from ISA bus I/O 5-118
M7LoadlSADWord Read doubleword direct from ISA bus I/O 5-119
M7LoadlSAWord Read word direct from ISA bus I/O 5-120
M7LoadPlII Update process image of inputs 5-121
M7LoadRecord Read data record from signal module 5-122
M7LoadRecordEx Read data record from signal module 5-124
M7LoadWord Load word from process image 5-126
M7LocateObject Change start address of an S7 object 5-127
M70OVSCompress Object management system compress 5-128§
M7QVSDelete Delete blocks via object management system| |5-129
M70VSFindFirst Read out first entry from object management| 5-131

systemdirectory
M70VSFindNext Resume reading of object management systgm5-134
directory
M70OVSLinkin Object management system link-in 5-135
M70VSMemMode Object management system set memory mode 5-136
M70OVSRead Object management system load 5-137
M70VSSetObjectHeader| Set an S7 object header 5-139
M7Q0VSWrite Object management system copy 5-141
M7PBKBrcv Bloc_k-oriented receive data via configured cop-5-143
nections
M7PBKBsend Block-oriented send via configured connections5-145
M7PBKCancel Cancel running send or receive job via configt 5-147
ured connections
M7PBKGet Start asynchronous variable reading via config-5-148
ured connections
M7PBKIAbort Close an application link 5-150
M7PBKIGet Start asynchronous variable reading 5-151
M7PBKIPut Start asynchronous variable writing 5-153
M7PBKPrint Send data with a format description 5-155
M7PBKPut Start asynchronous variable writing via PBK | 5-157
M7PBKResume Resume PBK 5-159
M7PBKStart PBK start (cold start) 5-160
M7PBKStatus Get virtual device status 5-161
M7PBKStop Request PBK stop 5-162

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API

Call Brief Description Page

M7PBKURcv L_Jncoordinated receive via configured connecr 5-163
tions

M7PBKUSend Uncoordinated send via configured connectign®-165
M7PBKXAbort Close an application link 5-167
M7PBKXCancel Cancel running receive request 5-168
M7PBKXGet Asynchronous variable reading 5-169
M7PBKXPut Start asynchronous variable writing 5-171
M7PBKXRcv Receive data 5-173
M7PBKXSend Send data 5-175
M7Read Read S7 data area 5-178
M7ReadBit Read bit from S7 object 5-180
M7ReadByte Read byte from S7 object 5-181
M7ReadDWord Read doubleword from S7 object 5-182
M7ReadReal Read floating point number from S7 object 5-183
M7ReadWord Read word from S7 object 5-184
M7RelocateObject Pass S7 object to object server 5-185
M7RemoveObject Delete S7 object from BACKDIR or ROMDIR| |5-186
M7RequestState Request operating state change 5-187
M7RetriggerCycle Retrigger cycle time 5-189
M7SendDiagAlarm Send diagnostics alarm to S7 CPU 5-190
M7SendIOAlarm Send process alarm to S7 CPU 5-191
M7SetFRBTag Set identifier of an FRB 5-192
M7SetTime Set date and time 5-193
M7SetUserLED Control user (USR) LEDs 5-194
M7StoreBit Set bit state in process image 5-195
M7StoreByte Overwrite byte in process image 5-196
M7StoreDirect Write data direct to I/O area 5-197
M7StoreDirectByte Write byte direct to I/O 5-198
M7StoreDirectDWord Write doubleword direct to 1/0 5-199
M7StoreDirectWord Write word direct to /O 5-200
M7StoreDWord Write doubleword to process image 5-201.
M7StorelSAByte Write byte direct to ISA bus I/O 5-202
M7StorelSADWord Write doubleword direct to ISA bus /O 5-203
M7StorelSAWord Write word direct to ISA bus I/O 5-204
M7StoreObject Store S7 object in BACKDIR or ROMDIR 5-205
M7StorePIQ Update output signals 5-206
M7StoreRecord Transfer data record to a signal module 5-207

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-5

M7 API

5-6

Call Brief Description Page
M7StoreWord Overwrite word in process image 5-209
M7SZLRead Read system state list 5-210
M7UnLinkBatteryFailure | Unlink FRB for battery alarm 5-212
M7UnLinkCycle Unlink FRB on FC server 5-213
M7UnLinkDataAccess Unlink S7 object for access information via 5-214

message
M7UnLinkDataAccessCB Unlink callback function call for S7 object ac-| |5-215
cess
M7UnLinkDate Unlink time-controlled time message 5-216
M7UnLinkDiagAlarm Unlink diagnostics alarm 5-217
M7UnLinklOAlarm Unlink process alarm 5-218
M7UnLinkOneShotTimer| Unlink one-shot time message 5-219
M7UnLinkPeriodicTimer | Unlink periodic time message 5-220
M7UnLinkPIError FRB fir ProzeRabbildtransferfehlerinitialisier¢n5-221

M7UnLinkState

Unlink message about specific operating stat? 5-222

M7UnLinkTransition Unlin_k_message about specific operating stat¢ 5-223
transition

M7UnLinkZSAlarm Unlink message about insert/remove module| 5-224
alarm

M7Write Write user data to S7 data area 5-225

M7WriteBit Set bit in S7 object 5-227

M7WriteByte Overwrite byte in S7 object 5-228

M7WriteDiagnose Write entry to diagnostics buffer 5-229

M7WriteDWord Overwrite doubleword in S7 object 5-230

M7WriteReal Overwrite floating point number in S7 object | 5-231

M7WriteWord Overwrite word in S7 object 5-232

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7_SWAP_DWORD

M7_SWAP_DWORD

Function Convert doubleword from Intel to SIMATIC representation and vice-
versa
Syntax #include <m7api.h>
UDWORD M7_SWAP_DWORD(UDWORD x);
Parameters Parameter Name Meaning
X Doubleword (M7 data type DWORD, 32 bits) in Intel or
SIMATIC representation

Description The function converts a doubleword (M7 data type DWORD) from the Intel
representation to a doubleword in SIMATIC representation (Motorola format)
and vice-versa.

The call is implemented as a macro. No type checking is performed on the
input parameter.

Return Value Doubleword in Intel representation if input parameter in SIMATIC represen-
tation
Doubleword in SIMATIC representation if input parameter in Intel represen-
tation

See Also M7_SWAP_WORD

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-7

M7_SWAP_WORD M7 API

M7_SWAP_WORD

Function Convert word from Intel to SIMATIC representation and vice-versa
Syntax #include <m7api.h>
UWORD M7_SWAP_WORD(UWORD x);
Parameters Parameter Name Meaning
X Doubleword (M7 data type DWORD, 32 bits) in Intel or
SIMATIC representation

Description The function converts a doubleword (M7 data type DWORD) from the Intel
representation to a doubleword in SIMATIC representation (Motorola format)
and vice-versa.

The call is implemented as a macro. No type checking is performed on the
input parameter.

Return Value Doubleword in Intel representation if input parameter in SIMATIC represen-
tation

Doubleword in SIMATIC representation if input parameter in Intel represen-
tation

See Also M7_SWAP_DWORD

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-8 C79000-G7076-C852-02

M7 API

M7BUBCycRead

M7BUBCycRead

Function

Syntax

Parameters

Set up job for cyclical read

#include <m7api.h>

M7ERR_CODE

M7BUBCycRead(
UDWORD flags,
M7CONNID ConniD,
M7COMMFRB_PTR pCommFRB
UBYTE nVars
M7VARADDR_PTR pAddrBuffer
M7VARDATA PTR pDataBuffer
UDWORD CycTime
UDWORD *pnRequest
unsigned int MPrio);

Parameter Name

Meaning

flags

Flags

A_IMMEDIATE If this flag is set, the job is started in
mediately, otherwise the registered
job must be started explicitly with
M7BUBCycReadStart .

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.

ConnlD

Connection reference from M7 Klnitiate call.

pCommFRB

Pointer to a function request block for asynchronous commu-

nication.

nvars

Number of variables to be read, that is items in the address
buffer.

pAddrBuffer

Pointer to an array withVarselements. Each element is type
M7VARADDR and specifies a contiguous area of items
within an S7 objec{see Chapter 3)

pDataBuffer

Pointer to an array withVarselements. Each element is type
M7VARDATA and specifies a buffer (address, size, etc.)
for storing a variablésee Chapter 3)

The individual buffers must be initialized in the global dat
or the heap before the above call is activated.

}2%)

CycTime

Cycle time in ms. The following cycle times are possible:
0.1s, 0.2s, 0.3s, 0.4s, 0.5s, 0.6s, 0.7s, 0.8s, 0.9s,

1s, 2s, 3s, 4s, 5s, 65, 7S, 8s, 9s,

10s, 20s, 30s, 40s, 50s, 60s, 70s, 80s, 90s.

pnRequest

Pointer to the job number returned.

MPrio

Priority with which the message is dispatched (0—255).

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-9

M7BUBCycRead M7 API

Description The M7BUBCycReadfunction sets up an MMI job for cyclical reading. The
variable specification is stored in the address buffer and matches the specifi-
cation inM7BUBRead The data are transmitted asynchronously to the ap-
plication.

The following conditions for the maximum user data length apply to the
M7BUBCycReadcall:

nVars

i:21(4 nBytegi)) maxpdusize 28

and
0 maxpdusize 26— 12 * nVars

maxpdusizés the maximum PDU size for the connection opened with M7KI-
nitiate andnBytes(i)is the number of bytes for the i-th variable, rounded to
the nearest even number.

The application is informed about new data by the M7TMSG_BUB_NRD
message, and can fetch the data WitKEvent .

Return Value = M7SUCCESS The function was successfully executed (see Note).
< M7SUCCESS An error occurred.

Note The return value M7SUCCESS does not guarantee that the whole read proce-
dure was executed successfully. Additional information on the reset of the
individual data transfer can be found in the compoBesessResult in
the structureM7VARDATA .

Error Codes Error Codes Meaning
M7E_KSUB_PARAM Parametererror
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_BLOCK_TOO_LARGE Insufficient buffer capacity
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active
M7E_LENGTH Incorrectlength
M7E_NO_MEM No more memory available
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating
mode
M7E_PAR Parametererror
M7E_PART Subarea not available

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-10 C79000-G7076-C852-02

M7 API M7BUBCycRead

Error Codes Meaning
M7E_PER_BITS Bit addressing not permitted in /O
area
M7E_PRIO Incorrect priority
M7E_TYPE Data type is invalid
See Also M7BUBCycReadDelete, M7BUBCycReadStart, M7BUBCycReadStop

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-11

M7BUBCycReadDelete M7 API

M7BUBCycReadDelete
Function Delete job for cyclical read
Syntax #include <m7api.h>

M7ERR_CODE M7BUBCycReadDelete(
M7CONNID ConniD,
UDWORD nRequegt

Parameters Parameter Name Meaning
ConniID Connection reference from 8i7Klnitiate call
nRequest Job number frolM7BUBCycRead

Description The M7BUBCycReadDelete function deletes an MMI job for cyclical

reading set up witM7BUBCycRead

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

See Also M7BUBCycRead, M7BUBCycReadStart, M7BUBCycReadStop

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-12 C79000-G7076-C852-02

M7 API M7BUBCycReadStart

M7BUBCycReadStart
Function Start job for cyclical read
Syntax #include <m7api.h>

M7ERR_CODE M7BUBCycReadStart(
M7CONNID ConniD,
UDWORD nRequest

Parameters Parameter Name Meaning
ConnID Connection reference from Mi7Klnitiate call
nRequest Job number fronV’7BUBCycRead
Description TheM7BUBCycReadStart function starts an MMI job for cyclical reading

set up withM7BUBCycRead

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

See Also M7BUBCycRead, M7BUBCycReadDelete, M7BUBCycReadStop

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-13

M7BUBCycReadStop M7 API

M7BUBCycReadStop
Function Stop job for cyclical read
Syntax #include <m7api.h>

M7ERR_CODE M7BUBCycReadStop(
M7CONNID ConniD,
UDWORD nRequegt

Parameters Parameter Name Meaning
ConnID Connection reference from Mi7Klnitiate call
nRequest Job number fronV7BUBCycRead
Description The M7BUBCycReadStop function stops an MMI job for cyclical reading

started withM7BUBCycReador M7BUBCycReadStart

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

See Also M7BUBCycRead, M7BUBCycReadDelete, M7BUBCycReadStart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-14 C79000-G7076-C852-02

5S

}2%)

M7 API M7BUBRead
M7BUBRead
Function Read MMI variable
Syntax #include <m7api.h>
M7ERR_CODE M7BUBRead(
M7CONNID ConniD,
UBYTE nVars
M7VARADDR_PTR pAddrBuffer,
M7VARDATA PTR pDataBuffer
UDWORD *pnByte3;
Parameters Parameter Name Meaning
ConniD Connection reference from MiKlnitiate call.
nVars Number of variables to be read, that is items in the addre
buffer.
pAddrBuffer Pointer to an array withVarselements. Each element is type
M7VARADDR and specifies a contiguous area of items
within an S7 objec{see Chapter 3)
pDataBuffer Pointer to an array withVarselements. Each element is type
M7VARDATA and specifies a buffer (address, size, etc.)
for storing a variable.
The individual buffers must be initialized in the global dat
or the heap before the above call is initiated.
pnBytes Pointer to variable. This variable returns the number of bytes
actually read.
Description The M7BUBReadfunction starts a synchronous call for reading the variables

specified in thepAddrBufferaddress array into the data buffer specified in

the pDataBufferarray.

The following conditions for the maximum user data length apply to the

M7BUBReadcall:

nVars

and

i:21(4 nBytesi))

0 maxpdusize 42 * (n\Vars 1)

maxpdusize 44

maxpdusizas the maximum PDU size for the connection opened with M7KI-
nitiate andnBytes(i)is the number of bytes for the i-th variable, rounded to
the nearest even number.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-15

M7BUBRead

M7 API

Return Value

Note

Error Codes

See Also

5-16

= M7SUCCESS The function was successfully executed (see Note).

< M7SUCCESS An error occurred.

The return value M7SUCCESS does not guarantee that the whole read proce-
dure was executed successfully. Additional information on the reset of the

individual data transfer can be found in the compoBesessResult in

the structureM7VARDATA .

Error Code

Meaning

M7E_NO_MEM

No more memory available

M7E_KSUB_PARAM

Parametererror

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_CONN_CLOSED

Connection closed

M7E_KSUB_BLOCK_TOO_LARGE

Insufficient buffer capacity

M7E_KSUB_REMOTE

Execution error on server

M7E_KSUB_SDB_WAS_DELETED

Connection deleted by STEP7, con-
nection is no longer active

M7E_LENGTH Incorrectlength
M7E_NO_MEM No more memory available
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE

lllegal action in current operating
mode

M7E_PAR

Parametererror

M7E_PART

Subarea not available

M7E_PER_BITS

Bit addressing not permitted in /O
area

M7E_TYPE

Data type is invalid

M7BUBWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7BUBWrite

M7BUBWFrite

Function Write MMI variable

Syntax #include <m7api.h>
M7ERR_CODE M7BUBWTite(

M7CONNID ConniD,
UBYTE nVars
M7VARADDR_PTR pAddrBuffer,
M7VARDATA PTR pDataBuffe);
Parameters Parameter Name Meaning
ConniD Connection reference from MiKlnitiate call.
nVars Number of variables to be written.
pAddrBuffer Pointer to an array withVarselements. Each element is type
M7VARADDR and specifies the data type, the block type,
the block number and the start offset of the variables to be
overwritten in the data area of the S7 object server (M7) or in
the S7 CPU data area.
pDataBuffer Pointer to an array withVarselements. Each element is type
M7VARDATA and specifies a buffer (address, size, etc.)
for storing a value with which the variable in the data area of
the S7 object server (M7) or in the S7 CPU data area is tp be
overwritten.

Description The M7BUBWrite function starts a synchronous call for overwriting the
variables specified in theAddrBufferaddress array with the values specified
indirectly in thepDataBufferdata array.

The address and data specifications match thobt&7BUBRead
The following conditions for the maximum user data length apply to the
M7BUBWTrite call:

nVars

i_21(4 nBytesi)) maxpdusize 42 * (nVars 1)
maxpdusizas the maximum PDU size for the connection opened with M7KI-
nitiate andnBytes(i)is the number of bytes for the i-th variable, rounded to
the nearest even number.

Return Value = M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-17

M7BUBWrite M7 API

Note The return value M7SUCCESS does not guarantee that the whole write pro-
cedure was executed successfully. Additional information on the reset of the
individual data transfer can be found in the compoBesessResult in
the structureM7VARDATA .

Error Codes Error Code Meaning

M7E_NO_MEM No more memory available

M7E_KSUB_PARAM Parametererror

M7E_KSUB_NO_SUCH_CONN Invalid connection

M7E_KSUB_CONN_CLOSED Connection closed

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

M7E_LENGTH Incorrectlength

M7E_NO_MEM No more memory available

M7E_OBJ Object type not supported

M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE lllegal action in current operating
mode

M7E_PAR Parametererror

M7E_PART Subarea not available

M7E_PER_BITS Bit addressing not permitted in /O
area

M7E_TYPE Data type is invalid

See Also M7BUBRead

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-18 C79000-G7076-C852-02

M7 API M7CheckResource

M7CheckResource
Function Check battery and SRAM
Syntax #include <m7api.h>
M7ERR_CODE M7CheckResource (UWORD*pFlags);
Parameters Parameter Name Bedeutung
pFlags Pointer to flags.
M7SRAM_OK SRAM is free of er-
ror
M7BATTERY_OK There is at least one
battery free of error
M7BATTERY_CHARGE_OK All batteries are free
of error
If one of the bits is not set, the corresponding resource has an
error. T
Description The M7CheckResource function is used to check the SRAM and battery.
The battery back—up for a M7 300 CPU/FM is on the module (one battery),
for a M7 400 CPU it is on the power supply of the central rack (two batter-
ies).
Note M7VARDATA The M7CheckResource function is not supplied on a FM
456-4.M7CheckResource returns on a FM 456—4 always BATTERY_OK.
Return Value = M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-19

M7ClearPI

M7 API

M7ClearPI

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

5-20

Clear process image

#include <m7api.h>
M7ERR_CODE M7ClearPI(UWORD PITyp8;

Parameter Name Meaning
PIType Identifiers for process images:
M7I10_PII Process image of inputs
M7I10_PIQ Process image of outputs

The function resets the entire process image specified [®iTlype parame-
ter to 0.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_PAR IncorrectPIType

M7LoadPIl, M7StorePIQ

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7ConfirmCycle

M7ConfirmCycle

Function Confirm FC server message

Syntax #include <m7api.h>

M7ERR_CODE M7ConfirmCycle(
M7FSCFRB_PTR pFSCFRB;

Parameters Parameter Name Meaning
pFSCFRB Pointer to the FRB which is to be confirmed.

Description The function confirms a message of the type M7MSG_CYCLE. The FC

server waits for all registered FRBs to be confirmed.

Return Value = M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Codes Error Code Meaning
M7E_FSC_NO_SUCH_CYCLE Unknown state
M7E_FSC_NO_SUCH_FRB FSCFRB is not registered
M7E_FRB_NOT_BUSY Specified FRB is not being processed

See Also M7LinkCycle, M7UnLinkCycle

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-21

M7ConfirmDiagAlarm M7 API

M7ConfirmDiagAlarm
Function Confirm diagnostics alarm
Syntax #include <m7api.h>

M7ERR_CODE M7ConfirmDiagAlarm(
M7DIAGALARM_FRB_PTR pDAFRB;

Parameters Parameter Name Meaning
pDAFRB Pointer to the FRB of the diagnostics alarm to be confirmed.
Description The function confirms a diagnostics alarm.

When a diagnostics alarm has occurred, a new diagnostics alarm cannot be
received by the initiating module until the currently registered diagnostics
alarm has been confirmed. Diagnostics events which occur in the mean time
are stored on the module.

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PAR Addressed module does not exist or has not initia-
ted alarm
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout
M7E_DPX2_FAULT Error in DP job for alarm confirmation
M7E_SLAVE_TYPE Alarms from DP standard slaves do not have to be
confirmed
M7E_DP_SLAVE_STATE DP-SLAVE is not in DATA state
M7E_INVAL_DEV Module of a DP—Slaves is not available
Additional Error Further error messages can be stored in the FRB of the registered diagnostics
Messages in FRB alarm. These can be read out with the following C macro:

error = M7GetFRBErrCode(pDiagFrb);

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-22 C79000-G7076-C852-02

M7 API M7ConfirmDiagAlarm

Theerror variable must be of the typd7ERR_CODE.

The meaning of the FRB error messages is listed in the following table.

Error Codes Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout
See Also M7LinkDiagAlarm, M7GetDiagAlarmAddr, M7GetDiagAlarmBusy,

M7GetDiagAlarminfo,M7GetDiagAlarmPT ype, M7UnlinkDiagAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-23

M7ConfirmlOAlarm M7 API

M7ConfirmIOAlarm

Function Confirm process alarm

Syntax #include <m7api.h>
M7ERR_CODE M7ConfirmIOAlarm(
M7IOALARM_FRB_PTR pPAFRB;

Parameters Parameter Name Meaning
pPAFRB Pointer to the FRB of the alarm to be confirmed.
Description The function confirms a process alarm.

When a process alarm has occurred, a new process alarm cannot be received
from the same module until the currently registered process alarm has been
confirmed. Process alarms which occur in the mean time are stored on the
module.

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Addressed module does not exist or has not initia-

ted alarm

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DPX2_FAULT Error in DP job for alarm confirmation

M7E_DP_SLAVE_STATE DP-SLAVE is not in DATA state

M7E_INVAL_DEV Module of a DP—Slaves is not available
Additional Error Further error messages can be stored in the FRB of the registered process
Messages in FRB alarm. These can be read out with the following C macro:

error = M7GetFRBErrCode(plOFrb);
The error variable must be of the tydd7ERR_CODE

The meaning of the FRB error messages is listed in the following table.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-24 C79000-G7076-C852-02

M7 API M7ConfirmlOAlarm

Error Codes Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout

See Also M7LinklOAlarm, M7GetlOAlarmAddr, M7GetlOAlarmMask,

M7GetlOAlarmState, M7GetlOAlarmPType, M7UnLinkIOAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-25

M7ConfirmPeriodicTimer M7 API

M7ConfirmPeriodicTimer

Function

Syntax

Parameters

Description

See Also

5-26

Confirm periodic time message

#include <m7api.h>

VOID M7ConfirmPeriodicTimer(M7TFRB_PTR pTFRB;
Parameter Name Meaning
pTFRB Pointer to the FRB used to register the periodic time message.

The call confirms a periodic time message. If confirmation is configured
when registering an FRB for periodic time messages, the time server does not
send a new time message until the previous one has been confirmed.

The call is implemented as a C macro. The system does not check whether
the pointepTFRBreferences a valid FRB.

The number of lost time messages can be checked with ZeetLost-
Periods function.

M7LinkPeriodicTimer, M7UnLinkPeriodicTimer, M7GetLostPeriods

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7ConfirmTransition
M7ConfirmTransition
Function Confirm message for operating state transition
Syntax #include <m7api.h>
M7ERR_CODE M7ConfirmTransition(
M7TSFRB_PTR pTSFRB
BOOL AllowTransition;
Parameters Parameter Name Meaning
pTSFRB Pointer to the FRB to be confirmed.
AllowTransition This flag can be used to inhibit the transition to STARTUR or
RUN. To suppress the transition after STARTUP or RUN,
pasFALSE otherwise pasERUE
Description The function confirms a message of the type M7MSG_TRANSITION.
The OST server does not change to the new operating state until all tasks
registered by the FRB for the new operating state transition have been con-
firmed.
On request of all operating states except for STARTUP and RUN, the operat-
ing state transition is performed regardless of whelRWE or FALSEwas
specified in theAllowTransition parameter. Confirmation must always take
place, however.
Note When the STOP-to-STARTUP transition is reject®t¥ ConfirmTransition(..

Return Value

Error Codes

See Also

AllowTransition=FALSE), then no M7MSG_STATE message is issued upon
reaching the STARTUP state.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_OST_NO_SUCH_TRANSITION Unknown operating state transition
in FRB
M7E_OST_NO_SUCH_FRB FRB is not being processed

M7GetTSReason, M7GetTSType, M7LinkTransition, M7UnLinkTransi-
tion

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-27

M7ConfirmZSAlarm M7 API

M7ConfirmZSAlarm
Function Confirm insert/remove—module alarm
Syntax #include <m7api.h>

M7ERR_CODE M7ConfirmzZSAlarm(
M7ZSALARM_FRB_PTR pZSFRB;

Parameters Parameter Name Meaning
PZSFRB Pointer ro insert/remove FRB
Description M7ConfirmZSAlarm confirms an insert/remove—module alarm.

The M7ConfirmZSAlarm function must be called up by the user after eval-
uation of the insert/remove—module information, so that the FRB allocated
by the system with the insert/remove—module alarm can be released again.

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning
M7E_FRB_NOT_IN_LIST Specified FRB is not in the linked internal FRB list.

—

See Also M7GetZSAlarmAddr, M7GetZSAlarmldent,
M7GetZSAlarmIMRBaddr, M7GetZSAlarmMode,
M7GetZSAlarmPType, M7LinkZSAlarm, M7UnLinkZSAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-28 C79000-G7076-C852-02

M7 API M7CreateObject
M7CreateObject
Function Create an S7 object
Syntax #include <m7api.h>
M7ERR_CODE M7CreateObject(
UBYTE ObjType,
UWORD Part,
UWORD Count,
VOID_PTR Ptr);
Parameters Parameter Name Meaning
ObjType Identifier for S7 object. which can be set up by the user pro-
gram on an M7 are listed in Tel2e/.
Part Subarea number. The permissible values are listed in Table
2-8
Count Number of elements of which the S7 object is to consist;
indirectly defines the length of the S7 object., this value has
always to be even.
Ptr Pointer to the memory area for the execution-related part of
the object.
If the value NUL is specified fdPtr, the object server allo-
cates the memory for the object independently.
Description The function creates an S7 object described by the above parameters. The
object is subsequently linked automatically.
You can define the memory for the object yourself, or leave the memory al-
location to the object server. If you define the memory yourself, you should
make sure that there is sufficient capacity for the desired object.
Note When you create a data block, you can use the nunyetsp@rameter) 0 to

Return Value

Error Codes

65535. The area for the numbersi@ limited by the numeric range per-
mitted on the S7 CPU.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_LENGTH Incorrect length or even number of bytes.
M7E_NO_MEM Working memory allocated or error on me-
mory request.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-29

M7CreateObject M7 API

Error Code Meaning

M7E_OBJ Object type not supported.

M7E_OBJ_EXISTS Block already exists.

M7E_OVS_WRONG_STATE lllegal action in current operating mode

M7E_PART Subarea does not exist.

M7E_RESOURCE_LIMIT Resourcesexceeded.

M7E_REM_OBJ lllegal action because the object is retentive
See Also M7StoreObject, M7DeleteObject, M7RemoveObject, M7LocateObject

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-30 C79000-G7076-C852-02

M7 API

M7DeleteObject

M7DeleteObject

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

Delete S7 object from working memory and delete BACKDIR

#include <m7api.h>
M7ERR_CODE

M7DeleteObject(
UBYTE ObjType,
UWORD Part);

Parameter Name

Meaning

ObjType

Identifier for S7 object.
The identifiers of possible S7 objects are listed in T2ble

Part

Subarea number.
The subarea numbers of the S7 objects are listed in Tabl
2-8.

D

The function deletes

an S7 object describe®bjTypeandPart from the

working memoryand from the BACKDIR catalog.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_OBJ Object type not supported.
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PART Subarea does not exist.
M7E_REM_OBJ lllegal action because the object is retentive
M7E_WRITE_PROTECT Objectwrite-protected.

M7CreateObject, M7LocateObject, M7RemoveObject, M7StoreObject

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-31

M7DiagMode M7 API

M7DiagMode
Function Link or unlink diagnostics
Syntax #include <m7api.h>
M7ERR_CODE M7DiagMode(
UDWORD flags,
M7CONNID ConniD,
M7COMMFRB_PTR pCommFRB,
UBYTE_PTR pszUserName
unsigned int MPrio);
Parameters Parameter Name Meaning
flags Flags
A_BESYMSG Operating system diagnostics mest
sage
A_SYSMSG System diagnostics message
A_USERMSG User-defined diagnostics message
A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.
ConnID Connection reference from Mi7Klnitiate call
pCommFRB Function request block for asynchronous communication
pszUserName The application uses this string (max. 8 bytes) to identify
itself to the server
Mprio Priority with which the message was dispatched (0-255).
Description The M7DiagMode function is used to reset the diagnostics filter of the user.

An application can register itself for the appropiate diagnostics messages
using the flags A_ BESYMSG, A_SYSMSG and A_USERMSG, which are
sum-totalled. Disabled flags indicate deregistration.

Incoming messages are indicated by M7MSG_DIAG_MSG.

When an M7MSG_DIAG_MSG is received, the job number for the current
message can be checked wiiiGetCommRequest.

The following job numbers are possible:

Operating system messages have job number DIAG_BESYMSG.
System diagnostics messages have job number DIAG_SYSMSG.
User diagnostics messages have job number DIAG_USERMSG.

If both system and user messages are received, the job number is
DIAG_SYS USER_MSG.

The message itself must be initiated with khéKEvent call.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-32 C79000-G7076-C852-02

M7 API

M7DiagMode

Return Value

Error Codes

See Also

= M7SUCCESS
< M7SUCCESS

The function was successfully executed.
An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority
M7E_KSUB_PARAM Parametererror

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_CONN_CLOSED

Connection closed

M7E_KSUB_NO_SUCH_FRB

*M7COMMFRB not being processed

M7E_KSUB_REMOTE

Execution error on server

M7E_KSUB_SDB_WAS_DELETED

Connection deleted by STEP7, con-
nection is no longer active

M7KEvent

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-33

M7DPNormDiagnose M7 API

M7DPNormDiagnose
Function Get standard diagnostics for a DP slave
Syntax #include <m7api.h>

M7ERR_CODE M7DPNormDiagnose(
M710_BASEADDR Baddr,
VOID_PTR pBuffen);

Parameters Parameter Name Meaning

Baddr Base address of ET ER

pBuffer Pointer to data buffer for standard diagnostics frame
Description The function returns the diagnostics for a DP slave coded according to the

DP standard.

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning
M7E_PAR Incorrect base address.
M7E_NORM_DIAG Diagnostics data is not available for the module.
M7E_NOT_IMPLEMENTED L2—DP server not available

See Also M7GetDiagAlarminfo

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-34 C79000-G7076-C852-02

M7 API M7GETCBBiItOffset

M7GetCBBiItOffset
Function Get bit offset within a callback function
Syntax #include <m7api.h>
UBYTE M7GetCBBiItOffset(
M7CBFRB_PTR pCBFRB;
Parameters Parameter Name Meaning
pCBFRB Pointer to the CBFRB passed by the M7 APl when the
callback function is called.
Description The function determines the bit offset of a variable, which another applica-
tion is attempting to access via the S7 object server, from a CBFRB passed to
a callback function.
The call is implemented as a C macro.
Return Value The bit offset is returned.
See Also M7GetCBBuffer, M7GetCBByteOffset, M7GetCBCount, M7GetCBDa-

taType, M7GetCBFlags, M7GetCBObjType, M7GetCBPart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-35

M7GetCBBuffer M7 API

M7GetCBBuffer
Function Get buffer address within a callback function
Syntax #include <m7api.h>
VOID_PTR M7GetCBBuffer(
M7CBFRB_PTR pCBFRB;
Parameters Parameter Name Meaning
pCBFRB Pointer to the CBFRB passed by the M7 API when the
callback function is called.
Description The function determines the address of the data buffer from a CBFRB passed
to a callback function.
If the task has been registered for a write access with a callback function, the
buffer contains the data with which variables of the S7 object server are to be
overwritten.
In read accesses, it is used to store the variables to be read from the S7 object
server.
The call is implemented as a C macro.
Return Value The return value is a pointer to the buffer.
See Also M7GetCBBiItOffset, M7GetCBByteOffset, M7GetCBCount, M7GetCB-

DataType, M7GetCBFlags, M7GetCBObjType, M7GetCBPart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-36 C79000-G7076-C852-02

M7 API M7GetCBByteOffset

M7GetCBByteOffset
Function Get byte offset within a callback function
Syntax #include <m7api.h>
UDWORD M7GetCBByteOffset(
M7CBFRB_PTR pCBFRB;
Parameters Parameter Name Meaning
pCBFRB Pointer to the CBFRB passed by the M7 APl when the
callback function is called.
Description The function determines the byte offset of a variable, which another applica-

tion is attempting to access via the S7 object server, from a CBFRB passed to
a callback function.

The call is implemented as a C macro.

Return Value The byte offset is returned.

See Also M7GetCBBiItOffset,M7GetCBBuffer, M7GetCBCount, M7GetCBData-
Type, M7GetCBFlags, M7GetCBObjType, M7GetCBPart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-37

M7GetCBCount M7 API

M7GetCBCount

Function Get number of elements within a callback function

Syntax #include <m7api.h>
UWORD M7GetCBCount(

M7CBFRB_PTR pCBFRB;
Parameters Parameter Name Meaning
pCBFRB Pointer to the CBFRB passed by the M7 APl when the
callback function is called.

Description The function determines the number of elements, which another application
is attempting to access via the S7 object server, from a CBFRB passed to a
callback function.

The call is implemented as a C macro.
Return Value The number of elements is returned.
See Also M7GetCBBiItOffset,M7GetCBBuffer, M7GetCBByteOffset, M7GetCB-

DataType, M7GetCBFlags, M7GetCBObjType, M7GetCBPart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-38 C79000-G7076-C852-02

M7 API M7GetCBDataType

M7GetCBDataType
Function Get data type within a callback function
Syntax #include <m7api.h>
UBYTE M7GetCBDataType(
M7CBFRB_PTR pCBFRB;
Parameters Parameter Name Meaning
pCBFRB Pointer to the CBFRB passed by the M7 API when the
callback function is called.
Description The function determines the data type of the variables, which another ap-

plication is attempting to access via the S7 object server, from a CBFRB
passed to a callback function.

The call is implemented as a C macro.

Return Value The data type is returned by the call.

The possible data types are listed in Table 2-9.

See Also M7GetCBBiItOffset, M7GetCBBuffer,M7GetCBByteOffset, M7GetCB-
Count, M7GetCBFlags, M7GetCBObjType, M7GetCBPart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-39

M7GetCBFlags M7 API

M7GetCBFlags

Function Get access type within a callback function

Syntax #include <m7api.h>

UWORD M7GetCBFlags(
M7CBFRB_PTR pCBFRB;

Parameters Parameter Name Meaning

pCBFRB Pointer to the CBFRB passed by the M7 API when the
callback function is called.

Description The function determines, from a CBFRB passed to a callback function, the
actual access type (read, write, delete, etc.) with which another application is
attempting to access variables on the S7 object server.

The call is implemented as a C macro.

Return Value The actual access type is returned.

The possible data types are listed in the following table:

Access Type Type Identifier
Read S7 object variable M7READ_ACCESS
Write S7 object variable M7WRITE_ACCESS
Create S7 object variable M7CREATE_ACCESS
Delete S7 object variable M7DELETE_ACCESS
Link S7 object M7LINK_ACCESS

See Also M7GetCBBiItOffset, M7GetCBBuffer,M7GetCBByteOffset, M7GetCB-
Count, M7GetCBDataType, M7GetCBObjType, M7GetCBPart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-40 C79000-G7076-C852-02

M7 API M7GetCBObfType

M7GetCBODbjType

Function Get type identifier of S7 object within a callback function

Syntax #include <m7api.h>
UBYTE M7GetCBObjType(

M7CBFRB_PTR pCBFRB;
Parameters Parameter Name Meaning
pCBFRB Pointer to the CBFRB passed by the M7 APl when the
callback function is called.

Description The function determines the type identifier of the S7 object, which another
application is attempting to access, from a CBFRB passed to a callback func-
tion.

The call is implemented as a C macro.
Return Value The type identifier of the S7 object type is returned (see Table 2-7).
See Also M7GetCBBiItOffset, M7GetCBBuffer,M7GetCBByteOffset, M7GetCB-

Count, M7GetCBDataType, M7GetCBFlags, M7GetCBPart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-41

M7GetCBPart M7 API

M7GetCBPart

Function Get the subarea number of the S7 object within a callback function

Syntax #include <m7api.h>
UWORD M7GetCBPart(

M7CBFRB_PTR pCBFRB;
Parameters Parameter Name Meaning
pCBFRB Pointer to the€BFRBpassed by the M7 APl when the
callback function is called.

Description The function determines the subarea number of the S7 object, which another
application is attempting to access, from a CBFRB passed to a callback func-
tion.

The call is implemented as a C macro.

Return Value The type identifier of the S7 object type is returned (see Table 2-7).

See Also M7GetCBBiItOffset, M7GetCBBuffer,M7GetCBByteOffset, M7GetCB-

Count, M7GetCBDataType, M7GetCBFlags, M7GetCBObjType,
M7GetCBPart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-42 C79000-G7076-C852-02

M7 API M7GetCommRcvLen

M7GetCommRcvLen
Function Get length of received data aftetM7PBKBrcv call
Syntax #include <m7api.h>
UDWORD M7GetCommRcvLen(
M7COMMFRB_PTR pFRB;
Parameters Parameter Name Meaning
pFRB Pointer to the FRB from which the length is to be read.
Description The M7GetCommRcvLencall determines the length of received data from
the FRB referenced hyFRB after receiving an M7MSG_PBK_NDR mes-
sage.

The call is implemented as a C macro.

Return Value The number of received bytes by PBKBrcv call is returned.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-43

M7GetCommRequest M7 API

M7GetCommRequest
Function Get job number
Syntax #include <m7api.h>

UDWORD M7GetCommRequest(

M7COMMFRB_PTR pFRB;

Parameters Parameter Name Meaning

pFRB Pointer to the FRB from which the job number is to be read.
Description The M7GetCommRequest call determines the job number from the FRB

referenced byFRB after receiving an M7MSG_PBK_DONE,
M7MSG_PBK_NDR, M7MSG_BUB_NDR or M7TMSG_DIAG_MSG mes-
sage.

The messages are sent by the PBK, MMI and diagnostics calls.

The call is implemented as a C macro.

Return Value The job number is returned.

See Also M7PBKBrcv, M7PBKBsend, M7PBKGet, M7PBKPut, M7BUBCy-
cRead, M7DiagMode, M7GetCommStatus

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-44 C79000-G7076-C852-02

M7 API M7GetCommStatus

M7GetCommStatus
Function Check return status of application link
Syntax #include <m7api.h>

UWORD M7GetCommStatus(

M7COMMFRB_PTR pFRB;

Parameters Parameter Name Meaning

pFRB Pointer to the FRB from which the PBK status is to be reaﬁd.
Description The M7GetCommStatus call evaluates thpFRB after receiving an

M7MSG_PBK_DONE or M7MSG_PBK_NDR message. These messages are
sent by the callM7PBKPut, M7PBKGet M7PBKBsendor M7PBKBrcv .

The call is implemented as a C macro.

Return Value Possible results are listed in the following table:

Status Meaning
M7COMMSTATE_OK Job terminated without error
M7COMMSTATE_NO_CONN Communication problems
M7COMMSTATE_NACK Negative acknowledgement, function

not executable
M7COMMSTATE_RID_UNKNOWN Unknown R_ID or Receive has not
been called.
M7COMMSTATE_WRONG_DATA Number of data areas or individual
data types do not match
M7COMMSTATE_RES_REQ Resetrequest detected
M7COMMSTATE_REM_BLCK_ Remote block DISABLED
DISABLED
M7COMMSTATE_REM_ Remote partner in incorrect state
WRONG_STATE
M7COMMSTATE_REM_ Access error on remote partner
ACCESS_DENIED
M7COMMSTATE_OVERRUN Receive data were overwritten by new
data
M7COMMSTATE_MEM_ Access to local user memory denied
ACCESS_DENIED

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-45

M7GetCommStatus M7 API

Status Meaning
M7COMMSTATE_NOT_ Previous job not yet finished
FINISHED
M7COMMSTATE_TERM_ Job was canceled by user
BY_USER
See Also M7PBKBrcv, M7PBKBsend, M7PBKGet, M7PBKPut, M7GetCommRe-
quest

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-46 C79000-G7076-C852-02

M7 API M7GetConnStatus
M7GetConnStatus
Function Scan status of an application link
Syntax #include <m7api.h>
M7ERR_CODE M7GetConnStatus(

M7CONNID ConniD,

M7_CONN_STATE_PTR pConnStat§
Description TheM7GetConnStatus function permits determination of the status of an

Return Value

Error Codes

See Also

application link specified with ConnlD.
The following states have been defined (M7_CONN_STATE):

M7_CNST_CLOSED The application link is closed

M7_CNST_CONNECTING The application link is just being
established

M7_CNST_CONNECTED The application link is established

M7_CNST_DISCONNECTING The application link is just being
closed

The K bus functions17KAbort andM7GetConnStatus can be called up
via a validConnlD irrespective of the status of an application link.

All other K bus functions specific to application link are processed in the
M7_CNST_CONNECTED state only. In other states, these calls are rejected
with M7E_KSUB_CONN_CLOSED.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_KSUB_NO_SUCH_CONN Specified connection ID is invalid.

M7KAbort, M7KInitiate

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-47

M7GetDiagAlarmAddr M7 API

M7GetDiagAlarmAddr
Function Read logical base address for diagnostics alarm from FRB
Syntax #include <m7api.h>

M710_BASEADDR M7GetDiagAlarmAddr(
M7DIAGALARM_FRB_PTR pDiagFrh);

Parameters Parameter Name Meaning
pDiagFrb Pointer to FRB from which address is to be read.
Description The call returns the logical base address of the module that initiated the

alarm from the FRB referenced pipiagFrb.

The call is implemented as a C macro.

Return Value The return value is the logical base address of the module that initiated the
alarm.
See Also M7LinkDiagAlarm, M7UnLinkDiagAlarm, M7GetDiagAlarmBusy,

M7GetDiagAlarminfo,M7GetDiagAlarmPT ype, M7ConfirmDiagAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-48 C79000-G7076-C852-02

M7 API

M7GetDiagAlarmBusy

M7GetDiagAlarmBusy

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

Check status of a diagnostics alarm from M7/S7 CPU

#include <m7api.h>

BOOL M7GetDiagAlarmBusy(
M7ERR_CODE_PTR pError);

Parameter Name Meaning

pError Pointer to a variable of the type M7TERR_CODE.

The function determines whether a diagnostics alarm sent to the M7/S7 CPU
has been acknowledged by the M7/S7 CPU.

If the function is executed successfully, it returns the identifier of the current
alarm state. The meaning of the state identifiers is listed in the following
table.

State Identifier Meaning
TRUE The alarm is still waiting.
FALSE The alarm was detected by the S7/M7 CPU and has
been processed.

*pError is always 'M7SUCCESS’

M7SendDiagAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-49

M7GetDiagAlarminfo M7 API

M7GetDiagAlarminfo

Function Read diagnostics information from FRB
Syntax #include <m7api.h>
void M7GetDiagAlarminfo(

M7DIAGALARM_FRB_PTR pDiagFrb,
UBYTE_PTR *Info);

Parameters Parameter Name Meaning
pDiagFrb Pointer to the FRB from which the diagnostics information is
to be read.
Info Pointer to a buffer in which the 4 bytes containing the diar
gnostics information are to be stored.

Description The call returns the 4 bytes containing the diagnostics information for a diag-
nostics alarm from the FRB referenceddiagFrb. The diagnostics infor-
mation is module-specific.

The call is implemented as a C macro.

Return Value The function stores the diagnostics information in the buffer referenced by
Info.
See Also M7LinkDiagAlarm, M7UnLinkDiagAlarm, M7GetDiagAlarmBusy,

M7GetDiagAlarmAddr, M7GetDiagAlarmPType, M7ConfirmDiagAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-50 C79000-G7076-C852-02

M7 API M7GetDiagAlarmPType

M7GetDiagAlarmPType
Function Read identifier for the signal module of a diagnostics alarm from FRB
Syntax #include <m7api.h>

UBYTE M7GetDiagAlarmPType(

M7DIAGALARM_FRB_PTR pDiagFrby);

Parameters Parameter Name Meaning

pDiagFrb Pointer to the FRB from which the identifier is to be read.
Description The call returns the identifier of the signal module for a diagnostics alarm

from the FRB referenced kpDiagFrb when theM7LinkDiagAlarm func-
tion is called with the parametpilype

The call is implemented as a C macro.

Return Value The identifier for the module type is returned.
1/0 Type Meaning
M710_IN Module is input module
M710_OUT Module is output module
See Also M7LinkDiagAlarm, M7UnLinkDiagAlarm, M7GetDiagAlarmBusy,

M7GetDiagAlarmAddr, M7GetDiagAlarminfo, M7ConfirmDiagAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-51

M7GetFlags M7 API

M7GetFlags

Function Read registered access type from FRB

Syntax #include <m7api.h>
UWORD M7GetFlags(M7OBJFRB_PTR pOBJFRB;

Parameters Parameter Name Meaning

pOBJFRB Pointer to the OBJFRB passed on linking of communicatjon
for S7 object access.

Description The call returns thélags parameter from the OBJFRB referenced when link-
ing with M7LinkDataAccess

The call is implemented as a C macro.

Return Value The flags parameter is returned by the function. Tlags parameter repre-
sents the access type specified on linking.

The possible access types are listed in the following table:

Type of Access Identifier
Read S7 objects M7READ_ACCESS
Write S7 objects M7WRITE_ACCESS
Create S7 objects M7CREATE_ACCESS
Delete S7 objects M7DELETE_ACCESS
Link S7 object M7LINK_ACCESS

See Also M7LinkDataAccess, M7UnLinkDataAcess, M7GetObjType, M7GetPart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-52 C79000-G7076-C852-02

M7 API M7GetFRBErrCode

M7GetFRBErrCode
Function Read FRBs
Syntax #include <m7api.h>

M7ERR_CODE M7GetFRBErrCode(
M7FRBHEADER_PTR pFRBHeadey;

Parameters Parameter Name Meaning
pFrbHeader Pointer to FRB header whose error identifier is to be read.
Description The call returns the error identifier of the FRB referenceghypHeader

The error identifier indicates the general error code that can occur during
handling of the FRB.

The call is implemented as a C macro.

Return Value The function returns the error identifier of the referenced FRB.

The possible error identifiers depend on the type of FRB.

See Also GetFRBTag, SetFRBTag

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-53

M7GetFRBTag

M7 API

M7GetFRBTag

Function

Syntax

Parameters

Description

Return Value

See Also

5-54

Read identifier of an FRB

#include <m7api.h>

UWORD

M7GetFRBTag(
M7FRBHEADER_PTR pFRBHeade);

Parameter Name

Meaning

pFRBHeader

Pointer to FRB whose identifier is to be read.

The call returns the identifier of the FRB referenced bypffdoHeaderpa-

rameter.

The call is implemented as a C macro.

The function returns the identifier of the referenced FRB.

M7SetFRBTag, GetFRBErrCode

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7GetFSCType

M7GetFSCType

Function Read type of FC server message from FRB

Syntax #include <m7api.h>

UWORD M7GetFSCType(
M7FSCFRB_PTR pFSCFRB;

Parameters Parameter Name Meaning

pFSCFRB Pointer to FRB from which the address is to be read.

Description This call can be used to determine, from an FC server message, the service
(scan cycle checkpoint, free cycle, etc.) for which the application has regis-
tered on the FC server. All messages sent by the FC server have the message
identifier M7MSG_CYCLE.

The call is implemented as a C macro.

Return Value The type of service is returned.

The possible services of the FC server are listed in the following table:

Services of FC Server Identifier
Scan cycle checkpoint M7S_CYCLECONTROLPOINT
Free cycle M7S_FREECYCLE
STARTUP M7S_STARTUPCYCLE
Cycle overflow M7S_CYCLEOVERFLOW

See Also M7LinkCycle, M7ConfirmCycle, M7UnLinkCycle

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-55

M7GetlOAlarmAddr M7 API

M7GetlOAlarmAddr
Function Read logical base address for process alarm from FRB
Syntax #include <m7api.h>

M710_BASEADDR M7GetlOAlarmAddr(
M7IOALARM_FRB_PTR plOFrh);

Parameters Parameter Name Meaning
plOFrb Pointer to FRB from which the address is to be read.
Description The call returns the logical base address of the module which initiated a pro-

cess alarm from the FRB referencedgh@Frb.

The call is implemented as a C macro.

Return Value The function returns the logical base address of the module which initiated
the process alarm.

See Also M7LinklOAlarm, M7UnLinkloAlarm, M7GetlIOAlarmMask, M7Ge-
tIOAlarmState, M7GetlOAlarmPType, M7ConfirmIOAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-56 C79000-G7076-C852-02

M7 API M7GetlOAlarmBusy

M7GetlOAlarmBusy
Function Check status of a process alarm from M7/S7 CPU
Syntax #include <m7api.h>

BOOL M7GetlOAlarmBusy(

M7ERR_CODE_PTR pError);

Parameters Parameter Name Meaning

pError Pointer to a variable of the type M7TERR_CODE.
Description The function detects whether a process alarm sent to the M7/S7 CPU has

been acknowledged by the M7/S7 CPU.

Return Value When the function is successful, it returns an identifier for the current alarm
state. The meaning of the state identifiers is shown in the following table.

State Identifier Meaning
TRUE The alarm is still waiting to be processed.
FALSE The alarm has been detected by the S7 CPU and procges-
sed.
Error Codes *pError is always 'M7SUCCESS’
See Also M7SendIOAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-57

M7GetlOAlarmMask M7 API

M7GetlOAlarmMask
Function Read alarm mask for a process alarm from FRB
Syntax #include <m7api.h>
UDWORD M7GetlOAlarmMask(
M7IOALARM_FRB_PTR plOFrby);
Parameters Parameter Name Meaning
plOFrb Pointer to FRB from which the alarm mask is to be read.
Description The call returns the alarm mask for a process alarm from the FRB referenced
via plOFrb.

The call is implemented as a C macro.

Return Value The return value is the alarm mask from the FRB.

See Also M7LinklOAlarm, M7GetlOAlarmAddr, M7UnLinklOAlarm, M7Ge-
tIOAlarmState, M7GetlOAlarmPType, M7ConfirmIOAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-58 C79000-G7076-C852-02

M7 API M7GetlOAlarmState

M7GetlOAlarmState
Function Read supplementary information for a process alarm from FRB
Syntax #include <m7api.h>

UDWORD M7GetlOAlarmState(

M7IOALARM_FRB_PTR plOFrby);

Parameters Parameter Name Meaning

plOFrb Pointer to the FRB from which the state information is to pe

read.

Description The call returns the supplementary information for a process alarm from the

FRB referenced bplOFrb. The supplementary information is module-spe-
cific and is given in Intel representation.

The call is implemented as a C macro.

Return Value The return value is the supplementary information from the FRB.

See Also M7LinklOAlarm, M7GetIOAlarmAddr, M7GetlOAlarmMask, M7Un-
LinklIOAlarm, M7GetlOAlarmPType, M7ConfirmIOAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-59

M7GetlOAlarmPType M7 API

M7GetlOAlarmPType
Function Read identifier for the signal module of a process alarm from FRB
Syntax #include <m7api.h>
UWORD M7GetlIOAlarmPType(
M7IOALARM_FRB_PTR plOFrb);
Parameters Parameter Name Meaning
plOFrb Pointer to the FRB from which the identifier is to be read.
Description The call returns the identifier of the signal module from the FRB referenced
by plOFrb and specified when calling thé7LinklIOAlarm function with
the pTypeparameter.

The call is implemented as a C macro.

Return Value The return value is the identifier for the I/O type.
1/0 Type Meaning
M710_IN Module is input module
M710_OUT Module is output module
See Also M7LinklOAlarm, M7GetlOAlarmAddr, M7GetlOAlarmMask, M7Ge-

tIOAlarmState, M7UnLinklOAlarm, M7ConfirmlOAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-60 C79000-G7076-C852-02

M7 API M7GetlLostPeriods

M7GetLostPeriods

Function Check number of periodic time messages lost

Syntax #include <m7api.h>
UDWORD M7GetLostPeriods(M7TFRB_PTR pTFRB;

Parameters Parameter Name Meaning

pTFRB Pointer to the FRB with which the periodic time messages
were linked.

Description This function detects the number of periodic time messages which were not
sent due to a missing acknowledement. The internal system counters for the
lost periods are subsequently cleared.

Return Value The function returns the number of periodic time messages lost.

See Also M7LinkPeriodicTimer, M7ConfirmPeriodicTimer, M7UnLinkPeriodic-

Timer

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-61

M7GetObjectinfo M7 API
M7GetObjectinfo
Function Read information about data structure of an S7 object
Syntax #include <m7api.h>
M7ERR_CODE M7GetObjectinfo(
UBYTE ObjType,
UWORD Part,
M70BJ_INFO_PTR pObijinfo);
Parameters Parameter Name Meaning
ObjType Type identifier of the desired S7 object (see Table)
Part Subarea (DB number, etc.)
The permissible values for the subarea depend on the type of
S7 object.
pObjinfo Pointer to a memory area with th&7OBJ_INFO data
structure where the information about the S7 object is stared.
Description The function returns all information about the data structure of an S7 object

Return Value

Error Codes

See Also

5-62

described by the parametédbjTypeandPart. The memory for the informa-
tion must be provided by the calling program.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_PART Subarea not available.
M7E_OBJ Object type not supported.

M7CreateObject, M7DeleteObject, M7RemoveObject, M7LocateObject,
M7StoreObject

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

~

M7 API M7GetObjType
M7GetObjType
Function Get type identifier for S7 object access
Syntax #include <m7api.h>

UBYTE M7GetObjType(

M70OBJFRB_PTR pOBJFRB;

Parameters Parameter Name Meaning

pOBJFRB Pointer to the OBJFRB referenced on linking for S7 objec¢

access.

Description The call returns the type identifier of the object accessed from the OBJFRB

Return Value

See Also

referenced on communication by the S7 object server.

The call is implemented as a C macro.

The return value is the type identifier of the S7 object type.

The possible type identifiers of the addressable S7 objects can be found in

Table 2-7.

M7LinkDataAccess, M7UnLinkDataAccess, M7GetPart, M7GetFlags

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-63

M7GetPart M7 API
M7GetPart
Function Get subarea number for S7 object access
Syntax #include <m7api.h>
UBYTE M7GetPart(
M70OBJFRB_PTR pOBJFRB;
Parameters Parameter Name Meaning
pOBJFRB Pointer to the OBJFRB referenced on linking for S7 object
access.
Description The call returns the subarea number of the object accessed from the OBJFRB

Return Value

See Also

5-64

referenced on communication by the S7 object server.

The call is implemented as a C macro.

The return value is the subarea number of the S7 object type.

The possible subarea numbers for the addressable S7 objects are listed in the
following table:

S7 Object Type Identifier Subarea Number
Data block M7D_DB DB number
Parameter data record, read M7D_PAR_READ DS number
Parameter data record, write M7D_PAR_WRITE DS number

M7LinkDataAccess, M7UnLinkDataAccess, M7GetObIType,
M7GetFlags

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7GetPduSize
M7GetPduSize
Function Check maximum PDU size
Syntax #include <m7api.h>
M7ERR_CODE M7GetPdusSize (
M7CONNID ConnlD,
UDWORD *pnPduSizg
Parameters Parameter Name Meaning
ConniD Connection reference from an M7KlInitiate() call.
pnPdusSize Buffer for PDU size.
Description The function returns the maximum PDU size for a connection.

Return Value

Error Codes

See Also

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

M7PBKGet, M7PBKPut, M7BUBRead, M7BUBWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-65

M7GetPeriod M7 API

M7GetPeriod

Function Get multiple of time base from TFRB

Syntax #include <m7api.h>
UDWORD M7GetPeriod

M7TFRB_PTR pTFRB;
Parameters Parameter Name Meaning
pTFRB Pointer to FRB from which the multiple (paramef®meBaskg
of the time base is to be read.

Description The call returns th@eriod parameter from the TFRB referenced by a peri-
odic or one-shot time message. Teriod parameter is specified when link-
ing the FRB.

The call is implemented as a C macro.
Return Value The call returns th@€eriod parameter from the referenced TFRB.
See Also M7LinkPeriodicTimer, M7LinkOneShotTimer, M7GetTimeBase

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-66 C79000-G7076-C852-02

M7 API M7GetPIErrorAddr
M7GetPIErrorAddr
Function Get address of process image with transfer error
Syntax #include <m7api.h>
M7GetPIErrorAddr(
void *PIErrMsgBuf,
M7I0_LOGADDR Addr);
Parameters Parameter Name Meaning
PIErrMsgBuf Message buffer for the process image transfer error
Addr Address of the process image in which a transfer error oc-
curred.
Description The call accesses the process image transfer error message and returns the
address at which a transfer error occurred in the varkadde
The call is implemented as a C macro.
See Also M7GetPIErrorPIType, M7LinkPIError, M7UnLinkPIError

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-67

M7GetPIErrorPIType M7 API

M7GetPIErrorPIType

Function Get type of process image with transfer error

Syntax #include <m7api.h>
M7GetPIErrorPIType(
void *PIErrMsgBuf
UBYTE PITyps;

Parameters Parameter Name Meaning
PIType Type of process image in which an error occurred.
M7I10_PII Process image of inputs
M7I10_PIQ Process image of outputs
Description The call accesses the process image transfer error message and returns the

type of process image in which an error occurred in the varibige

The call is implemented as a C macro.

See Also M7GetPIErrorAddr, M7LinkPIError, M7UnLinkPIError

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-68 C79000-G7076-C852-02

M7 API M7GetResetCause

M7GetResetCause
Function Query cause of reset
Syntax #include <m7api.h>
M7ERR_CODE M7GetResetCause(
UDWORD *pStaté;
Parameters Parameter Name Bedeutung
pState Shows the state. If one of the following bits is set the corre-
sponding state applies. Several bits can also be set at the|same
time:
M7WD_RESET The system was previously reset by
the watchdog.
M7KEY_RESET The system was previously reset by
the key switch.
If neither of the above bits is set, then the system was reset by
a failure.
Description The function supplies the application with information on why the system
was last stored.
Return Value = M7SUCCESS: The function was succesfully executed

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-69

M7GetState M7 API

M7GetState
Function Check operating state
Syntax #include <m7api.h>
UWORD M7GetState(void);
Description The function returns the current operating state.
Return Value The return value is an identifier for the current operating state. The meaning
of the state identifiers is shown in the following table.
Parameters State Identifier Meaning
M7STATE_STOP STOP operating state
M7STATE_STARTUP STARTUP operating state
M7STATE_RUN RUN operating state
M7STATE_HALT HALT operating state
M7STATE_RESET RESET operating state
See Also M7LinkState, M7UnLinkState, M7RequestState,

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-70 C79000-G7076-C852-02

M7 API M7GetTime

M7GetTime
Function Read out date/time
Syntax #include <m7api.h>
M7ERR_CODE M7GetTime(M7TIME_DATE_PTR pDateTimg;
Parameters Parameter Name Meaning
pDateTime Pointer to memory area with date/time structure
Description The function reads the internal system time and date, and stores them in the
memory area specified lpDateTime
Please see Chapter 3 for details of the M7TIME_DATE structure.
Return Value = M7SUCCESS The function was successfully executed.
<M7SUCCESS An error occurred.
See Also M7SetTime

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-71

M7GetTimeBase M7 API
M7GetTimeBase
Function Get time base from TFRB
Syntax #include <m7api.h>

UWORD M7GetITimeBase(

M7TFRB_PTR pTFRB;

Parameters Parameter Name Meaning

pTFRB Pointer to FRB from which the time base (parameter:

TimeBasgis to be read.

Description The call returns th@imeBaseparameter from the TFRB referenced by a pe-

Return Value

See Also

5-72

riodic or one-shot time message. ThmeBaseparameter is specified when
linking the FRB.

The call is implemented as a C macro.

The call returns th&imeBaseparameter from the referenced TFRB. Possible
values ofTimeBasare:

Return Value Meaning
TimeBase Value for the time base:
M7TB_1MS: 1ms
M7TB_10MS: 10 ms
M7TB_100MS: 100 ms
M7TB_1S: 1ss

M7LinkPeriodicTimer, M7LinkOneShotTimer, M7GetPeriod

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API

M7GetTSReason

M7GetTSReason

Function

Syntax

Parameters

Description

Return Value

See Also

Read reason for operating state/transition from FRB

#include <m7api.h>

UWORD

M7GetTSReason(M7TSFRB_PTRpTSFRB;

Parameter Name

Meaning

pTSFRB

state or operating state transition is to be read.

Pointer to the FRB from which the reason for the opera

ting

When a state is attained, thGetTSReason macro can be used to check

why a change to this state was outpuMiFRequestState
specified in theReasorparameter of aM7RequestState

ated.

The call is implemented as a C macro.

The reason is returned from the FRB.

M7LinkTransition, M7UnLinkTransition, M7GetTSType,

M7ConfirmTransition

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

. The value
call is evalu-

5-73

M7GetTSType M7 API
M7GetTSType
Function Read operating state from an FRB
Syntax #include <m7api.h>
UWORD M7GetTSType(M7TSFRB_PTR pTSFRB;
Parameters Parameter Name Meaning
pTSFRB Pointer to the FRB from which the operating state is to be
read.
Description The call returns an identifier for the operating state or operating state transi-

Return Value

5-74

tion from a TSFRB of the OST server.

The call is implemented as a C macro.

When a message of the type M7MSG_STATE (linked MitLinkState)
or M7TMSG_REQ_FINISHED (requested withi7RequestState) is re-
ceived, the following identifiers are possible in the referenced TSFRB:

Identifier Meaning
M7STATE_STOP M7 is in STOP state
M7STATE_STARTUP M7 is in STARTUP state
M7STATE_RUN M7 is in RUN state
M7STATE_HALT M7 is in HALT state
M7STATE_RESET M7 is in RESET state

When a message of the type M7MSG_TRANSITION (linked \ftLink-
Transition) is received, the following identifiers are possible in the refer-
enced TSFRB:

Identifier Meaning
M7TRANS_STOPSTARTUP Operating state transition from STOP to STAR-
TUP requested
M7TRANS_STOPRESET Operating state transition from STOP to RESET
requested
M7TRANS_STARTUPSTOP Operating state transition from STARTUP to
STOP requested

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7GetTSType

Identifier Meaning

M7TRANS_STARTUPRUN Operating state transition from STARTUP to
RUN requested

M7TRANS_STARTUPHALT Operating state transition from STARTUP to
HALT requested

M7TRANS_RUNSTOP Operating state transition from RUN to STOP
requested

M7TRANS_RUNHALT Operating state transition from RUN to HALT
requested

M7TRANS_HALTSTOP Operating state transition from HALT to STOPR
requested

M7TRANS_HALTSTARTUP Operating state transition from HALT to STAR-
TUP requested

M7TRANS_HALTRUN Operating state transition from HALT to RUN
requested

M7TRANS_RESETSTOP Operating state transition from RESET to STOP
requested

See Also M7LinkState, M7UnLinkState, M7RequestState, M7GetTSReason,

M7LinkTransition, M7UnLinkTransition, M7ConfirmTransition

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-75

M7GetZSAlarmAddr M7 API

M7GetZSAlarmAddr
Function Get base address of an /O module
Syntax #include <m7api.h>

M710_BASEADDR M7GetZSAlarmAddr(
M7ZSALARM_FRB_PTR pZSFRB,
UWORD SlotNuny;

Parameters Parameter Name Meaning

pZSFRB Pointer to the ZSFRB from which the base address of the 1/0
module is determined.

SlotNum Number of the slot in which the module is installed. The slot
number must be within the range

1... MAX_SLOT_400.

The MAX_SLOT_400 constant identifies the maximum
number of slots in the S7-400 system.

Description The call returns the base address of the module at slot n@iabumon an
insert/remove module alarm.

The call is implemented as a C macro.

The function is only supported on the SIMATIC S7-400 system.

Return Value The base address is returned by the call.

See Also M7ConfirmZSAlarm, M7LinkZSAlarm, M7UnLinkZSAlarm, M7GetZ-
SAlarmIMRBaddr, M7GetZSAlarmMode, M7GetZSAlarmPType,
M7GetZSAlarmident

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-76 C79000-G7076-C852-02

M7 API

M7GetZSAlarmldent

M7GetZSAlarmldent

Function

Syntax

Parameters

Description

Return Value

See Also

Get identifier of an I/O module

#include <m7api.h>

UBYTE M7GetZSAlarmldent(
M7ZSALARM_FRB_PTR pZSFRB,
UWORD SlotNuny;

Parameter Name Meaning

pZSFRB Pointer to the ZSFRB from which the identification numbe
of the I/O module is determined.

=

SlotNum Number of the slot in which the module is installed. The slot
number must be within the range 1...MAX_SLOT_400.
The MAX_SLOT_400 constant identifies the maximum
number of slots in the S7-400 system.

The call returns the identification number of the module at slot nuBiber
Numon an insert/remove module alarm.

The call is implemented as a C macro.

The function is only supported on the SIMATIC S7-400 system.

The identification number is returned by the call. The identification number
of a module is explained in the appropriate hardware description.

M7ConfirmZSAlarm, M7LinkZSAlarm, M7UnLinkZSAlarm,
M7GetZSAlarmIMRBaddr, M7GetZSAlarmAddr,
M7GetZSAlarmPType, M7GetZSAlarmMode

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-77

M7GetZSAlarmIMRBaddr M7 API

M7GetZSAlarmIMRBaddr

Function

Syntax

Parameters

Description

Return Value

See Also

5-78

Define base address of the IM module for which an insert/remove—mod-
ule alarm was linked

#include <m7api.h>

UBYTE M7GetZSAlarmIMRBaddr(
M7ZSALARM_FRB_PTR pZSFRB;

Parameter Name Meaning
PZSFRB Pointer to the ZSFRB

The call returns information about the base address of the IM module which
is installed in the rack or S7 slave on which the error occurred (CR_BADDR
for the central rack).

The call is implemented as a C macro.

The function is only supported on the SIMATIC S7-400 system.

The base address of the IM module is returned by the call.

M7ConfirmZSAlarm, M7LinkZSAlarm, M7UnLinkZSAlarm,
M7GetZSAlarmPType, M7GetZSAlarmAddr, M7GetZSAlarmMode,
M7GetZSAlarmldent

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API

M7GetZSAlarmMode

M7GetZSAlarmMode

Function

Syntax

Parameters

Description

Return Value

See Also

Get mode of an I/O module

#include <m7api.h>
UBYTE

M7GetZSAlarmMode(

M7ZSALARM_FRB_PTR pZSFRB,
UWORD SlotNuny;

Parameter Name

Meaning

number must be within the range

1... MAX_SLOT_400.

The MAX_SLOT_400 constant identifies the maximum
number of slots in the S7-400 system.

pZSFRB Pointer to the ZSFRB from which the mode of the /O mag
dule is determined.
SlotNum Number of the slot in which the module is installed. The slot

The call returns the mode of the module at slot nurSt@Numon an insert/
remove module alarm.

The call is implemented as a C macro.

The function is only supported on the SIMATIC S7-400 system.

An identifier for the mode is returned by the call. The possible values are
listed in the following table:

Identifier Meaning
M7DEV_OK Module is OK
M7DEV_REM Module has been removed
M7DEV_PUT Module has been inserted

M7ConfirmZSAlarm, M7LinkZSAlarm, M7UnLinkZSAlarm, M7GetZ-
SAlarmIMRBaddr, M7GetZSAlarmAddr, M7GetZSAlarmPType,

M7GetZSAlarmldent

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-79

M7GetZSAlarmPType M7 API

M7GetZSAlarmPType
Function Get /O type of an I/0O module
Syntax #include <m7api.h>
UBYTE M7GetZSAlarmPType(
M7ZSALARM_FRB_PTR pZSFRB,
UWORD SlotNuny;
Parameters Parameter Name Meaning
pZSFRB Pointer to the ZSFRB from which the type of I/O module Is
determined.
SlotNum Number of the slot in which the module is installed. The slot
number must be within the range
1... MAX_SLOT_400.
The MAX_SLOT_400 constant identifies the maximum
number of slots in the S7-400 system.
Description The call returns the I/O type of the module at slot nunsbeNumon an
insert/remove module alarm.
The call is implemented as a C macro.
The function is only supported on the SIMATIC S7-400 system.
Return Value The 1/O type is returned by the call. The possible values are listed in the fol-
lowing table:
1/0 Type Meaning
M710_IN Module is input module
M710_OUT Module is output module
See Also M7ConfirmZSAlarm, M7LinkZSAlarm, M7UnLinkZSAlarm, M7GetZ-

SAlarmIMRBaddr, M7GetZSAlarmAddr, M7GetZSAlarmMode,
M7GetZSAlarmldent

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-80 C79000-G7076-C852-02

M7 API M7InitAPI

M7InitAPI

Function Initialize M7 API

Syntax #include <m7api.h>
M7ERR_CODE M7InitAPI(void);

Description The function initializes the M7 API. The function must be called immedi-
ately at the start of the main routine in a C application program.

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning

M7E_NOT_IMPLEMENTED M7 servers have not yet been started

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-81

M7InitISADesc M7 API

M7InitISADesc

Function Create 1/0O descriptor from logical address

Syntax #include <m7api.h>
M7ERR_CODE M7InitISADesc(
M710_LOGADDR Addr,
UBYTE PType,
UWORD Len,
M710_DESC_PTR plODesg;

Parameters Parameter Name Meaning
Addr Logical address
PType 110 Type
M710_IN
M710_OUT
Len Length of the planned access. The following identifiers ane
possible:

M7PBYTE: Descriptor for one byte
M7PWORD: Descriptor for one word
M7PDWORD: Descriptor for one doubleword

plODesc Pointer to initialized 1/O descriptors. The user program must
allocate the memory for the 1/0 descriptor from the globa
data area or the heap.

Description The function creates an 1/O descriptor from the logical address. The I/O des-
criptor is used for high-speed access to the ISA bus 1/0.

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning

M7E_PAR The specified address does not describe an interface mo-
dule; incorrect length or I/O type

See Also M7StorelSAByte, M7StorelSAWord, M7StorelSADWord, M7LoadISA-
Byte, M7LoadlSAWord, M7LoadlSADWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-82 C79000-G7076-C852-02

M7 API M7KAbort
M7KAbort
Function Close an application link
Syntax #include <m7api.h>

M7ERR_CODE M7KAbort(M7CONNID ConniD);
Parameters Parameter Name Meaning

ConniD Connection reference from Mi’Klnitiate call.
Description The M7KAbort function closes an application link between the client and

Return Value

Error Codes

See Also

server. All asynchronous jobs for the connection are deleted.

= M7SUCCESS
< M7SUCCESS

The function was successfully executed.
An error occurred.

Error Code

Meaning

M7E_NO_MEM

No more memory available

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_CONN_CLOSED

Connection closed

M7KInitiate

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-83

M7KEvent M7 API
M7KEvent
Function Fetch data of asynchronous messages
Syntax #include <m7api.h>
M7ERR_CODE M7KEvent(
M7CONNID ConniD,
UDWORD nRequest
UBYTE_PTR pBuffer,
UDWORD nBufsiz
UDWORD *pnByte3;
Parameters Parameter Name Meaning
ConnlD Connection reference from Mi7Klnitiate call.
nRequest Job number. The job number can be read out from the FRB
referenced in the message usinght&setCommRequest
call.
pBuffer Pointer to the result buffer. The result buffer must be pro-
vided by the user program.
nBufsiz Length of the result buffer.
pnBytes Number of bytes read.
Description The data generated by cyclical reading and diagnostics messages must be

Return Value

Error Codes

5-84

fetched from the driver with thRl7KEvent function.

The next message with job numbmequesfor connection reference
ConniDis copied to the result buffer and deleted from the driver.
The number of bytes transferred is storetpnBytes

If the result buffer is too small to store all the data of a message, as many
data items as possible are copied, and an appropriate error code is set. If a
matching message does not exist, the call returns without an error, and with
*pnBytes equal to 0.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_PARAM Parametererror
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7KEvent

Error Code Meaning
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

See Also M7BUBCycRead, M7DiagMode

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-85

M7KlInitiate

M7 API

M7KInitiate

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

5-86

Set up application link for communication via communication bus/MPI

#include <m7api.h>

M7ERR_CODE M7KInitiate(

M7CONNID *pConnlD,
UBYTE_PTR pHostAddj;

Parameter Name Meaning

*pConnlID Pointer to the connection reference for further communica-
tion calls

pHostAddr Address of the destination computer

The M7Klnitiate function opens an application link to a server via MPI or

K bus. The host address of the remote partner is passed in apgttosgAddr
contains the connection number from the connection configuration. The con-
nection number can be entered in decimal as well as in hexadecimal format
(not case sensitive). For example: 0x1d0. The “local” string is passed in order
to set up a unidirectional loop-back connection for the own CPU/FM.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_RESOURCE_LIMIT Resourcesexceeded
M7E_KSUB_PARAM Parametererror

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_CONN_CLOSED

Connection closed

M7E_KSUB_REMOTE

Execution error on server

M7KAbort

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7KPassword
M7KPassword
Function Password for functions with special protection level
Syntax #include <m7api.h>
M7ERR_CODE M7KPassword(
UDWORD flags,
M7CONNID ConniD,
UBYTE_PTR pszPasswoix
Parameters Parameter Name | Meaning
flags Flags
SET_PASSWORD: If this flag is enabled and the correct pass-
word is entered, the connection is legitimized; that is all functions
are subsequently available.
A_ZERO_FLAG: If set, the connection is enabled; that is func-
tions are subsequently only available with the appropriate protec-
tion level password. This flag can be connected with other options
by an OR operation. It must be set if no other flag is used.
ConniD Connection reference from Mi7Klnitiate call.
pszPassword Pointer to an 8-byte password.
Description The M7/S7 CPU has a password and a protection level entered in SDBO. Fol-

Return Value

Error Codes

See Also

lowing anM7Klnitiate call, the application can only execute functions on
the current protection level. The application must be legitimized with the
correct password to enable execution of all functions.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_PARAM Parametererror
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

M7KInitiate

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-87

M7KReadTime M7 API
M7KReadTime
Function Read time
Syntax #include <m7api.h>
M7ERR_CODE M7KReadTime(
M7CONNID ConniD,
M7KTIME_PTR pBuffer,
UDWORD nBufsize
UDWORD *pnByte3;
Parameters Parameter Name Meaning
ConniD Connection reference from Mi7Klnitiate call.
pBuffer Pointer to a data structure of the thi@KTIME . The data
structure which stores the K bus time must be allocated hy
the user program from the global data or the heap.
nBufsize Length of theM7KTIME structure.
pnBytes Pointer to the number of bytes read.
Description The M7KReadTime function reads the time from the server computer into

Return Value

Error Codes

See Also

5-88

the data structure provided. The number of bytes read is entefipaBptes.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

M7KInitiate, M7KWriteTime

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7KWriteTime

M7KWriteTime

Function Set time

Syntax #include <m7api.h>

M7ERR_CODE M7KWriteTime(
M7CONNID ConniD,
M7KTIME_PTR pBuffer,
UDWORD nBufsizg;

Parameters Parameter Name Meaning
ConniD Connection reference from Mi7Klnitiate call.
pBuffer Pointer to a data structure of the th@KTIME with the

time to be set.
nBufsize Length of theM7KTIME structure.

Description The M7KWriteTime function sets the time on the destination computer to

the value specified ipBuffer.

Return Value = M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Codes Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

See Also M7KReadTime, M7KInitiate

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-89

M7LinkBatteryFailure M7 API

M7LinkBatteryFailure

Function Initialize FRB for battery monitoring and register on OST server

Syntax #include <m7api.h>
M7ERR_CODE M7LinkBatteryFailure(
M7BAFFRB_PTR pBAFFRB
unsigned int MPrio);

Parameters Parameter Name Meaning
pPBAFFRB Pointer to the FRB provided for registration. The FRB must
be allocated in the user program from the global data or the
heap.
MPrio Priority of the M7TMSG_BATTERY_FAILURE message to
be sent (0-255).

Description The M7LinkBatteryFailure function initializes an FRB and registers
the FRB on the OST server for handling.

If the battery voltage falls below the threshold before or during handling of
an FRB, the task receives a message of the type M7MSG_BATTERY_FAIL-
URE with message prioritMPrio.

Return Value = M7SUCCESS The function was successfully executed.
<M7SUCCESS An error occurred.

Error Codes Error Code Meaning
M7E_PRIO Incorrect priority
See Also M7UnLinkBatteryFailure

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-90 C79000-G7076-C852-02

M7 API

M7LinkCycle

M7LinkCycle

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

Initialize FRB and register on FC server

#include <m7api.h>
M7ERR_CODE

M7LinkCycle(
M7FSCFRB_PTR pFSCFRB
UWORD Cycle,
unsigned int MPrio);

Parameter Name

Meaning

pFSCFRB

Pointer to the FRB registered for communication with the
FC server.

Cycle

Specifies the state on which message is to be sent.
M7S_CYCLECONTROLPOINT

Message at scan cycle checkpoint
M7S_FREECYCLE

Message at start of free cycle
M7S_STARTUPCYCLE

Message for state: STARTUP

M7S_CYCLEOVERFLOW
Message on cycle time limit exceeded

MPrio

Priority with which a message is to be sent (0-255).

TheM7LinkCycle function initializes an FRB and registers the FRB on the

FC server for handling. When the desired state specifi@ydte becomes
active, the task receives a message of the type M7MSG_M_CYCLE.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code

Meaning

M7E_PAR

Unknown state

M7E_PRIO

Incorrect priority

M7UnLinkCycle, M7ConfirmCycle

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-91

M7LinkDataAccess M7 API

M7LinkDataAccess
Function Link S7 object for access information via message
Syntax #include <m7api.h>

M7ERR_CODE M7LinkDataAccess(
M70BJFRB_PTR pOBJFRB,
UBYTE ObjType
UWORD Part,
UWORD Flags,
unsigned int MPrio);

Parameters Parameter Name Meaning
pOBJFRB Pointer to the FRB provided for link registration
ObjType Type identifier of S7 object for which accesses are to be re-
ported (see Tab@-7).
Part Subarea (DB number, etc., see Tabig)
Flags Mask for selecting which access is to be reported:
M7READ_ACCESS: Read only
M7WRITE_ACCESS: Write only
M7CREATE_ACCESS: Message on create object
M7DELETE_ACCESS: Message on delete object
M7LINK_ACCESS: Message on link object
MPrio Priority with which a message is to be sent (0-255).
Description The function requests the object server to report access to the referenced S7

object by sending a message to the task.

The calling task can ugdags to determinavhich access type (for example
write access) is to be reported. TFlags cannot be connected by a logic OR
operation; only one access type is allowed.

When the function has been successfully executed, and an external access is
made to the registered S7 object by another task or via communication, the
object server sends one of the messages listed in the following table — ac-
cording to the specified access type — after the access takes place.

Access Message
Read access M7MSG_DATA_ACCESS_R
Write access M7MSG_DATA_ACCESS_W
S7 object deleted M7MSG_DATA_ACCESS_DEL
S7 object created M7MSG_DATA_ACCESS_CREATE

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-92 C79000-G7076-C852-02

M7 API M7LinkDataAccess

Return Value = M7SUCCESS Always returned by the call.

Error Codes Error Code Meaning
M7E_FRB_ALREADY_IN_LIST FRB is already linked
M7E_LINK_PAR Parametererror
M7E_OBJ Object type not supported
M7E_PAR Parametererror
M7E_PRIO Incorrect priority

See Also M7SetFRBTag, M7GetFRBTag, M7GetObjType, M7GetFlags, M7Get-
Part

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-93

M7LinkDataAccessCB M7 API

M7LinkDataAccessCB
Function Link callback function for S7 access
Syntax #include <m7api.h>

M7ERR_CODE M7LinkDataAccessCB(
M7CBFRB_PTR pCBFRB,
UDWORD (*pCallback)(M7CBFRB_PTR
pCBFRB),
UBYTE ObjType
UWORD Part,
UWORD Flags);

Parameters Parameter Name Meaning
pOBJFRB Pointer to the FRB provided for link registration
*pCallback Pointer to the callback function
ObjType Type identifier of S7 object for which accesses are to be repor-
ted (see Tablg-7).
Part Subarea (DB number, etc., see Tabig)
Flags Mask for selecting on which access types the callback funic-
tion is to be called:
M7READ_ACCESS: Readaccess
M7WRITE_ACCESS: Write access
M7CREATE_ACCESS: Message on create object
M7DELETE_ACCESS: Message on delete object
M7LINK_ACCESS: Message on link object
Description The task uses the function to request the object server to call the callback

function before a WRITE—, CREATE or LINK-ACCESS or aftarREAD—
ACCESS of the specified S7 object.

The calling task can use Flags to determingvhith access type (for exam-
ple write access only).

Return Value = M7SUCCESS Always returned by the call.

Error Codes Error Code Meaning
M7E_FRB_ALREADY_IN_LIST FRB is already linked
M7E_LINK_PAR Parametererror
M7E_OBJ Object type not supported
M7E_PAR Parametererror

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-94 C79000-G7076-C852-02

M7 API M7LinkDataAccessCB

See Also M7GetCBBiItOffset, M7GetCBBuffer,M7GetCBByteOffset, M7GetCB-
DataType, M7GetCBCount, M7GetCBFlags, M7GetCBObjType,
M7GetCBPart, M7UnLinkDataAccessCB

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-95

M7LinkDate M7 API

M7LinkDate

Function Link time-controlled time message

Syntax #include <m7api.h>
M7ERR_CODE M7LinkDate(
M7TFRB_PTR pTFRB
M7TIME_DATE_PTR pDateTime,
BOOL Periodig
unsigned int MPrio);

Parameters Parameter Name Meaning

pTFRB Pointer to time server FRB

pDateTime Pointer to memory area with date/time structure where the
time parameters for the function are stored (see Section 3).

Periodic Selection for “once” or “daily”:
M7ONCE Message once
M7DAILY Daily message (date = start date)

MPrio Priority with which a message is to be sent (0-255).

Description The function registers an FRB for a time-controlled handling on the time
server. When the date or time specifiedpDateTimehas been reached, the
time server sends a message of the type M7MSG_TIMESERVER to the call-
ing task. The message is transmitted in RUN mode with second accuracy
(resolution = 1 second). If the system is not in the RUN mode when the spe-
cified time is reached, the message is delayed until the next transition into
the RUN mode. If a task is simultaneously logged for operating state mes-
sages, the order in which the time—controlled messages and the operating
state messages are received is undefined at the time of transition into the
RUN mode. In non—periodic mode, the time server deletes the associated
FRB after sending the time—controlled message.

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning

M7E_PAR Parametererror

M7E_PRIO Incorrect priority
M7E_RESOURCE_LIMIT Too many timer FRBs in operation

See Also M7UnLinkDate

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-96 C79000-G7076-C852-02

M7 API M7LinkDiagAlarm

M7LinkDiagAlarm
Function Link diagnostics alarm for handling
Syntax #include <m7api.h>
M7ERR_CODE M7LinkDiagAlarm(
M7DIAGALARM_FRB_PTR pDiagFrb,
UBYTE PType,
M710_BASEADDR Addr,
unsigned int MPrio);
Parameters Parameter Name Meaning
pDiagFrb Pointer to the FRB provided for registration. The FRB must
be allocated in the user program from the global data or the
heap.
PType Identifier for input or output module:
M7IO_IN Input module
M710_OUT Output module
Addr Logical base address of the module sending diagnostics
alarms
MPrio Priority with which a message is to be sent (0-255).
Description The function initializes an FRB header and registers the FRB for handling on
the alarm server.
If the 1/0O module specified byxddr reports aliagnostics alarm the calling
task receives a message of the typ#MSG_DIAG_ALARM.
Return Value = M7SUCCESS The function was successfully executed.
<M7SUCCESS An error occurred.
Error Codes Error Code Meaning
M7E_PAR Addressed module does not exist.
M7E_INVAL_DEV Diagnostics alarm can only be reported by ET ER for
DP standard slaves.
See Also M7UnLinkDiagAlarm, M7GetDiagAlarmAddr, M7GetDiagAlarmBusy,

M7GetDiagAlarminfo, M7GetDiagAlarmPType

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-97

M7LinklOAlarm

M7 API

M7LinkIOAlarm

Function

Syntax

Parameters

Description

Return Value

5-98

Link process alarm for handling

#include <m7api.h>

M7ERR_CODE

M7LinkIOAlarm(
M7IOALARM_FRB_PTR plOFtb,
UBYTE PType,
M710_BASEADDR Addr,
UDWORD AlarmMask,
unsigned int MPrio);

Parameter Name Meaning

plOFrb Pointer to the FRB provided for registration

PType Identifier for input or output module:
M710_IN Input module
M710_OUT Output module

Addr Logical base address of the module sending process alar

AlarmMask Alarm mask:
32 channels can be selected withAltermMaskParameters.
Bit 270 is assigned to channel O, bit 21 to channel 1, etc
Mask bit = 1 means that the channeids processed;
Mask bit = 0 means that the channel is processed.

MPrio Priority with which a message is to be sent.

ms

The function initializes an FRB header and registers the FRB for handling on

the alarm server.

If the 1/0O module specified bjxddr reports gprocess alarm the calling task
receives a message of the type M7TMSG_10_ALARM.

= M7SUCCESS
< M7SUCCESS

The function was successfully executed.
An error occurred.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7LinklOAlarm

Error Codes Error Code Meaning
M7E_PAR Addressed module does not exist.
M7E_SLAVE_TYPE Process alarms can only be reported by DP-S7 slave mo-
dules.
M7E_INVAL_DEV Process alarms can only be generated by 1/0 modules|and

not by the ET-ER.

See Also M7UnLinkIOAlarm, M7GetlOAlarmAddr, M7GetlIOAlarmBusy,
M7GetlOAlarmMask, M7GetlOAlarmState, M7GetlOAlarmPType

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-99

M7LinkOneShotTimer M7 API

M7LinkOneShotTimer

Function Link one-shot time message

Syntax #include <m7api.h>
M7ERR_CODE M7LinkOneShotTimer(
M7TFRB_PTR pTFRB
UWORD TimeBase
UDWORD Time
unsigned int MPrio);

Parameters Parameter Name Meaning
pPTFRB Pointer to the accompanying time server FRB
TimeBase Value for the time base:
M7TB_1MS: 1ms

M7TB_10MS: 10 ms
M7TB_100MS: 100 ms

M7TB_1S: 1s
Time Time (multiple ofTimeBasgmax. 4 198 404)
MPrio Priority with which a message is to be sent.
Description The function registers an FRB for processing of a one-shot time message on

the time server. When the specified time has expired, the time server sends a
message to the calling task and deletes the accompanying FRB. Time mes-
sages are sent only during the RUN operation state.

Note Select theTimeBaseandTime parameters such that thieneBaseparameter
contains the largest possible value for the desired time interval. This mini-
mizes the load on the system caused by the time server.

Example:
You want your task to receive a single time message from the time server

after a time of 4s. In this case, select the value 'M7TB_1STifoeBaseand
the value 4’ forTime (not: '"M7TB_100MS’ forTimeBaseand '40’ for
Timd).

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-100 C79000-G7076-C852-02

M7 API M7LinkOneShotTimer

Error Codes Error Code Meaning
M7E_PAR Incorrect value fofimeBase
M7E_PRIO Incorrect priority
M7E_RESOURCE_LIMIT Too many timer FRBs operational
See Also M7UnLinkOneShotTimer

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-101

M7LinkPeriodicTimer M7 API

M7LinkPeriodicTimer

Function Link periodic time message

Syntax #include <m7api.h>
M7ERR_CODE M7LinkPeriodicTimer(
M7TFRB_PTR pTFRB,
UWORD TimeBase,
UDWORD Period
BOOL Handshake
unsigned int MPrio);

Parameters Parameter Name Meaning
pPTFRB Pointer to the accompanying time server FRB
TimeBase Value for the time base:
M7TB_1MS: 1ms
M7TB_10MS: 10 ms
M7TB_100MS: 100 ms
M7TB_1S: 1s
Period Duration of the periods

(multiple of TimeBasemax. 4 198 404)

Handshake Selection of mode:
M7WITH_HANDSHAKE
Acknowledgement-driven operation active

M7NO_HANDSHAKE
Acknowledgement-driven operation not active

MPrio Priority with which a message is to be sent.

Description The function registers an FRB for processing of a periodic time message on
the time server.

When the specified time has expired, the time server sends periodic time
messages to the calling task. Time messages are sent only during the RUN
operation state.

In handshake modéiéndshake= M7WITH_HANDSHAKE), every periodic
time message must be acknowledged by the receiving task with7Gen-
firmPeriodicTimer function.

A maximum number of 10 FRBs can be registered per M7 CPU or FM.

Note Select theTimeBaseandTime parameters such that thieneBaseparameter
contains the largest possible value for the desired time interval. This mini-
mizes the load on the system caused by the time server.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-102 C79000-G7076-C852-02

M7 API

M7LinkPeriodicTimer

Return Value

Error Codes

See Also

Example:
You want your task to receive a single time message from the time server

after a time of 4s. In this case, select the value 'M7TB_1STifoeBaseand
the value 4’ forTime (not: '"M7TB_100MS’ forTimeBaseand '40’ for
Timd).

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_PAR Incorrect value fofimeBase
M7E_PRIO Incorrect priority
M7E_RESOURCE_LIMIT Too many timer FRBs operational

M7UnLinkPeriodicTimer, M7ConfirmPeriodicTimer, M7GetLostPeriods

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-103

M7LinkPIError M7 API

M7LinkPIError

Function Initialize FRB for process image transfer error

Syntax #include <m7api.h>
M7ERR_CODE M7LinkPIError(
M7FRBHEADER_PTR pPIEFRB
unsigned int MPrio);

Parameters Parameter Name Meaning
pPIEFRB Pointer to the FRB used to link the process image transfer
error
MPrio Priority of M7TMSG_PI_ERROR message (0-255)
Description TheM7LinkPIError function initializes an FRB for the handling of pro-

cess image transfer errors which occur in the free cycle.

If the free cycle server detects a Pl transfer error, it sends the message
M7MSG_PI_ERROR to every linked task. The message contains the process
image type and the process image address at which the transfer error oc-
curred.

The MPrio parameter can be used to define the priority of the
M7MSG_PI_ERROR message.

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning
M7E_PRIO Incorrect priority
See Also M7UnLinkPIError

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-104 C79000-G7076-C852-02

M7 API M7LinkState

M7LinkState
Function Request message on specific operating state
Syntax #include <m7api.h>
M7ERR_CODE M7LinkState(
M7TSFRB_PTR pTSFRB
UWORD State,
unsigned int MPrio);
Parameters Parameter Name Meaning

pTSFRB Pointer to the FRB provided for registration. The FRB must
be allocated in the user program from the global data or the
heap.

State Specifies the operating state on which communication is to
take place. A task can only register for one operating state
with an FRB.

The following values can be specified:

M7STATE_STOP STOP operating state attained

M7STATE_STARTUP STARTUP operating state at-
tained

M7STATE_RUN RUN operating state attained

M7STATE_HALT HALT operating state attained

M7STATE_RESET RESET operating state attained

MPrio Priority with which a message is to be sent.

Description The function initializes an FRB header and registers the FRB for handling on
the OST server.
When the operating state specified by 8tateparameter becomes active,
the calling task is informed by a message of the MBMSG_STATE.
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning
M7E_PAR Parametererror
M7E_PRIO Incorrect priority
See Also M7UnLinkState, M7GetState, M7RequestState, M7GetTSType,
M7GetTSReason

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-105

M7LinkTransition M7 API
M7LinkTransition
Function Request message on specific operating state transition
Syntax #include <m7api.h>
M7ERR_CODE M7LinkTransition(

M7TSFRB_PTR pTSFRB

UWORD Transition,

unsigned int MPrio);
Parameters Parameter Name Meaning

pTSFRB Pointer to the FRB provided for registration. The FRB must
be allocated in the user program from the global data or the
heap.

Transition Specifies the operating state transition on which communica-
tion is to take place. A task can only register for one opera-
ting state transition with an FRB.

The following values can be specified:
M7TRANS_STOPSTARTUP STOP to STARTUP
M7TRANS_STOPRESET STOP to RESET
M7TRANS_STARTUPSTOP STARTUP to STOP
MSTRANS_STARTUPRUN STARTUP to RUN
M7TRANS_STARTUPHALT STARTUP to HALT
M7TRANS_RUNSTOP RUN to STOP
M7TRANS_RUNHALT RUN to HALT
M7TRANS_HALTSTOP HALT to STOP
M7TRANS_HALTSTARTUP HALT to STARTUP
M7TRANS_HALTRUN HALT to RUN
M7TRANS_RESETSTOP RESET to STOP

MPrio Priority with which a message is to be sent.

Description The function initializes an FRB header and registers the FRB for handling on

Return Value

5-106

the OST server.

Before the operating state transition specified byTia@sition parameter
takes place, the calling task is informed by a message of the type
M7MSG_TRANSITION. The task must acknowledge this operating state
transition.

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.
An error occurred.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7LinkTransition

Error Codes Error Code Meaning
M7E_PAR Parametererror
M7E_PRIO Incorrect priority

See Also M7UnLinkTransition, M7GetTSReason, M7GetTSType

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-107

M7LinkZSAlarm M7 API
M7LinkZSAlarm
Function Link message on insert/remove module alarm
Syntax #include <m7api.h>
M7ERR_CODE M7LinkZSAlarm(
M7ZSALARM_FRB_PTR pZSFRB
UBYTE RackNo,
unsigned int MPrio);
Parameters Parameter Name Meaning
pZSFRB Pointer to the FRB provided for handling the registration.
The FRB must be allocated in the user program from the
global data or the heap.
RackNo Rack number
MPrio Priority of the M7MSG_ZS_ALARM message (0—255).
Description The function initializes an FRB for “insert/remove module” alarm handling

Return Value

5-108

and registers the FRB on the alarm server.

When an insert/remove—module alarm occurs in the rack or on the S7 slave
in which the IM module with base address IMRBaddr is installed, the task
receives the message M7TMSG_ZS_ALARM.

The base address M7CR_BADDR must be registered for the central rack.
MPrio can be used to define the priority of the message.

The address of the insert/remove—module FRB with the insert/remove—mod-
ule information is passed to the user in the message bliffierFRB is not
the FRB used to link by the user, but is an FRB allocated by the system.

After evaluation of the alarm, the user must confirm the insert/remove—mod-
ule alarm withM7ConfirmZSAlarm , so that the system resource can be
released again.

The function is only supported on the SIMATIC S7-400 system.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7LinkZSAlarm

Error Codes Error Code Meaning
M7E_PRIO Incorrect priority
M7E_PAR Invalid RackNovalue
M7E_NOT_IMPLEMENTED Function not supported on S7-300
See Also M7ConfirmZSAlarm, M7UnLinkZSAlarm, M7GetZSAlarmIMRBaddr,

M7GetZSAlarmMode, M7GetZSAlarmPType, M7GetZSAlarmAddr,
M7GetZSAlarmldent

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-109

M7LoadBit M7 API
M7LoadBit
Function Load bit from process image
Syntax #include <m7api.h>
BOOL M7LoadBit(
UWORD PIType,
UWORD ByteOffset,
UBYTE BitOffset
M7ERR_CODE_PTR pError);
Parameters Parameter Name Meaning
PIType Identifiers for process images:
M7I10_PII Process image of inputs
M7I10_PIQ Process image of outputs
ByteOffset Offset of signal byte
BitOffset Bit offset within the signal byte
pError Pointer to a variable of the type M7ERR_CODE in whic
an error code is to be stored.
Description The function addresses a bit in the process image definBilTppe and

Return Value

Error Codes

See Also

5-110

returns the state of the bit.

The return value is the state of the addressed bit.

Error Code

Meaning

M7E_PAR

IncorrectP|Type ByteOffsebr BitOffset

M7LoadByte, M7LoadDWord, M7LoadWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7LoadByte
M7LoadByte
Function Load byte from process image
Syntax #include <m7api.h>
UBYTE M7LoadByte(
UWORD PIType,
UWORD ByteOffset
M7ERR_CODE_PTR pError);
Parameters Parameter Name Meaning
PIType Identifiers for process images:
M7I10_PII Process image of inputs
M7I10_PIQ Process image of outputs
ByteOffset Offset of signal byte
pError Pointer to a variable of the type M7ERR_CODE in whic
an error code is to be stored.
Description The function addresses a byte in the process image definedypye and

Return Value

Error Codes

See Also

returns the state of the addressed byte.

The return value is the state of the addressed byte.

Error Code Meaning

M7E_PAR IncorrectPIType or ByteOffset

M7LoadBit, M7LoadDWord, M7LoadWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-111

M7LoadDirect M7 API

M7LoadDirect

Function Read /O area directly

Syntax #include <m7api.h>
M7ERR_CODE M7LoadDirect(
VOID_PTR pBuffer,
UWORD SizeOfltem,
UWORD Count,
M710_LOGADDR Add);

Parameters Parameter Name Meaning
pBuffer Pointer to the destination buffer
SizeOfltem Size of an element in bytes.
The following constants are predefined:
M7PBYTE Pointer to elements of the type BYTE
M7PWORD Pointer to elements of the type WORD
M7PDWORD Pointer to elements of the type DWORD
Count Number of elements
Addr Logical address of the first element
Description The function performs a direct access to the process I/0O. The source, size,
number and destination of the data to be read are defined by the call parame-
ters.

The function does not convert the numeric representation
(SIMATIC/Intel).

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PAR Parametererror
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout
M7E_DP_SLAVE_STATE The device is not ready for data communication

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-112 C79000-G7076-C852-02

M7 API M7LoadDirect

See Also M7LoadDirectByte, M7LoadDirectDWord, M7LoadDirectWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-113

M7LoadDirectByte

M7 API

M7LoadDirectByte

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

5-114

Read byte direct from I/O

#include <m7api.h>

UBYTE

M7LoadDirectByte(
M710_LOGADDR Addr,
M7ERR_CODE_PTR pError);

Parameter Name

Meaning

Addr

Logical address of the 1/O byte

pError

Pointer to a variable of the type M7ERR_CODE in which
an error code is to be stored.

The function performs a direct access to the process I/O and reads a byte.

If the function is successfully executed, the return value is the byte read from

the process I/O.

Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PAR Addressed module does not exist
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout
M7E_DP_SLAVE_STATE The device is not ready for data communication

M7LoadDirect, M7LoadDirectDWord, M7LoadDirectWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API

M7LoadDirectDWord

M7LoadDirectDWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

Read doubleword direct from 1/O

#include <m7api.h>

UDWORD M7LoadDirectDWord(
M710_LOGADDR Addr,
M7ERR_CODE_PTR pError);

Parameter Name Meaning
Addr Logical address of the I/0O doubleword
pError Pointer to a variable of the type M7ERR_CODE in which
an error code is to be stored.

The function performs a direct access to the process I/O and reads a double-

word.

The contents of the doubleword are converted from th&IMATIC format
to the Intel numeric representation.

If the function is successfully executed, the return value is the doubleword
read from the process 1/O intel format.

Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PAR Addressed module does not exist
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout
M7E_DP_SLAVE_STATE The device is not ready for data communication

M7LoadDirect, M7LoadDirectByte, M7LoadDirectWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-115

M7LoadDirectWord M7 API

M7LoadDirectWord

Function Read word direct from /O
Syntax #include <m7api.h>
UWORD M7LoadDirectWord(

M710_LOGADDR Addr,
M7ERR_CODE_PTR pError);

Parameters Parameter Name Meaning
Addr Logical address of the I/0 word
pError Pointer to a variable of the type M7ERR_CODE in which
an error code is to be stored.

Description The function performs a direct access to the process I/0O and reads a word.

The contents of the word are converted from th&IMATIC format to the
Intel numeric representation.

Return Value If the function is successfully executed, the return value is the word read
from the process /O imtel format.

Error Codes Error Code Meaning

M7E_BSY Local bus is busy

M7E_CMD Local bus command error

M7E_HWFAULT General hardware error

M7E_PAR Addressed module does not exist

M7E_PARITY Local bus parity error

M7E_QVZ Local bus timeout

M7E_DP_SLAVE_STATE The device is not ready for data communication
See Also M7LoadDirect, M7LoadDirectByte, M7LoadDirectDWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-116 C79000-G7076-C852-02

M7 API M7LoadDWord
M7LoadDWord
Function Load doubleword from process image
Syntax #include <m7api.h>
UDWORD M7LoadDWord(
UWORD PIType,
UWORD ByteOffset
M7ERR_CODE_PTR pError);
Parameters Parameter Name Meaning
PIType Identifiers for process images:
M7I10_PII Process image of inputs
M7I10_PIQ Process image of outputs
ByteOffset Offset of signal byte
pError Pointer to a variable of the type M7ERR_CODE in whic
an error code is to be stored.
Description The function addresses a doubleword in the process image defined by

Return Value

Error Codes

See Also

PIType and returns the state of the addressed doubleword.

The contents of the doubleword are first converted from th&SIMATIC to
the Intel numeric representation.

The return value is the state of the addressed doublewdmtelrformat.

Error Code

Meaning

M7E_PAR

IncorrectPIType or ByteOffset

M7LoadBit, M7LoadByte, M7LoadWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-117

M7LoadlSAByte M7 API
M7LoadlSAByte
Function Read byte direct from ISA bus I/O
Syntax #include <m7api.h>
UBYTE M7LoadlSAByte(
M710_DESC _PTR plODesg
M7ERR_CODE_PTR pError);
Parameters Parameter Name Meaning
plODesc Pointer to I/O descriptor initialized witd 7InitISADesc
pError Pointer to a variable of the type M7ERR_CODE in which|an
error code is to be stored.
Description The function runs as a macro, performing a direct access to the ISA bus pro-

Return Value

Error Codes

See Also

5-118

cess I/0, using an 1/O descriptor generated WithnitiISADesc , and
reading in a byte.

If the function is successfully executed, the return value is the byte read from
the ISA process I/0.

Error Code Meaning

M7E_PAR Data access to ISA bus is larger (in bytes) than specified in
M7InitISADesc

M7LoadlSAWord, M7LoadlSADWord, M7InitiISADesc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API

M7LoadlSADWord

M7LoadlISADWord

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

Read doubleword direct from ISA bus 1/O

#include <m7api.h>
UDWORD

M7LoadlSADWord(
M710_DESC_PTR plODes¢
M7ERR_CODE_PTR pError);

Parameter Name

Meaning

plODesc

Pointer to I/O descriptor initialized witd 7InitISADesc

pError

Pointer to a variable of the type M7ERR_CODE in which|an
error code is to be stored.

The function runs as a macro, performing a direct access to the ISA bus pro-
cess I/0, using an 1/O descriptor generated WithnitiISADesc , and
reading in a doubleword (32 bits) in Intel format.

The contents of the doubleword are converted from th&IMATIC to the
Intel numeric representation.

If the function is successfully executed, the return value is the doubleword
(32 bits) read from the ISA process I/O in Intel format.

Error Code

Meaning

M7E_PAR

Data access to ISA bus is larger (in bytes) than specified in
M7InitISADesc

M7LoadISAByte, M7LoadlSAWord, M7InitISADesc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-119

M7LoadlSAWord M7 API

M7LoadlSAWord

Function Read word direct from ISA bus I/O
Syntax #include <m7api.h>
UWORD M7LoadlISAWord(

M710_DESC_PTR plODes¢
M7ERR_CODE_PTR pError);

Parameters Parameter Name Meaning
plODesc Pointer to I/O descriptor initialized witd 7InitISADesc
pError Pointer to a variable of the type M7ERR_CODE in which|an
error code is to be stored.

Description The function runs as a macro, performing a direct access to the ISA bus pro-
cess I/0, using an 1/O descriptor generated WithnitiISADesc , and
reading in a word (16 bits) in Intel format.

The contents of the word are converted from the IMATIC to the Intel
numeric representation.

Return Value If the function is successfully executed, the return value is the word (16 bits)
read from the ISA process I/O.

Error Codes Error Code Meaning

M7E_PAR Data access to ISA bus is larger (in bytes) than specified in
M7InitISADesc

See Also M7LoadlISAByte, M7LoadlSADWord, M7InitISADesc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-120 C79000-G7076-C852-02

M7 API

M7LoadPIl

M7LoadPII

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

Update process image of inputs

#include <m7api.h>

M7ERR_CODE

M7LoadPIl(UWORD PIINO);

Parameter Name

Meaning

PIINo

0 Complete process image
1..8 Process image part
M7-300:

0 Complete process image

Process image parts are not supported

Number of process images parts on M7-400:

The function updates the complete process image or the specified part of the
process image of inputs.

Process image parts are only supported on the S7-400 system.

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.
An error occurred.

Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PAR IncorrectPlINo
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout

M7StorePIQ, M7ClearPI

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-121

M7LoadRecord

M7 API

M7LoadRecord

Function

Syntax

Parameters

Description

Return Value

Error Codes

5-122

Read data record from signal module

#include
M7ERR_CODE

<m7api.h>
M7LoadRecord(

UBYTE RecordNum,
VOID_PTR pBuffer,
UBYTE Size

UBYTE PType
M710_BASEADDR Addr);

Parameter Name Meaning

RecordNum Record number
Range: 0to 255

pBuffer Pointer to a buffer in the working memory, to which the
record is to be transferred.

Size Length of the data record

PType Identifier for the I/O area:
M710_IN 1/O area for inputs
M710_OUT I/O area for outputs
If the module is a mixed module, specify the area ID of
lowest address. If the addresses are the same, specify
M710_IN.

Addr 1/0 base address of module

the

The function transfers a data record from an I/O module to a buffer refer-
enced by th@Buffer call parameter.

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.
An error occurred.

Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error

M7E_COM_ERROR

Error on transfer protocol handling

M7E_HWFAULT

General hardware error

M7E_PAR Addressed module does not exist
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7LoadRecord

Error Code Meaning
M7E_REC_LENGTH Module reporting incorrect record length
M7E_REC_NUMBER Module reporting incorrect record number
M7E_DPX2_FAULT Error on DP job for record transfer
M7E_DP_SLAVE_STATE DP Slave not in DATA state
M7E_INVAL_DEV Module of a DP slave is not available
See Also M7LoadRecordEx, M7Store Record
See Also M7StoreRecord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-123

M7LoadRecordEx M7 API

M7LoadRecordEx
Function Read data record from signal module
Syntax #include <m7api.h>
long M7LoadRecordEx(
UBYTE RecordNum
VOID_PTR pBuffer
UBYTE Size
UBYTE PType
M710_BASEADDR Addr);
Parameters Parameter Name Meaning
RecordNum Record number
Range: 0to 255
pBuffer Pointer to a buffer in the working memory, to which the
record is to be transferred.
Size Length of the data record
PType Identifier for the I/O area:
M710_IN 1/O area for inputs
M710_OUT I/O area for outputs
If the module is a mixed module, specify the area ID of|the
lowest address. If the addresses are the same, specify
M7IO_IN.
Addr 1/0O base address of module
Description The function transfers a data record from an 1/O module to a buffer refer-
enced by th@Buffer call parameter.
Unlike theM7LoadRecord function,M7LoadRecordEx allows data ac-
cess without specifying the exact number of bytes to be read. If the maxi-
mum record length specified in the Size parameter is 240, the valid bytes of
recordRecordNurrare read and transferredpBuffer
The return value contains the number of valid bytes in the data buffer (see
below).
Return Value >M7SUCCESS The function was successfully executed. The return value

contains the number of valid bytes in the data buffer, i.e.
record length if data buffee record
buffer length if data buffer < record

< M7SUCCESS: An error occurred

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-124 C79000-G7076-C852-02

M7 API

M7LoadRecordEx

Error Codes

See Also

Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error

M7E_COM_ERROR

Error on transfer protocol handling

M7E_HWFAULT

General hardware error

M7E_PAR Addressed module does not exist
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout

M7E_REC_LENGTH

Module reporting incorrect record length

M7E_REC_NUMBER

Module reporting incorrect record number

M7E_DPX2_FAULT

Error on DP job for record transfer

M7E_DP_SLAVE_STATE

DP Slave not in DATA state

M7E_INVAL_DEV

Module of a DP slave is not available

M7LoadRecord, M7Store Record

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-125

M7LoadWord M7 API

M7LoadWord
Function Load word from process image
Syntax #include <m7api.h>
UWORD M7LoadWord(
UWORD PIType,
UWORD ByteOffset
M7ERR_CODE_PTR pError);
Parameters Parameter Name Meaning
PIType Identifiers for process images:
M7I10_PII Process image of inputs
M7I10_PIQ Process image of outputs
ByteOffset Offset of signal byte
pError Pointer to a variable of the type M7TERR_CODE in whi¢
an error code is to be stored.
Description The function addresses a word in the process image definetinpye and
returns the state of the addressed word.
The contents of the word are first converted from theSIMATIC to the
Intel numeric representation.
Return Value The return value is the state of the addressed wdritéhformat.
Error Codes Error Code Meaning
M7E_PAR IncorrectP| Typeor ByteOffset
See Also M7LoadBit, M7LoadByte, M7LoadDWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-126 C79000-G7076-C852-02

M7 API M7LocateObject
M7LocateObject
Function Change start address of user data area of an S7 object
Syntax #include <m7api.h>
M7ERR_CODE M7LocateObject(
UBYTE ObjType
UWORD Part,
VOID_PTR Ptr
BOOL Copy);
Parameters Parameter Name Meaning
ObjType Identifier of an S7 object (see Teble 2-7).
Part Subarea (DB number, etc.)
The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)
Ptr New start address of S7 object
Copy Handling of new memory area
TRUE The user data of the object are copied to the
new memory area.
FALSE The user data of the object are not transferred.
Description The function changes the start address of the user data area of an S7 object

Return Value

Error Codes

See Also

described by the above parameters. The user data are either transferred to the
new area or not, according to tBepy parameter. This function can not be
used for objects in SRAM (retentive) can not be

When calling the function, you should make sure that sufficient memory is
available after the new start address.

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.
An error occurred.

Error Code Meaning
M7E_OBJ Object type not supported.
M7E_PART Subarea not available.
M7E_REM_OBJ Not allowed for retentive objects.

M7CreateObject, M7DeleteObject, M7RemoveObject, M7StoreObject

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-127

M70OVSCompress M7 API

M70VSCompress

Function Object management system compress

Syntax #include <m7api.h>

M7ERR_CODE M70VSCompress(M7CONNID ConnlD);

Parameters Parameter Name Meaning
ConniD Connection reference from Mi’Klnitiate call.

Description The M70VSCompress function is used to request memory compression on

an S7 CPU (object management system compression).

Return Value = M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

Note The M70VSCompress function is available only for S7 CPU.

See Also M70VSDelete, M70OVSFindFirst, M7OVSFindNext, M70VSLinkln,

M70VSMemMode, M70VSRead, M70VSWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-128 C79000-G7076-C852-02

M7 API M70VSDelete

M70VSDelete
Function Delete blocks via object management system
Syntax #include <m7api.h>
M7ERR_CODE M70VSDelete(
UDWORD flags,
M7CONNID ConniD,
UBYTE nBlks
M7BLKLIST_PTR pBIKList);
Parameters Parameter Name Meaning
flags One or both of the following flags must be enabled:
A_PASSIV: Delete passive blocks.
A_LINKED_IN: Delete linked-in blocks.
If the block list contains only blocks of one block type, but
both flags are enabled, the job is denied completely.
ConniD Connection reference from a7Klinitiate call.
nBlks Number of items in the block list.
If nBlksis equal to 0, all blocks in the RAM memory are
deleted.
pBIkList Pointer to the block list containing the blocks to be delefed.
The block list consists oM7BLKLIST structure entries.
TheM7BLKLIST structure is described in Chapter 3.
Description T heM70VSDelete function is used to delete the blocks specified in the
block list in one unit. It is possible to delete both copied and linked modules.
The blocks are only deleted if all the specified blocks are present.
The maximum number of blocks to be deleted is defined by the following
value, according to the maximum PDU size (88&etPduSize):
max_no = (maxpdusize — 28)/8
Return Value = M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-129

M70VSDelete M7 API

Error Codes Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_PARAM Parametererror
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

See Also M70VSCompress, M70VSFindFirst, M70VSFindNext, M70OVSLinkin,
M70VSMemMode, M70VSRead, M70VSWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-130 C79000-G7076-C852-02

«Q

M7 API M7OVSFindFirst
M7OVSFindFirst
Function Read out first entry from object management system directory
Syntax #include <m7api.h>
M7ERR_CODE M70OVSFindFirst (
UDWORD flags,
M7CONNID ConniD,
UWORD BIkTyp
UWORD Language,
M7BLKINFO_PTR pFFBIkinfo);
Parameters Parameter Name Meaning
flags One or both of the following flags must be enabled:
A_PASSIV: Find passive blocks.
A_LINKED_IN: Find linked-in blocks.
Additionally one or both of the following flags can be en-
abled:
A_DIRECTORY Find blocks of the block type with the
lowest type number
A_LANGUAGE Find blocks in the specified programmin
language.
ConniD Connection reference from Mi7Klnitiate call.
BlkTyp If A_Directory was nospecified, the parameter contains th

block type:

M7BLKTYP_OB Organization block
M7BLKTYP_DB Data block
M7BLKTYP_FC Function call
M7BLKTYP_SFC System function call
M7BLKTYP_FB Function block
M7BLKTYP_SFB System function block

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-131

M7OVSFindFirst M7 API

Parameter Name Meaning

Language If A_LANGUAGE was specified, Language contains the
programming language of the block to be found:

M7LANGTYP_HUELSE Container for SFCs and SFBs

M7LANGTYP_AWL Block created in STL (state-
ment list)
M7LANGTYP_KOP Block created in KOP
(ladder diagram)
M7LANGTYP_FUP Block created in FUP
(function block diagram)
M7LANGTYP_SCL Block created in SCL
M7LANGTYP_DB Block created with block edi-

tor
M7LANGTYP_GRAPH Block created with Graph 5

M7LANGTYP_SDB Block created with system
data block editor
M7LANGTYP_CPU Block created dynamically by
the CPU
pFFBIkInfo Pointer to a FindFirst block information block structure of fhe

type M7BLKINFO where a block which is found is entered
(see Chapter 6).

Description M70OVSFindFirst returns the first directory entry fipFFBIkinfo, accord-
ing to the parameters, and initiates a search sequence which can be continued
with these parameters usiMiyOVSFindNext .

At least one of the two flags A_PASSIV and A_LINKED_IN must be speci-
fied. If A_PASSIV is specified, passive blocks are displayed. If
A_LINKED_IN is specified, linked-in blocks are displayed.

If A_DIRECTORY is specified, the search finds blocks of the block type
with the lowest type number. In this case, BlkTyp does not need to be speci-
fied.

If A_LANGUAGE is specified, the search finds blocks in the specified pro-
gramming language.

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_PARAM Parametererror
M7E_KSUB_EOF End of file or end of directory reached

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-132 C79000-G7076-C852-02

M7 API M7OVSFindFirst

Error Code Meaning
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

See Also M70VSCompress, M70VSDelete, M7OVSFindNext, M70VSLinkIn,
M70VSMemMode, M70VSRead, M70VSWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-133

M70OVSFindNext M7 API

M70OVSFindNext

Function Resume reading of object management system directory

Syntax #include <m7api.h>
M7ERR_CODE M70OVSFindNext (
UDWORD flags,
M7CONNID ConnlD,
M7BLKINFO_PTR pFFBIkInfo);

Parameters Parameter Name Meaning

flags The same flags must be specified aglfOVSFindFirst .

ConnlD Connection reference from M7 KlInitiate call.

pFFBIkinfo Pointer to a FindFirst block information structure where a
block which is found is entered (s OVSFindFirst).

Description The same flags must be specified as in the precéddit@VSFindFirst -
call. M7OVSFindNext returns the next directory item in the search se-
guence inpFFBIkinfo.

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning

M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_PARAM Parametererror

M7E_KSUB_EOF End of file or end of directory reached

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

See Also M70VSCompress, M70VSDelete, M7OVSFindFirst, M70VSLinkIn,
M70VSMemMode, M70VSRead, M70VSWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-134 C79000-G7076-C852-02

M7 API M7OVSLinkin

M70OVSLinkin

Function Object management system link-in

Syntax #include <m7api.h>
M7ERR_CODE M70OVSLinkin(
M7CONNID ConnlD,
UBYTE nBlks
M7BLKLIST_PTR pBIkList);

Parameters Parameter Name Meaning

ConnlD Connection reference from M7 Klnitiate call.

nBlks Number of items in the block list.
If nBIksis equal to 0, all the copied blocks are linked.

pBIkList Pointer to the block list containing the blocks to be linked.
The block list consists dfl7TBLKLIST structure entries.
TheM7BLKLIST structure is described in Chapter 3.

Description TheM70VSLinkin function is used to activate the numb&iks of blocks
located in the CPU in one unit.

The maximum number of blocks to be linked is defined by the following
value, according to the maximum PDU size (8B&etPduSize):

max_anzahl = (maxpdusize — 28)/8

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning

M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_PARAM Parametererror

M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-
nection is no longer active

See Also M70VSCompress, M70VSDelete, M70OVSFindFirst, M7OVSFindNext,
M70VSMemMode, M70VSRead, M70VSWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-135

M70VSMemMode M7 API

M70VSMemMode

Function Object management system set memory mode

Syntax #include <m7api.h>

M7ERR_CODE M70VSMemMode(
UDWORD flags,
M7CONNID ConnlID);
Parameters Parameter Name Meaning
flags A_PLC_RAM: Set memory mode to RAM.
A_PLC_EPROM: Set memory mode to EPROM.
One (and only one) of the two flags must always be set.
ConnlD Connection reference from Mi7Klnitiate call.

Description The M70VSMemModeinction can be used to switch the M7/S7 CPU

memory to RAM or EPROM mode.

Return Value = M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_PARAM Parametererror
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

See Also M70VSCompress, M70VSDelete, M70OVSFindFirst, M7OVSFindNext,

M70VSLinkln, M70OVSRead, M7OVSWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-136 C79000-G7076-C852-02

M7 API M70VSRead
M70OVSRead
Function Object management system load
Syntax #include <m7api.h>
M7ERR_CODE M70VSRead (
UDWORD flags,
M7CONNID ConniD,
UBYTE_PTR pBitmap
UBYTE_PTR pBuffer,
UDWORD nBufsiz
UWORD BIkTyp
UWORD BIKNum
UDWORD *pnBytes;
Parameters Parameter Name Meaning
flags A_PASSIV: Load a passive block.
A_LINKED_IN: Load a linked-in block.
At least one of the two flags must be enabled. If both fl3
are enabled, A_HEADER must also be enabled.
A_SSB: Read the interface description only.
A_HEADER: Read the block header only.
A_FILE If enabledpBufferspecifies the name
of the file in which the block is stored;
otherwise the block is stored in
memory.
ConniD Connection reference from Mi7Klnitiate call.
pBitmap One-byte bitmap. If A_HEADER mode is specified, the
storage location of the object is returned. The returned
bitmap can be combined logically with the following ide
tifiers:
M7BLKINFO_PASSIV
Block is in load memory (copied)
M7BLKINFO_ACTIV
Block is in working memory (linked in)
M7BLKINFO_RAM
Block is in RAM or RAM mode
M7BLKINFO_EPROM
Block is in EPROM or EPROM mode
M7BLKINFO_BESY
Block is a component of the operating system
pBuffer Receive buffer
If A_FILE is enabledpBufferspecifies the name of the fi
in which the block is stored
nBufsiz Size of input buffer

hgS

>
T

If A_FILE is enablednBufsizs ignored.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-137

M70OVSRead M7 API

Parameter Name Meaning

BlkTyp Block types:
M7BLKTYP_OB Organization block
M7BLKTYP_DB Data block
M7BLKTYP_FC Function call
M7BLKTYP_SFC System function call
M7BLKTYP_FB Function block
M7BLKTYP_SFB System function block

BIkNum Number of block

pnBytes Pointer to number of bytes read. or 0 if the block is stor‘ed
inafile.

Description

Return Value

Error Codes

See Also

5-138

This function loads a block of the M7/S7 CPU into a buffer area or as a file
on the hard disk of the M7.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning

M7E_NO_MEM

No more memory available

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_BLOCK_TOO_LARGE

Insufficient buffer space

M7E_KSUB_CONN_CLOSED

Connection closed

M7E_KSUB_PARAM

Parametererror

M7E_KSUB_FILEIO

File handling error

M7E_KSUB_REMOTE

Execution error on server

M7E_KSUB_SDB_WAS_DELETED

Connection deleted by STEP7, con-

nection is no longer active

M70VSCompress, M70VSDelete, M7OVSFindFirst, M70OVSFindNext,
M70VSLinkln, M70VSMemMode, M70OVSWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

.

M7 API M70VSSetObjectHeader
M70VSSetObjectHeader
Function Set an S7 object header
Syntax #include <m7api.h>
M7ERR_CODE M70VSSetObjectHeader(
UBYTE_PTR ptr,
UWORD BIKNum
UDWORD nLength
UBYTE Language
UBYTE Type
UBYTE Attribute,
UBYTE ProtectionLeve);
Parameters Parameter Name Meaning
ptr Pointer to the memory area in which the S7 object heade
stored. The memory area must be at least
S7_OBJECT_HEADER_LENGTH bytes in size.
BIkNum Block number
nLength Total length of block in bytes
Language Language in which the block was created:
M7LANGTYP_HUELSE Container for SFCs and
SFBs
M7LANGTYP_AWL Block created in STL
(statementlist)
M7LANGTYP_KOP Block created in LAD
(ladder diagram)
M7LANGTYP_FUP Block created in FBD
(function block diagram)
M7LANGTYP_SCL Block created in SCL
M7LANGTYP_DB Block created with block edi
tor
M7LANGTYP_GRAPH Block created with Graph 5
M7LANGTYP_SDB Block created with system
data block editor
M7LANGTYP_CPU Block created dynamically
by the CPU
Type Block types:
M7BLKTYP_OB Organization block
M7BLKTYP_DB Data block
M7BLKTYP_FC Function call
M7BLKTYP_SFC System function call
M7BLKTYP_FB Function block
M7BLKTYP_SFB System function block

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-139

S

M70VSSetObjectHeader

M7 API

Description

Return Value

Error Codes

See Also

5-140

Parameter Name

Meaning

Attributes

Reserved, must be setto 0

WriteProtect

Accessallowed:

0

1
2
3

Read/write
Read only

Reading and writing not allowed

Know-how

protection

The M70VSSetObjectHeader

= M7SUCCESS:

function sets the header for a block to be
written with the functiolM70OVSWrite . The total length of the block must
be at least S7_OBJECT_HEADER_ LENGTH.

< M7SUCCESS: An error occurred.

The function was successfully executed.

Error Code

Meaning

M7E_KSUB_PARAM

Parametererror

M70OVSWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API

M70OVSWrite

M70OVSWrite

Function

Syntax

Parameters

Object management system copy

#include <m7api.h>

M7ERR_CODE

M7OVSWrite(

UDWORD flags,
M7CONNID ConnlD,
UBYTE_PTR pBuffer,
UDWORD nBufsiz
UWORD BIkTyp
UWORD BIkNum;

Parameter Name Meaning
flags Flags

A_UNCONDITIONAL Ifit is not enabled, an existing
block of the same type with the
same number is not overwritten.
A_UNCONDITIONAL is en-
abled, an existing block of the
same type with the same numbet i
overwritten.

A_FILE If it is enabledpBufferpoints to a
string with a file name. The speci
fied file contains the block.

A_ZERO_FLAG This flag can be connected with
other options by an OR operatior.
It must be set if no other flag is
used.

ConniD Connection reference from Mi7Klnitiate call.
pBuffer Data buffer containing the data of the block.

If A_FILE is enabledpBufferpoints to a string with a file

name. The specified file contains the block.

nBufsiz Length of the data buffer.

Ignored if A_FILE is enabled.

BlkTyp Block types:

M7BLKTYP_OB Organization block

M7BLKTYP_DB Data block

M7BLKTYP_FC Function call

M7BLKTYP_SFC System function call

M7BLKTYP_FB Function block

M7BLKTYP_SFB System function block

BIkNum Number of block

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-141

M70OVSWrite

M7 API

Description

Return Value

Error Codes

Note

See Also

5-142

The M70OVSWrite function copies the specified block from the specified
buffer or file to the memory of a remote S7 CPU or M7.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code

Meaning

M7E_NO_MEM

No more memory available

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_CONN_CLOSED

Connection closed

M7E_KSUB_PARAM

Parametererror

M7E_KSUB_FILEIO

File handling error

M7E_KSUB_REMOTE

Execution error on server

M7E_KSUB_SDB_WAS_DELETED

Connection deleted by STEP7, con-
nection is no longer active

A restart is not possible on the M7.

M70VSCompress, M70VSDelete, M7OVSFindFirst, M70OVSFindNext,
M70VSLinkln, M7TO0VSMemMode, M70VSRead, M70VSSetObjec-

tHeader

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7PBKBrcv
M7PBKBrcv
Function Block-oriented receive data via configured connections
Syntax #include <m7api.h>
M7ERR_CODE M7PBKBrcv(
UDWORD flags,
M7CONNID ConniD,
UDWORD R_ID,
M7VARADDR_PTR pDstVar
UDWORD nLength
M7COMMFRB_PTR pCommFRB
unsigned intMprio);
Parameters Parameter Name Meaning
flags Flags
A_ZERO_FLAG This flag can be connected with ot
options by an OR operation. It mus
be set if no other flag is used.
A_USER The A_USER Flag is used for con-
trolling the parametepDstVar(see
below).
ConnlD Connection reference from Mi7Klnitiate call.
R_ID Block identifier for the remote Bsend blocki7PBKBsend
call.
pDstVar Pointer to the receive buffer.
A_USER not set
Pointer toonestructure of typd7VARADDR . It specifies &
contiguous area of items of a local S7 object to which the]
received data are copied.
A_USER set
Pointer to a buffer to which the received data are written.
nLength Total length of the buffer in bytes.
pCommFRB Pointer to the function request block.
Mprio Priority of the message dispatched (0-255).
Description M7PBKBrcv starts an asynchronous communication job for a buffer of

nLengthbytes via the connectid@onnID from a BSEND block or

M7PBKBsendcall with identifierR_ID. According to the specifiefiiags
parameter, the data are written either to a buffer in the address area of the
task (flags=A_USER) or to the data area of the S7 object server (flags=0).

When the A_USER flag is not set, then tiieengthparameter is not evalu-

er

ated, but the buffer length is determined from one of the data structures
pointed to by the parametp&rcVaror pDstVar respectively. In this case

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-143

M7PBKBrcv

M7 API

Return Value

Error Codes

See Also

5-144

nLengthcan be assigned any value. Otherwise if the A_USER flag is set, you
must assigmLengththe buffer length.

When the data have been transferred from the local station, or an error has
occurred, an M7MSG_PBK_NDR message is created p@thmmFRB The

FRB may not be used for any other purpose in the time between the
M7PBKBrcv call and receipt of the M7MSG_PBK_NDR message.

After receipt of the M7MSG_PBK_NDR Message the number of the received
bytes can be get i7GetCommRcvLencall.

M7PBKBrcv calls can be canceled wih7PBKCancel.

If an error occurs in the asynchronous part, it can be read from the referenced
M7COMMFRB with the M7GetCommStatus macro.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority
M7E_KSUB_PARAM Parametererror
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating
mode
M7E_PAR Parametererror
M7E_PART Subarea not available
M7E_PER_BITS Bit addressing not permitted in /O
area
M7E_TYPE Data type is invalid

M7GetCommRcvLen, M7PBKBsend, M7PBKCancel

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7PBKBsend
M7PBKBsend
Function Block-oriented send via configured connections
Syntax #include <m7api.h>
M7ERR_CODE M7PBKBsend(
UDWORD flags,
M7CONNID ConniD,
UDWORD R_ID,
M7VARADDR_PTR pSrcVar,
UDWORD nLength
M7COMMFRB_PTR pCommFRB
unsigned intMprio);
Parameters Parameter Name Meaning
flags Flags

A_USER The A_USER Flag is used for con-
trolling the parametersSrcVar(see
below).

A_ZERO_FLAG This flag can be connected with ot
options by an OR operation. It mus
be set if no other flag is used.

ConniD Connection reference from MiKlnitiate call.

R_ID Block identifier for the remote BRCV block bf7PBKBrcv
call.

pSrcVar Pointer to the data to be sent.

A_USER not set

Pointer toonestructure of typ&7VARADDR . It specifies &

contiguous area of items in a local S7 object.

A_USER set

Pointer to a buffer containing the data to be sent.

nLength Total length of the buffer in bytes.

pCommFRB Pointer to the function request block.

Mprio Priority of the message dispatched (0-255).
Description M7PBKBsendstarts asynchronous transmission of a data arehesfgthvia

the connectiorConnID to the BRCV block specified by thie_ID identifier
or theM7PBKBrcv call on the remote station.

If flags=A_USER, the data to be sent begin at the address specified by

pSrcVar.

er

If flags=0, pSrcVarspecifies the address of the variable to be sent in the ad-
dress area of the S7 object server.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-145

M7PBKBsend

M7 API

Return Value

Error Codes

See Also

5-146

When the A_USER flag is not set, then tiiesngthparameter is not evalu-

ated, but the buffer length is determined from one of the data structures
pointed to by the parametp&rcVaror pDstVar respectively. In this case
nLengthcan be assigned any value. Otherwise if the A_USER flag is set, you
must assigmLengththe buffer length.

When the data have been transferred from the local station, or an error has
occurred, an M7MSG_PBK_DONE message is created p@ttmmFRB

The FRB may not be used for any other purpose in the time between the
M7PBKBsendcall and receipt of the M7MSG_PBK_DONE message.

M7PBKBsendcalls can be canceled wih7PBKCancel.

If an error occurs in the asynchronous part, it can be read from the referenced
M7COMMFRB with the M7GetCommStatus macro.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority
M7E_KSUB_PARAM Parametererror
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating
mode
M7E_PAR Parametererror
M7E_PART Subarea not available
M7E_PER_BITS Bit addressing not permitted in /O
area
M7E_TYPE Data type is invalid

M7GetCommStatus, M7PBKBrcv, M7PBKCancel

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7PBKCancel

M7PBKCancel

Function Cancel running send or receive job via configured connections

Syntax #include <m7api.h>
M7ERR_CODE M7PBKCancel(

M7CONNID ConnlD,
M7COMMFRB_PTR pCommFRE

Parameters Parameter Name Meaning
ConniD Connection reference from Mi7Klnitiate call.
pCommFRB Pointer to a function request block.

Description M7PBKCancel cancels a runninyl7PBKBsend, M7PBKBrcv or
M7PBKURcvjob. The send or receive job to be canceled is specified by the
parameter€onnlDandpCommFRBseeM7PBKBrcv or M7PBKBsend.

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_NO_SUCH_FRB *M7COMMFRB not operational
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

See Also M7KInitiate, M7PBKBsend, M7PBKBrcv, M7PBKURcv

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-147

M7PBKGet M7 API
M7PBKGet
Function Start asynchronous variable reading via configured connections
Syntax #include <m7api.h>
M7ERR_CODE M7PBKGet(
M7CONNID ConniD,
UBYTE nVars
M7VARADDR_PTR pRemoteVar,
M7VARADDR_PTR pDstVar
M7COMMFRB_PTR pCommFRB
unsigned intMprio);
Parameters Parameter Name Meaning
ConniD Connection reference from MiKlnitiate call.
nVars Number of variables to be read.
pRemoteVar Array with the address specificatioid7VARADDR) . It
specifies the variables to be read from the remote station.
pDstVar Array with the address specificatioi7VARADDR) . It
specifies for receiving data the variables of the S7 object
server of the local station .
pCommFRB Pointer to the function request block.
Mprio Priority of the message dispatched (0-255).
Description M7PBKGetstarts the asynchronous process for readivaysfrom the vari-

5-148

able area of the S7 object server or from the S7 CPU data area on the remote
station into the variable area of the S7 object server on the local station.

The following conditions apply to the maximum user data length for the
M7PBKGet call:

nVars

(4 nByte$i)) maxpdusize 44
i=1

and
0 maxpdusize 42 * (n\Vars 1)

maxpdusizas the maximum PDU size for the connection opened with
M7KInitiate andnBytes(i)is the number of bytes for the i-th variable,
rounded up to the nearest even number.

pRemoteVaandpDstVarare pointers to arrays witiVars elements each.
Each element specifies a contiguous area of items on the S7 object server or
in the S7 CPU data area (dd2BUBReadl.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API

M7PBKGet

Return Value

Error Codes

See Also

When the data have been stored in the data area specifpgasbyar an
M7MSG_PBK_NDR message is created fl@ommFRBThe FRB may not
be used for any other purpose in the time betweeM#teBKGetcall and
receipt of the M7MSG_PBK_NDR message.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority
M7E_KSUB_PARAM Parametererror

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_CONN_CLOSED

Connection closed

M7E_KSUB_REMOTE

Execution error on server

M7E_KSUB_SDB_WAS_DELETED

Connection deleted by STEP7, con-
nection is no longer active

M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE

lllegal action in current operating
mode

M7E_PAR

Parametererror

M7E_PART

Subarea not available

M7E_PER_BITS

Bit addressing not permitted in /O
area

M7E_TYPE

Data type is invalid

M7KInitiate, M7PBKPut, M7BUBRead

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-149

M7PBKIAbort

M7 API

M7PBKIAbort

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

5-150

Close an application link (for internal SIMATIC station communication
via non-configured connections)

#include <m7api.h>

M7ERR_CODE M7PBKIAbort(
UBYTE IOID,
UWORD LADDR);

Parameter Name Meaning
10ID Input or output address area
(M7KIOID_IN, M7KIOID_OUT)
LADDR 1/0 start address of remote station
(0-MAX_LOG_ADDR)

The M7PBKIAbort function closes an application link between a client and
server which were set up with the functiongPBKIPut or M7PBKIGet.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_ACTIVE The connection to statidtADDRIs cur-

rently active and cannot be closed.

M7PBKIPut, M7PBKIGet

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7PBKIGet
M7PBKIGet
Function Start asynchronous variable reading (for internal SIMATIC station com-
munication via non-configured connections)
Syntax #include <m7api.h>
M7ERR_CODE M7PBKIGet(
UDWORD flags,
UBYTE IOID,
UWORD LADDR,
M7VARADDR_PTR pRemoteVar
M7VARADDR_PTR pDstVar
M7COMMFRB_PTR pCommFRB
unsigned intMprio);
Parameters Parameter Name Meaning
flags Flags
CONT If CONT is set the application link set
up by the data transfer is retained.
If CONT is not set the application link
set up by the data transfer is closed
again after the data transfer
A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must be
set if no other flag is used.
10ID Input or output address area (M7KIOID_IN, M7KIOID_OUT)
LADDR 1/0 start address of remote station (0-MAX_LOG_ADDR)
pRemoteVar Pointer toonestructure of typ&7VARADDR . It specifies a
contiguous area of items of a S7 object in the remote station.
pDstVar Pointer toonestructure of typ&7VARADDR . It specifies for
receiving data a variable of the S7 object in the local station .
pCommFRB Pointer to the function request block
MPrio Priority of the message sent (0-255)
Description M7PBKIGet starts asynchronous reading of a variable from the variable area

of the S7 object server on the remote statiADDR to the variable area of
the S7 object server on the local station.

An application link with the remote station is set up if one does not already
exist. If theCONTflag is enabled, the link remains intact after the end of data
transfer. When the application link is no longer required, it must be closed
with the M7PBKIAbort call. If the CONTflag is not enabled, the application
link is closed again automatically after the end of data transfer.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-151

M7PBKIGet

M7 API

Note

Return Value

Error Codes

See Also

5-152

pRemoteVaandpDstVarare pointers to elements which specify a contiguous

area of items in the S7 object server (s&8BUBRead.

If the data are stored in the data area specifiegDstVa, an
M7MSG_PBK_NDR message is created fl@ommFRBThe FRB may not

be used for any other purpose in the time between the M7PBKIGet call and

receipt of the M7MSG_PBK_NDR message.

The user data length amount to 76 byte.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority

M7E_KSUB_CONN_ACTIVE

The connection to statidtADDRIs cur-
rently active. No data can be transferred.

M7E_KSUB_NO_SRV

MPI driver not active

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_REMOTE

Execution error on server

M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE

lllegal action in current operating mode

M7E_PAR

Parametererror

M7E_PART Subarea not available
M7E_PER_BITS Bit addressing not permitted in I/0 area
M7E_TYPE Data type is invalid

M7GetCommStatus, M7PBKIAbort, M7PBKIPut, M7BUBRead

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7PBKIPut
M7PBKIPut
Function Start asynchronous variable writing (for internal SIMATIC station com-
munication via non-configured connections)
Syntax #include <m7api.h>
M7ERR_CODE M7PBKIPut(
UDWORD flags,
UBYTE IOID,
UWORD LADDR,
M7VARADDR_PTR pRemoteVar
M7VARADDR_PTR pSrcVag
M7COMMFRB_PTR pCommFRB
unsigned intMprio);
Parameters Parameter Name Meaning
flags Flags
CONT If CONT is set the application link
set up by the data transfer is retained.
If CONT is not set the application
link set up by the data transfer is
closed again after the data transfer
A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.
10ID Input or output address area (M7KIOID_IN,
M7KIOID_OUT)
LADDR 1/0 start address of remote station (0-MAX_LOG_ADDR
pRemoteVar Pointer toonestructure of typ&7VARADDR . It specifies
the variables to be overwritten in the S7 object server or the
S7 CPU data area of the remote station
pSrcVar Pointer toonestructure of typ&7VARADDR . It specifies
the variables to be sent in the S7 object server of the local
station
pCommFRB Pointer to the function request block
MPrio Priority of the message sent (0-255)
Description M7PBKIPut starts asynchronous writing of a variable in the S7 object server

or the S7 CPU data area of the remote stdti®ADR with the values of a
local variable of the S7 object server.

An application link with the remote station is set up if one does not already
exist. If theCONTflag is enabled, the link remains intact after the end of data
transfer. When the application link is no longer required, it must be closed

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-153

M7PBKIPut

M7 API

Note

Return Value

Error Codes

See Also

5-154

with the M7PBKIAbort call. If the CONTflag is not enabled, the application

link is closed again automatically after the end of data transfer.

pRemoteVaandpSrcVarare pointers to the address specifications of the re-

mote or local variables in the S7 object server/S7 CPU data area.

When the data have been stored on the remote computer, or an error has oc-

curred, an M7MSG_PBK_DONE message is created pltbmmFRB The
FRB may not be used for any other purpose in the time between the
M7PBKIPut call and receipt of the M7MSG_PBK_DONE message.

The user data length amount to 76 byte.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority

M7E_KSUB_CONN_ACTIVE

The connection to statidtADDRIs cur-
rently active. No data can be transferred.

M7E_KSUB_NO_SRV

MPI driver not active

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_REMOTE

Execution error on server

M7E_LENGTH Incorrectlength

M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror

M7E_PART Subarea not available
M7E_PER_BITS Bit addressing not permitted in I/O area
M7E_TYPE Data type is invalid

M7GetCommStatus, M7PBKIAbort, M7PBKIGet, M7BUBWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7PBKPrint
M7PBKPrint
Function Send data with a format description
Syntax #include <m7api.h>
M7ERR_CODE M7PBKPrint(

UDWORD flags,

M7CONNID ConniD,

UBYTE printerID,

UBYTE * fmt,

UBYTE nVars

M7VARDATA_PTR pSrcVar

M7COMMFRB_PTR pCommFRB

unsigned int MPrio);
Parameters Parameter Name Meaning

flags Flags
ConnlD Connection ID
printerlD Printer ID
fmt Format string (null-terminated)
n_Vars Number of send parameters
pSrcVar Send parameters
pCommFRB Pointer to the function request block
MPrio Priority of the message sent (0-255)

Description M7PBKPrint starts asynchronous sending of multiple data areas and a for-

mat string via connectio@onnlD to the remote station.

ThenVarsparameter specifies the number of data areas to be transferred.
pSrcVarpoints to an array of M7VARDATA objects. Each of these objects
contains a data area to be sent.

The fmt parameter points to a null-terminated format string.

When the data have been accepted by the remote station or an error has oc-
curred, an M7MSG_PBK_DONE message is created pltbmmFRB The

FRB may not be used for any other purpose in the time between the
M7PBKPrint call and receipt of the M7MSG_PBK_DONE message.

If an error occurs in the asynchronous component, it can be read out from the
referenced M7COMMFRB with the mackd7GetCommStatus .

The following conditions apply to the maximum user data length for the
M7PBKPrint call:

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-155

M7PBKPrint

M7 API

Return Value

Error Codes

See Also

5-156

nVars

i:21(4 nBytesi))

maxpdusize

26 langefmt 4*nVars

maxpdusizas the maximum PDU size for the connection opened with

M7KInitiate

andnBytes(i)is the number of bytes for the i-th variable,
rounded to the nearest even number.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority
M7E_KSUB_PARAM Parametererror

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_CONN_CLOSED

Connection closed

M7E_KSUB_REMOTE

Execution error on server

M7E_KSUB_SDB_WAS_DELETED

Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API

M7PBKPut

M7PBKPut

Function

Syntax

Parameters

Description

Start asynchronous variable writing via configured connections

#include <m7api.h>

M7ERR_CODE M7PBKPut(
M7CONNID ConniD,
UBYTE nVars
M7VARADDR_PTR pRemoteVar,
M7VARADDR_PTR pSrcVar
M7COMMFRB_PTR pCommFRB
unsigned int MPrio);
Parameter Name Meaning
ConnlD Connection reference from M7 KlInitiate call.
nVars Number of variables to be written.
pRemoteVar Array with the address specificatioid7VARADDR) . It

specifies the variables to be overwritten on the S7 objeft
server or in the S7 CPU data area of the remote station.

pSrcVar Array with the address specificatiofd7VARADDR) . It
specifies the variables to be sent on the S7 object server of
the local station.

pCommFRB Pointer to the function request block.

MPrio Priority with which a message is sent (0-255).

M7PBKPut starts asynchronous overwriting mfarsvariables on the S7 ob-
ject server or in the S7 CPU data area of the remote station with the values of
local variables on the S7 object server.

pRemoteMaandpSrcVarare pointers to arrays wittvars elements contain-
ing the address specifications of the remote or local variables on the S7 ob-
ject server in the S7 CPU data area.

When the data have been stored on the remote computer, or an error has oc-
curred, an M7MSG_PBK_DONE message is created pltbmmFRB The

FRB may not be used for any other purpose in the time between the
M7PBKPut call and receipt of the M7MSG_PBK_DONE message.

The following conditions apply to the maximum user data length for the
M7PBKPut call:

nVars

(4 nByte$i)) maxpdusize 42 * (nVars 1)
i=1

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-157

M7PBKPut

M7 API

Return Value

Error Codes

See Also

5-158

maxpdusizas the maximum PDU size for the connection opened with

M7KInitiate

andnBytes(i)is the number of bytes for the i-th variable,
rounded to the nearest even number.

= M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority
M7E_KSUB_PARAM Parametererror

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_CONN_CLOSED

Connection closed

M7E_KSUB_REMOTE

Execution error on server

M7E_KSUB_SDB_WAS_DELETED

Connection deleted by STEP7, con-
nection is no longer active

M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset

M7E_OVS_WRONG_STATE

lllegal action in current operating
mode

M7E_PAR

Parametererror

M7E_PART

Subarea not available

M7E_PER_BITS

Bit addressing not permitted in /O
area

M7E_TYPE

Data type is invalid

M7KInitiate, M7BKGet, M7BUBWrite, M7GetCommStatus

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7PBKResume
M7PBKResume
Function Warm restart request for remote communication partner
Syntax #include <m7api.h>

M7ERR_CODE M7PBKResume(M7CONNID ConnlID);
Parameters Parameter Name Meaning

ConniD Connection reference from Mi7Klnitiate call.
Description M7PBKResumesends a RESTART request to the remote computer.

Return Value

Error Codes

Note

See Also

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.
An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server

M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

A restart is not possible on the M7.

M7KInitiate, M7PBKStart, M7PBKStop, M7PBKStatus

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-159

M7PBKStart

M7 API

M7PBKStart

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

5-160

Cold start request for remote communication partner

#include <m7api.h>
M7ERR_CODE M7PBKStart(M7CONNID ConnlD);

Parameter Name Meaning

ConnlD Connection reference from M7 KlInitiate call.

The M7PBKStart function sends a cold RESTART request to the destina-
tion computer for all user programs.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

M7KlInitiate, M7PBKResume, M7PBKStop, M7PBKStatus

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7PBKStatus

M7PBKStatus

Function Get status of remote communication partner

Syntax #include <m7api.h>

M7ERR_CODE M7PBKStatus (
M7CONNID ConniD,
M7PBKSTATUS_PTR pPBKStatus
UDWORD nPBKStatus
UDWORD *pnByte3;

Parameters Parameter Name Meaning
ConnlD Connection reference from Mi7Klnitiate call.
pPBKStatus Pointer to a structure of the typ&/ PBKSTATUS in which

the logical and physical status of the remote device are sfored
(see Chapter 3).
nResultBufsiz Length of the result buffer.
pnBytes Pointer to the number of bytes read.
Description The M7PBKStatus function returns the current virtual device status.
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

See Also M7KInitiate, M7PBKResume, M7PBKStop, M7PBKStart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-161

M7PBKStop M7 API

M7PBKStop

Function Stop request for remote communication partner

Syntax #include <m7api.h>

M7ERR_CODE M7PBKStop (M7CONNID ConniD);

Parameters Parameter Name Meaning
ConniD Connection reference from Mi’Klnitiate call.

Description The M7PBKStop function sends a STOP request for all user programs on the

destination computer.

Return Value = M7SUCCESS: The function was successfully executed.

< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_NO_MEM No more memory available
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_KSUB_CONN_CLOSED Connection closed
M7E_KSUB_REMOTE Execution error on server
M7E_KSUB_SDB_WAS_DELETED Connection deleted by STEP7, con-

nection is no longer active

See Also M7KlInitiate, M7PBKResume, M7PBKSatus, M7PBKStart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-162 C79000-G7076-C852-02

M7 API M7PBKURcv
M7PBKURcv
Function Uncoordinated receive via configured connections
Syntax #include <m7api.h>
M7ERR_CODE M7PBKURcv(
UDWORD flags,
M7CONNID ConnlD,
UDWORD R_ID,
UBYTE n_Vars
M7VARDATA PTR pDstVar
M7COMMFRB_PTR pCommFRB
unsigned int MPrio);
Parameters Parameter Name Meaning
flags Flags (A_ZERO_FLAG)
ConniD Connection ID
R_ID Block identifier for the remote USEND block or
M7PBKUSendall.
n_Vars Number of receive parameters
pDstVar Receiveparameters
pCommFRB Pointer to the function request block
MPrio Priority of the message sent (0-255)
Description M7PBKURcvwstarts asynchronous receipt of multiple data areas via connec-

tion ConnID from a USEND block oM7PBKUSendcall with the identifier
R_ID.

ThenVarsparameter specifies the number of data areas to be received.
pSrcVarpoints to an array of M7VARDATA objects. Each of these objects
contain a data area for the received data.

When the data have been accepted by the local station or an error has oc-
curred, an M7MSG_PBK_NDR message is created p@@bmmFRB The

FRB may not be used for any other purpose in the time between the
M7PBKURcwcall and receipt of the M7MSG_PBK_NDR message.

If an error occurs in the asynchronous component, it can be read out from the
referenced M7COMMFRB with the mackdé7GetCommStatus .

The following condition applies to the maximum user data length for the
M7PBKURcvcall:

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-163

M7PBKURcv

M7 API

Return Value

Error Codes

See Also

5-164

nVars

i:21(4 nBytesi))

maxpdusize

24 4*nVars

maxpdusizas the maximum PDU size for the connection opened with

M7KInitiate

andnBytes(i)is the number of bytes for the i-th variable,
rounded to the nearest even number.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority
M7E_KSUB_PARAM Parametererror

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_CONN_CLOSED

Connection closed

M7E_KSUB_REMOTE

Execution error on server

M7E_KSUB_SDB_WAS_DELETED

Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate, M7PBKUSend

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7PBKUSend
M7PBKUSend
Function Uncoordinated send via configured connections
Syntax #include <m7api.h>
M7ERR_CODE M7PBKUSend(
UDWORD flags,
M7CONNID ConniD,
UDWORD R_ID,
UBYTE n_Vars
M7VARDATA_PTR pSrcVar
M7COMMFRB_PTR pCommFRB,
unsigned int MPrio);
Parameters Parameter Name Meaning
flags Flags (A_ZERO_FLAG)
ConnlD Connection ID
R_ID Block identifier for the remote URCV block or
M7PBKURceall.
n_Vars Number of send parameters
pSrcVar Send parameters
pCommFRB Pointer to the function request block
MPrio Priority of the message sent (0-255)
Description M7PBKUSendstarts asynchronous sending of multiple data areas via connec-

tion ConnIDto the URCV block specified b _ID or theM7PBKURCcwcall
of the remote station.

ThenVarsparameter specifies the number of data areas to be transferred.

pSrcVarpoints to an array of M7VARDATA objects. Each of these objects
contain a data area to be sent.

When the data have been accepted by the remote station or an error has oc-
curred, an M7MSG_PBK_DONE message is created pG@tbmmFRB The

FRB may not be used for any other purpose in the time between the
M7PBKUSendcall and receipt of the M7MSG_PBK_DONE message.

If an error occurs in the asynchronous component, it can be read out from the
referenced M7COMMFRB with the mackd7GetCommStatus .

The following condition applies to the maximum user data length for the
M7PBKUSendcall:

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-165

M7PBKUSend

M7 API

Return Value

Error Codes

See Also

5-166

nVars

i:21(4 nBytesi))

maxpdusize

24 4*nVars

maxpdusizas the maximum PDU size for the connection opened with

M7KInitiate

andnBytes(i)is the number of bytes for the i-th variable,
rounded to the nearest even number.

= M7SUCCESS The function was successfully executed.

< M7SUCCESS An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority
M7E_KSUB_PARAM Parametererror

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_CONN_CLOSED

Connection closed

M7E_KSUB_REMOTE

Execution error on server

M7E_KSUB_SDB_WAS_DELETED

Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate, M7PBKURcv

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7PBKXAbort
M7PBKXAbort
Function Close an application link (for communication on an MPI subnet via non-
configured connections)
Syntax #include <m7api.h>
M7ERR_CODE M7PBKXAbort(UWORD DEST_ID);
Parameters Parameter Name Meaning
DEST_ID MPI node address (0-126).
Description The M7PBKXAbort function closes an application link between client and

Return Value

Error Codes

See Also

server which was set up with the functiddgPBKXSend M7PBKXPut or
M7PBKXGet

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_KSUB_CONN_ACTIVE The connection to node DEST_ID is cur-
rently active and cannot be closed.
M7E_KSUB_NO_SUCH_CONN Invalid connection
M7E_NOT_IMPLEMENTED Function not supported

M7PBKXSend, M7PBKXPut, M7PBKXGet

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-167

M7PBKXCancel M7 API

M7PBKXCancel
Function Cancel running receive requesM7PBKXRcv(for communication on an
MPI subnet via non-configured connections)
Syntax #include <m7api.h>
M7ERR_CODE M7PBKXCancel(
M7COMMFRB_PTR CommFRB);
Parameters Parameter Name Meaning
pCommFRB Pointer to function request block
Description M7PBKCancel cancels a runninlyl7PBKXRcvrequest.
The FRB may not be used for any other purpose until receipt of the
M7MSG_PBK_NDR message. If an error occurs in the asynchronous compo-
nent, it can be read out from the referenced M7COMMFRB with the macro
M7GetCommStatus .
Return Value = M7SUCCESS The function was successfully executed.
<M7SUCCESS An error occurred.
Error Codes Error Code Meaning
M7E_KSUB_NO_SRV MPI driver not active
M7E_KSUB_REMOTE Execution error on server
M7E_NOT_IMPLEMENTED Function not supported
See Also M7PBKXRcv, M7GetCommStatus

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-168 C79000-G7076-C852-02

M7 API M7PBKXGet
M7PBKXGet
Function Asynchronous variable reading (for communication on an MPI subnet
via non-configured connections)
Syntax #include <m7api.h>
M7ERR_CODE M7PBKXGet(
UDWORD flags,
UWORD DEST_ID,
M7VARADDR_PTR pRemoteVar
M7VARADDR_PTR pDstVar
M7COMMFRB_PTR pCommFRB
unsigned intMprio);
Parameters Parameter Name Meaning
flags Flags
CONT If CONT is set the application link
set up by the data transfer is retained.
If CONT is not set the application
link set up by the data transfer is
closed again after the data transfer
A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.
DEST_ID MPI address (0-126)
pRemoteVar Pointer toonestructure of typ&7VARADDR . It specifies
the variable to be read from the remote station
pDstVar Pointer toonestructure of typ&7VARADDR . It specifies
the variable of the S7 object server for receiving data.
pCommFRB Pointer to the function request block
MPrio Priority of the message sent (0-255)
Description M7PBKXGetstarts asynchronous reading of a variable from the variable area

of the S7 object server or the S7 CPU data area on the remote station
DEST_IDto the variable area of the S7 object server on the local station.

An application link with the remote station is set up if one does not already
exist. If theCONTflag is enabled, the link remains intact after the end of data
transfer. When the application link is no longer required, it must be closed
with the M7PBKXAbort call. If the CONTflag is not enabled, the application
link is closed again automatically after the end of data transfer.

pRemoteVaandpDstVarare pointers to elements which specify a contiguous
area of items in the S7 object server or in the S7 CPU data ardd{B&k
BRead).

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-169

M7PBKXGet

M7 API

Note

Return Value

Error Codes

See Also

5-170

If the data are stored in the data area specifiepDstVa, an
M7MSG_PBK_NDR message is generatedd@ommFRBThe FRB may
not be used for any other purpose in the time betweeMfieBKXGetcall
and receipt of the M7MSG_PBK_NDR message.

The user data length amount to 76 byte.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority

M7E_KSUB_CONN_ACTIVE

The connection to statiddEST_IDis cur-
rently active. No data can be transferred.

M7E_KSUB_NO_SRV

MPI driver not active

M7E_KSUB_NO_SUCH_CONN

Invalid connectionDEST _IDincorrect)

M7E_KSUB_REMOTE

Execution error on server

M7E_LENGTH

Incorrectlength

M7E_NOT_IMPLEMENTED

Function is not supported

M7E_OBJ

Object type not supported

M7E_OFFSET

Incorrect offset

M7E_OVS_WRONG_STATE

lllegal action in current operating mode

M7E_PAR

Parametererror

M7E_PART Subarea not available
M7E_PER_BITS Bit addressing not permitted in I/O area
M7E_TYPE Data type is invalid

M7BUBRead, M7GetCommStatus, M7PBKXAbort, M7PBKPut

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7PBKXPut
M7PBKXPut
Function Start asynchronous variable writing (for communication on an MPI sub-
net via non-configured connections)
Syntax #include <m7api.h>
M7ERR_CODE M7PBKXPut(
UDWORD flags,
UWORD DEST_ID,
M7VARADDR_PTR pRemoteVar
M7VARADDR_PTR pSrcVar
M7COMMFRB_PTR pCommFRB
unsigned intMprio);
Parameters Parameter Name Meaning
flags Flags
CONT If CONT is set the application link set
up by the data transfer is retained.
If CONT is not set the application link
set up by the data transfer is closed
again after the data transfer
A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must be
set if no other flag is used.
DEST_ID MPI address (0-126)
pRemoteVar Pointer toonestructure of typ&7VARADDR . It specifies
the variable to be overwritten in the S7 object server or the S7
CPU data area of the remote station
pSrcVar Pointer toonestructure of typ&7VARADDR . It specifies
the variable to be sent in the S7 object server of the local sta-
tion
pCommFRB Pointer to the function request block
MPrio Priority of the message sent (0-255)
Description M7PBKXPut starts asynchronous overwriting of a variable in the S7 object

server or S7 CPU data area of the remote st&tle®T |IDwith the values of
a local variable on the S7 object server.

An application link with the remote station is set up if one does not already
exist. If theCONTflag is enabled, the link remains intact after the end of data
transfer. When the application link is no longer required, it must be closed
with the M7PBKXAbort call. If the CONTflag is not enabled, the application
link is closed again automatically after the end of data transfer.

pRemoteVaandpSrcVarare pointers to the address specifications of the re-
mote or local variable in the S7 object server/S7 CPU data area.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-171

M7PBKXPut

M7 API

Note

Return Value

Error Codes

See Also

5-172

If the data are stored on the remote computer, or an error has occurred, an

M7MSG_PBK_DONE message is created wibtommFRBThe FRB may
not be used for any other purpose in the time betweeMTRBKXPut call
and receipt of the M7MSG_PBK_DONE message.

The user data length amount to 76 byte.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning
M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority

M7E_KSUB_CONN_ACTIVE

The connection to statiddEST_IDis cur-
rently active. No data can be transferred.

M7E_KSUB_NO_SRV

MPI driver not active

M7E_KSUB_NO_SUCH_CONN

Invalid connectionDEST _IDincorrect)

M7E_KSUB_REMOTE

Execution error on server

M7E_LENGTH

Incorrectlength

M7E_NOT_IMPLEMENTED

Function is not supported

M7E_OBJ

Object type not supported

M7E_OFFSET

Incorrect offset

M7E_OVS_WRONG_STATE

lllegal action in current operating mode

M7E_PAR

Parametererror

M7E_PART Subarea not available
M7E_PER_BITS Bit addressing not permitted in I/O area
M7E_TYPE Data type is invalid

M7BUBWErite, M7GetCommStatus, M7PBKXAbort, M7PBKPXGet

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7PBKXRcv
M7PBKXRcv
Function Receive data (for communication on an MPI subnet via non-configured
connections)
Syntax #include <m7api.h>
M7ERR_CODE M7PBKXRcv(
UDWORD flags,
UDWORD R_ID,
M7VARADDR_PTR pDstVar
UDWORD nLength
M7COMMFRB_PTR pCommFRB
unsigned int MPrio);
Parameters Parameter Name Meaning
flags Flags

A_USER The A_USER Flag is used for con-
trolling the parametesDstVar(see
below).

A_ZERO_FLAG This flag can be connected with other
options by an OR operation. It must
be set if no other flag is used.

R_ID Block identifier for the remote XSEND block or

M7PBKXSenctall.

pDstVar Pointer to the receive buffer.

A_USER not set

Pointer toonestructure of typd7VARADDR . It specifies &

contiguous area of items of an S7 object into which the re-

ceived data are copied.

A_USER set

Pointer to a buffer to which the received data are written.

nLength Total length of the buffer in bytes
pCommFRB Pointer to the function request block
MPrio Priority of the message sent (0-255)
Description M7PBKXRcvstarts an asynchronous receive request for a bufferesfgth

bytes from an XSEND block or M7PBKXSend call with identifierID. De-
pending on the specifidthgs, the data are written to a buffer in the address
area of the task (Flags=A_USER) or to the data area of the S7 object server
(flags=A_ZERO_FLAG).

When the A_USER flag is not set, then tiieengthparameter is not evalu-
ated, but the buffer length is determined from one of the data structures
pointed to by the parametp&rcVaror pDstVar respectively. In this case

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-173

M7PBKXRcv

M7 API

Note

Return Value

Error Codes

See Also

5-174

nLengthcan be assigned any value. Otherwise if the A_USER flag is set, you
must assigmLengththe buffer length.

When the data have been accepted by the local station or an error has oc-
curred, an M7MSG_PBK_NDR message is created p@@bmmFRBThe

FRB may not be used for any other purpose in the time between the
M7PBKXRcv call and receipt of the M7MSG_PBK_NDR message.

After receipt of an M7MSG_PBK_NDR message, the number of bytes re-
ceived can be determined using MéGetCommRcvLencall.

M7PBKXRcvcalls can be canceled with7PBKXCancel.

If an error occurs in the asynchronous component, it can be read out from the
referenced M7COMMFRB with the mackd7GetCommStatus .

The user data length amount to 76 byte.

= M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Code Meaning

M7E_KSUB_NO_SRV

MPI driver not active

M7E_KSUB_REMOTE

Execution error on server

M7E_NO_MEM No more memory available
M7E_PRIO Incorrect priority
M7E_LENGTH Incorrectlength

M7E_NOT_IMPLEMENTED

Function is not supported

M7E_OBJ

Object type not supported

M7E_OFFSET

Incorrect offset

M7E_OVS_WRONG_STATE

lllegal action in current operating mode

M7E_PAR

Parametererror

M7E_PART Subarea not available
M7E_PER_BITS Bit addressing not permitted in I/O area
M7E_TYPE Data type is invalid

M7GetCommRcvLen, M7GetCommStatus, M7PBKXSend,

M7PBKXCancel

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

2d.

ner
t

M7 API M7PBKXSend
M7PBKXSend
Function Send data (for communication on an MPI subnet via non-configured con-
nections)
Syntax #include <m7api.h>
M7ERR_CODE M7PBKXSend(
UDWORD flags,
UWORD DEST_ID,
UDWORD R_ID,
M7VARADDR_PTR pSrcVar
UDWORD nLength
M7COMMFRB_PTR pCommFRB
unsigned int MPrio);
Parameters Parameter Name Meaning
flags Flags

CONT If CONT is set the application link
set up by the data transfer is retaine
If CONT is not set the application
link set up by the data transfer is
closed again after the data transfer

A_USER The A_USER Flag is used for con-
trolling the parametersSrcVar(see
below).

A_ZERO_FLAG This flag can be connected with ott
options by an OR operation. It mus
be set if no other flag is used.

DEST_ID MPI address (0-255)

R_ID Block identifier for the remote XRCV block 847PBKXRcv
call.

pSrcVar Pointer to the data to be sent.

A_USER not set

Pointer toonestructure of typ&7VARADDR . It specifies &

contiguous area of items in a local S7 object.

A_USER set

Pointer to a buffer containing the data to be sent.

nLength Total length of the buffer in bytes
pCommFRB Pointer to the function request block
MPrio Priority of the message sent (0-255)
Description M7PBKXSendstarts asynchronous sending of a data area of lehgthgth

to the nodeDEST _IDto the XRCV block oM7PBKXRcvcall, specified by
R_ID, on the remote station.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-175

M7 API

An application link with the node is set up if one does not already exist. If
the CONTflag is enabled, the link remains intact after the end of data trans-
fer. When the application link is no longer required, it must be closed with
the M7PBKXAbort call. If the CONTflag is not enabled, the application link
is closed again automatically after the end of data transfer.

If the A_USER flag is enabled, the data to be sent begin at the address speci-
fied by pSrcVar

If the A_USER flag is not enabledSrcVarspecifies the address of the vari-
able to be sent in the address area of the S7 object server.

When the A_USER flag is not set, then tiieengthparameter is not evalu-

ated, but the buffer length is determined from one of the data structures
pointed to by the parametp&rcVaror pDstVar respectively. In this case
nLengthcan be assigned any value. Otherwise if the A_USER flag is set, you
must assigmLengththe buffer length.

When the data have been accepted by the remote station or an error has oc-
curred, an M7MSG_PBK_DONE message is created pltbmmFRB The

FRB may not be used for any other purpose in the time between the
M7PBKXSendcall and receipt of the M7MSG_PBK_DONE message.

If an error occurs in the asynchronous component, it can be read out from the
referenced M7COMMFRB with the mackd7GetCommStatus .

Note The user data length amount to 76 bytes.

Return Value = M7SUCCESS The function was successfully executed.
< M7SUCCESS An error occurred.

Error Codes Error Code Meaning

M7E_KSUB_CONN_ACTIVE The connection to statiddEST_IDis cur-
rently active. No data can be transferred.

M7E_KSUB_NO_SRV MPI driver not active

M7E_KSUB_NO_SUCH_CONN Invalid connectionEST_IDincorrect)

M7E_KSUB_REMOTE Execution error on server

M7E_LENGTH Wrong length

M7E_NO_MEM No more memory available

M7E_NOT_IMPLEMENTED Function is not supported

M7E_OBJ Object type is not supported

M7E_OFFSET Wrong offset

M7E_OVS_WRONG_STATE Activity not permited in the actual working
state

M7E_PAR Error of parameter

M7E_PART Subdomain not available

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-176 C79000-G7076-C852-02

M7 API M7PBKXSend
Error Code Meaning
M7E_PER_BITS Bit address is inadmissible in the periphe
area
M7E_PRIO Incorrectpriority
M7E_TYPE Data type is invalid
See Also M7GetCommStatus, M7PBKXAbort, M7PBKXRcv

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-177

al

M7Read

M7 API

M7Read

Function

Syntax

Parameters

Description

Return Value

Error Codes

5-178

Read S7 data area

#include <m7api.h>

M7ERR_CODE

M7Read(
VOID_PTR pBuffer
UBYTE ObjType
UWORD Part,
UBYTE DataType
UWORD Count
UDWORD Addp);

Parameter Name Meaning

pBuffer Pointer to the destination buffer

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.) The permissible values for the
subarea depend on the type of S7 object (see Table 2-8)

DataType Data type of an element (see Table 2-9). For the data typ
M7DT_BOOL is only available the value 1 for the parame
LENGTH.

Count Number of elements to be read

Addr Address or offset within an object or subare®dfaType#
BOOL, Addr must be a multiple of 8 bits.

Y

[}

ter

The function reads a defined number of data elements from an S7 data area
and copies them to a user data area.

The contents of the data area are natonverted from SIMATIC to Intel
numeric representation.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror
M7E_PART Subarea not available

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7Read
Error Code Meaning
M7E_PER_BITS Bit addressing not permitted in I/O area
M7E_TYPE Data type is invalid
See Also M7ReadBit, M7ReadByte, M7ReadDWord, M7ReadWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-179

M7ReadBit M7 API

M7ReadBit

Function Read bit from S7 object

Syntax #include <m7api.h>
BOOL M7ReadBit(

UBYTE ObjType
UWORD Part,
UWORD ByteOffset
UBYTE BitOffset,
M7ERR_CODE_PTR pError);
Parameters Parameter Name Meaning
ObjType Type identifier for the desired S7 object (see Table 2-7).
Part Subarea (DB number, etc.) The permissible values for the
subarea depend on the type of S7 object (see Table 2-8)
ByteOffset Offset of the byte where the desired bit is stored
BitOffset Offset of the desired bit within the byte
pError Pointer to a variable of the type M7ERR_CODE, in which an
error code is to be stored.
Description The function reads a bit from an S7 object. The bit is defined by the above
parameters.
Return Value If the function is successfully executed, the return value is the state of the
addressed bit. If the state = ‘0’, the value is FALSE; if the state = ‘1’, the
value is TRUE.
Error Codes Error Code Meaning
M7E_BIT_OFFSET Incorrect bit offset within the byte
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror
M7E_PART Subarea not available
M7E_PER_BITS Bit addressing not permitted in I/O area
M7E_TYPE Data type is invalid

See Also M7Read, M7ReadByte, M7ReadDWord, M7ReadWord, M7ReadReal

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-180 C79000-G7076-C852-02

M7 API M7ReadByte
M7ReadByte
Function Read byte from S7 object
Syntax #include <m7api.h>
UBYTE M7ReadByte(
UBYTE ObjType
UWORD Part,
UWORD ByteOffset
M7ERR_CODE_PTR pError);
Parameters Parameter Name Meaning
ObjType Type identifier for the desired S7 object (see Table 2-7).
Part Subarea (DB number, etc.)
The permissible values for the subarea depend on the type of
S7 object (see Table).
ByteOffset Offset of the desired byte
pError Pointer to a variable of the type M7ERR_CODE, in which an
error code is to be stored.
Description The function reads a byte from an S7 object. The byte is defined by the

Return Value

Error Codes

See Also

above parameters.

If the function is successfully executed, the return value is the value of the
addressed byte.

Error Code Meaning
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror
M7E_PART Subarea not available
M7E_TYPE Data type not supported

M7Read, M7ReadBit, M7ReadDWord, M7ReadWord, M7ReadReal

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-181

M7ReadDWord M7 API

M7ReadDWord
Function Read doubleword from S7 object
Syntax #include <m7api.h>
UDWORD M7ReadDWord(
UBYTE ObjType
UWORD Part,
UWORD ByteOffset
M7ERR_CODE_PTR pError);
Parameters Parameter Name Meaning
ObjType Type identifier for the desired S7 object (see Table 2-7).
Part Subarea (DB number, etc.)
The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)
ByteOffset Offset of the desired doubleword
pError Pointer to a variable of the type ERR_CODE, in which an
error code is to be stored.
Description The function reads a doubleword from an S7 object. The doubleword is de-
fined by the above parameters.
The contents of the doubleword are converted from th&IMATIC to the
Intel numeric representation.
Return Value If the function is successfully executed, the return value is the value of the
addressed doubleword intel format.
Error Codes Error Code Meaning
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror
M7E_PART Subarea not available
M7E_TYPE Data type not supported
See Also M7Read, M7ReadBit, M7ReadByte, M7ReadWord, M7ReadReal

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-182 C79000-G7076-C852-02

M7 API M7ReadReal

M7ReadReal
Function Read floating point number from S7 object
Syntax #include <m7api.h>
REAL M7ReadReal(
UBYTE ObjType
UWORD Part,
UWORD ByteOffset
M7ERR_CODE_PTR pError);
Parameters Parameter Name Meaning
ObjType Type identifier for the desired S7 object (see Table Z-7).
Part Subarea (DB number, etc.)
The permissible values for the subarea depend on the type of
S7 object (see Table 2-3)
ByteOffset Offset of the desired floating point number
pError Pointer to a variable of the type ERR_CODE, in which an
error code is to be stored.
Description The function reads a floating point number from an S7 object. The floating
point number is defined by the above parameters.
The contents of the floating point number are converted from thé&l-
MATIC to the Intel numeric representation.
Return Value If the function is successfully executed, the return value is the value of the
addressed floating point numberlirtel format.
Error Codes Error Code Meaning
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror
M7E_PART Subarea not available
M7E_TYPE Data type not supported
See Also M7Read, M7ReadBit, M7ReadByte, M7ReadDWord, M7WriteReal

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-183

M7ReadWord M7 API

M7ReadWord

Function Read word from S7 object

Syntax #include <m7api.h>
UWORD M7ReadWord(
UBYTE ObjType
UWORD Part,
UWORD ByteOffset
M7ERR_CODE_PTR pError);

Parameters Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)

ByteOffset Offset of the desired word

pError Pointer to a variable of the type ERR_CODE, in which an
error code is to be stored.

Description The function reads a word from an S7 object. The word is defined by the
above parameters.

The contents of the word are converted from th&IMATIC to the Intel
numeric representation.

Return Value If the function is successfully executed, the return value is the value of the
addressed word imtel format.

Error Codes Error Code Meaning
M7E_LENGTH Incorrectlength

M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror

M7E_PART Subarea not available

M7E_TYPE Data type not supported

See Also M7Read, M7ReadBit, M7ReadByte, M7ReadDWord, M7ReadReal

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-184 C79000-G7076-C852-02

M7 API M7RelocateObject
M7RelocateObject
Funktion Pass S7 object to object server
Syntax #include <m7api.h>
M7ERRCODE M7RelocateObject(
UBYTE ObjType
UWORD Part,
BOOL Copy);
Parameters Parameter Name Meaning
ObjType Type identifier for the desired S7 object (see Table 2-7).
Part Subarea (DB number, etc.)

Beschreibung

Return Value

Error Codes

See Also

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)

Copy Handling of new memory area
TRUE The user data of the object are copied to the
new memory area.
FALSE The user data of the object are not trans-
ferred.

This functionM7RelocateObject can be used to pass an S7 ob{ebj-
Type which has previously been assigned to the responsibility of a user task
with the functionM7LocateObject , back to the object server.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_NOT_LOCATED Object was not passed to a user task Mifh.oca-
teObject
M7E_NO_MEM No more memory available
M7E_OBJ Object type not supported.
M7E_PART Subarea not available.
M7LocateObject

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-185

M7RemoveObject M7 API

M7RemoveObject

Function Delete S7 object from BACKDIR or ROMDIR

Syntax #include <m7api.h>
M7ERR_CODE M7RemoveObject(
UBYTE ObjType
UWORD Part,
BOOL Rom);

Parameters Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table 2-7).

Part Subarea (DB number, etc.) The permissible values for the sub-
area depend on the type of S7 object (see Table 2-8).

Rom Rom= FALSE: S7 object is deleted from BACKDIR,
Rom= TRUE: S7 object is deleted from ROMDIR.

Description The function deletes an S7 object from the BACKDIR or ROMDIR directory,
depending on thRomparameter.

Return Value If the function is successfully executed, it returns the value of the addressed
word in Intel format.

The function passes error flags ipError:
= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred (see Error Codes).

Error Codes Error Code Meaning
M7E_PART Subarea not available.

M7E_NODIR Directory not readable or does not exist.

M7E_OBJ Object type not supported.

M7E_REM_OBJ lllegal action because the object is retentive

See Also M7CreateObject, M7DeleteObject, M7GetObjectinfo

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-186 C79000-G7076-C852-02

M7 API M7RequestState
M7RequestState
Function Request operating state change
Syntax #include <m7api.h>
void M7RequestState(
M7TSFRB_PTR pTSFRB
UWORD State,
UWORD Reason,
uint MPrio);
Parameters Parameter Name Meaning
pTSFRB Pointer to the FRB provided for handling the request.
State Specifies the new operating state requested.
The following values can be specified:
M7STATE_HALT HALT operating state
M7STATE_RESET RESET operating state
M7STATE_RUN RUN operating state
M7STATE_STOP STOP operating state
M7STATE_CONTINUE CONTINUE from HALT op-
erating state in the former
state (STARTUP or RUN).
Reason For user diagnostics entries; from 0xA000 to OxBFFF.
MPrio Priority of the message dispatched (0-255).
Description The function requests a change to the operating state specifiedStatbe

Error Codes

parameter.

When the operating state specified in 8tateparameter is activated, or an
error has occurred, the calling task is informed by a message of the type
M7MSG_REQ_FINISHED.

When the M7TMSG_REQ_FINISHED message is received, you can use the C
macroM7GetFRBErrCode to detect whether the function has been success-

ful.

In this caseM7GetFRBErrCode returns the following error codes:

Error Code Meaning
M7E_OST_CPU_IN_STOP CPU in STOP mode (for FM)
M7E_OST_ILLEGAL_PARAM_CPU Parameter error
M7E_OST_MODE_SW_IN_STOP Operating mode selector on CPU/FN

is setto STOP

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-187

f

M7RequestState M7 API

Error Code Meaning
M7E_OST_WRONG_STATE Transition from current state not possi-
ble or requested state already active
M7E_OST_NO_SUCH_STATE Unknown operating state
M7E_PAR Parametererror
M7E_PRIO Incorrect priority
Return Value = M7SUCCESS Always returned

You should check whether the requested operating state has been activated or
denied, or whether an error has occuredter the M7MSG_REQ_FIN-

ISHED message has been receivedith the functionsM7GetFRBE(r-

Code or M7GetTSType.

See Also M7GetState, M7LinkState, M7GetFRBErrCode, M7GetTSType

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-188 C79000-G7076-C852-02

M7 API M7RetriggerCycle

M7RetriggerCycle

Function Retrigger cycle time

Syntax #include <m7api.h>
M7ERR_CODE M7RetriggerCycle(void)

Description The function resets the cycle time, with the result that monitoring of the
maximum cycle time recommences.

Return Value = M7SUCCESS Always returned

See Also M7LinkCycle, M7UnLinkCycle

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-189

M7SendDiagAlarm

M7 API

M7SendDiagAlarm

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

5-190

Send diagnostics alarm to S7 CPU

#include <m7api.h>
M7ERR_CODE

M7SendDiagAlarm(VOID_PTR pAlarminfo);

Parameter Name

Meaning

pAlarminfo

Pointer to a memory area containing the supplementar,
alarm information. The supplementary information is 16

bytes in length and is transferred to diagnostics record

The function sends a diagnostics alarm to the S7/M7 CPU.

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.
An error occurred.

Error Code

Meaning

M7E_GL_ALARM_DISABLED

All alarms are disabled (activated by
S7/M7 CPU).

M7E_ODIS

Output disable (activated by S7/M7
CPU).

M7E_D_ALARM_BUSY

Diagnostics alarm has not yet been ag
nowledged by S7/M7 CPU.

M7E_ALARM_GEN_DISABLED

Alarm generation disabled on module
record 0.

M7E_D_ALARM_GEN_DISABLED

Diagnostics alarm generation disabled
on module in record 0.

M7GetDiagAlarmBusy

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

in

M7 API

M7SendlOAlarm

M7SendIOAlarm

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

Send process alarm to S7 CPU

#include <m7api.h>
M7ERR_CODE

M7SendIOAlarm(UDWORD Alarminfo);

Parameter Name

Meaning

Alarminfo

4 bytes of supplementary alarm information

The function sends a process alarm to the S7/M7 CPU.

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.
An error occurred.

Error Code

Meaning

M7E_GL_ALARM_DISABLED

All alarms are disabled
(activated by S7/M7 CPU).

M7E_ODIS

Output disable
(activated by S7/M7 CPU).

M7E_P_ALARM_BUSY

Process alarm has not yet been ackng
ledged by S7/M7 CPU.

M7E_ALARM_GEN_DISABLED

Alarm generation disabled on module
record 0.

M7E_P_ALARM_GEN_DISABLED

Process alarm generation disabled on
module in record 0.

M7GetlOAlarmBusy

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-191

W-

in

M7SetFRBTag M7 API

M7SetFRBTag
Function Set identifier of an FRB
Syntax #include <m7api.h>
void M7SetFRBTag(
M7FRBHEADER_PTR pFRB
UWORD Tag);
Parameters Parameter Name Meaning
pFRB Pointer to FRB whose identifier is to be set.
Tag Identifier of the FRB
Description The function sets the identifier of the FRB to the value specified imate
parameter.
The value is user-specific and can be allocated freely within the value range
permitted for UWORD.
The FRB identifier can be read out again with MigGetFRBTag function.
The call is implemented as a C macro.
See Also M7GetFRBErrCode, M7GetFRBTag

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-192 C79000-G7076-C852-02

M7 API

M7SetTime

M7SetTime

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

Set date and time

#include <m7api.h>
M7ERR_CODE

M7SetTime(

M7TIME_DATE_PTR pDateTimg;

Parameter Name

Meaning

pDateTime

Pointer to the memory area containing the date/time stru
in which the current values for the date and time are stored
(see Chapter 3).

tture

The function sets the internal system time and date.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code

Meaning

M7E_PAR

Parametererror

M7GetTime

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-193

M7SetUserLED M7 API

M7SetUserLED
Function Control user (USR) LEDs
Syntax #include <m7api.h>
M7ERR_CODE M7SetUserLED(
UWORD Led,
UWORD Mode);
Parameters Parameter Name Meaning
Led Number of user LED:
M7USERLED1 M7-300 and M7-400
M7USERLED2 M7-400 only
Mode Control mode:
M7LED_OFF Switch off LED
M7LED_ON Switch on LED, steady light
M7LED_FLASHSLOW Switch on LED, flashing
light, 0.5 Hz
M7LED_FLASHFAST Switch on LED, flashing
light, 2 Hz
Description The function switches the user LED on, off or flashing (0.5 or 2 Hz), accord-
ing to the value oMode
You specify the number of the “user” LED with thed parameter. M7US-
ERLED1 and M7USERLED?2 can be specified f&d on the M7-400; only
M7USERLEDL1 is allowed on the M7-300.
The selected LED can be switched on or off with the constants M7LED_ON
and M7LED_OFF. The flashing frequency can also be controlled iNitue
parameter by performing a logic operation with M7LED_FLASHSLOW or
M7LED_FLASHFAST.
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning

M7E_PAR Parametererror

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-194 C79000-G7076-C852-02

SE)

M7 API M7StoreBit
M7StoreBit
Function Set bit state in process image
Syntax #include <m7api.h>
M7ERR_CODE M7StoreBit(
UWORD PIType,
UWORD ByteOffset,
UBYTE BitOffset,
BOOL Value);
Parameters Parameter Name Meaning
PIType Identifiers for process images:
M7I10_PII Process image of inputs
M7I10_PIQ Process image of outputs
ByteOffset Offset of signal byte
BitOffset Bit offset within the signal byte
Value State to which the addressed bit is to be set (TRUE or FAL
Description The function addresses a bit in the process image definBtiTgpe and sets

Return Value

Error Codes

See Also

it to the state specified ivalue

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.
An error occurred.

Error Code

Meaning

M7E_PAR

IncorrectP|Type ByteOffsebr BitOffset

M7StoreByte, M7StoreDWord, M7StoreWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-195

M7StoreByte M7 API

M7StoreByte
Function Overwrite byte in process image
Syntax #include <m7api.h>
M7ERR_CODE M7StoreByte(
UWORD PIType,
UWORD ByteOffset,
UBYTE Value);
Parameters Parameter Name Meaning
PIType Identifiers for process images:
M7I10_PII Process image of inputs
M7I10_PIQ Process image of outputs
ByteOffset Offset of signal byte
Value New value with which the byte in the process image is to
be overwritten.
Description The function addresses a byte in the process image definedyye and
overwrites it with the value specified Vfalue
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning
M7E_PAR IncorrectP| Typeor ByteOffset
See Also M7StoreBit, M7StoreDWord, M7StoreWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-196 C79000-G7076-C852-02

M7 API M7StoreDirect

M7StoreDirect
Function Write data direct to 1/O area
Syntax #include <m7api.h>
M7ERR_CODE M7StoreDirect(
VOID_PTR pBuffer,
UWORD SizeOfltem,
UWORD Count,
M7I0_LOGADDR Addr);
Parameters Parameter Name Meaning
pBuffer Pointer to the source buffer
SizeOfltem Size of an element in bytes.
The following constants are predefined:
M7PBYTE Element has data type BYTE
M7PWORD Element has data type WORD
M7PDWORD Element has data type DWORD
Count Number of elements
Addr Logical address of first element
Description The function transfers data directly to the process I/O from a data buffer ref-
erenced byBuffer The size, number and destination of the transferred data
are defined by the call parameters.
The function does not convert the numeric representationSIMATIC/Intel).
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PAR Parametererror
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout
M7E_DP_SLAVE_STATE Device not ready for data communication
See Also M7StoreDirectByte, M7StoreDirectDWord, M7StoreDirectWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-197

M7StoreDirectByte M7 API

M7StoreDirectByte
Function Write byte direct to I/O
Syntax #include <m7api.h>
M7ERR_CODE M7StoreDirectByte(
M710_LOGADDR Addr,
UBYTE Value);
Parameters Parameter Name Meaning
Addr Logical address of the I/0 byte
Value New value with which the I/O byte is to be overwritten.
Description The function addresses a byte on the process I/O and overwrites it with the
value specified byalue
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PAR Parametererror
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout
M7E_DP_SLAVE_STATE Device not ready for data communication
See Also M7StoreDirect, M7StoreDirectDWord, M7StoreDirectWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-198 C79000-G7076-C852-02

M7 API M7StoreDirectDWord
M7StoreDirectDWord
Function Write doubleword direct to I/O
Syntax #include <m7api.h>
M7ERR_CODE M7 StoreDirectDWord(
M710_LOGADDR Addr,
UDWORD Value);
Parameters Parameter Name Meaning
Addr Logical address of the I/0O doubleword
Value New value with which the I/O doubleword is to be over
written, inSIMATIC format.
Description The function addresses a doubleword on the process I/O and overwrites it

Return Value

Error Codes

See Also

with the value specified byalue

Before the value specified byalue is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PAR Parametererror
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout
M7E_DP_SLAVE_STATE Device not ready for data communication

M7StoreDirect, M7StoreDirectByte, M7StoreDirectWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-199

M7StoreDirectWord M7 API

M7StoreDirectWord
Function Write word direct to 1/0
Syntax #include <m7api.h>

M7ERR_CODE M7 StoreDirectWord(
M710_LOGADDR Addr,
UWORD Value);

Parameters Parameter Name Meaning
Addr Logical address of the I/0 word
Value New value with which the 1/O word is to be overwritten, in
SIMATIC format.

Description The function addresses a word on the process I/O and overwrites it with the
value specified byalue

Before the value specified byalue is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PAR Parametererror
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout
M7E_DP_SLAVE_STATE Device not ready for data communication

See Also M7StoreDirect, M7StoreDirectByte, M7StoreDirectDWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-200 C79000-G7076-C852-02

M7 API M7StoreDWord
M7StoreDWord
Function Write doubleword to process image
Syntax #include <m7api.h>
M7ERR_CODE M7StoreDWord(
UWORD PIType,
UWORD ByteOffset,
UDWORD Valug);
Parameters Parameters Name Meaning
PIType Identifiers for process images:
M7I10_PII Process image of inputs
M7I10_PIQ Process image of outputs
ByteOffset Offset of signal doubleword
Value New value with which the doubleword in the process
image is to be overwritten, BIMATIC format.
Description The function addresses a doubleword in the process image defined by

Return Value

Error Codes

See Also

PIType and overwrites it with the value specifiedvialue

Before the value specified byalue is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_PAR Parametererror

M7StoreBit, M7StoreByte, M7StoreWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-201

M7StorelSAByte

M7 API

M7StorelSAByte

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

5-202

Write byte direct to ISA bus 1/0

#include <m7api.h>

M7ERR_CODE

M7StorelSAByte(

M710_DESC_PTR plODesg

UBYTE Value);

Parameter Name

Meaning

plODesc

Pointer to I/O descriptor initialized witd 7InitISADesc

Value

Value to be written

The function runs as a macro, performing a direct access to the ISA bus pro-
cess I/0, using an 1/O descriptor generated WithnitiISADesc .The

value to be written is defined al. The address of the 1/0O area is defined

by the I/O descriptor for the output signals. The process image of outputs is
updated automatically.

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.

An error occurred.

Error Code

Meaning

M7E_PAR

M7InitISADesc

Data access to ISA bus is larger (in bytes) than specified in

M7StorelSAWord, M7StorelSADWord, M7InitISADesc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

M7 API M7StorelSADWord

M7StorelSADWord

Function Write doubleword direct to ISA bus I/O

Syntax #include <m7api.h>

M7ERR_CODE M7StorelSADWord(
M710_DESC_PTR plODesg

UDWORD val);
Parameters Parameter Name Meaning
ploDesc Pointer to I/O descriptor initialized witd 7InitISADesc
val Value to be written
Description The function runs as a macro, performing a direct access to the ISA bus pro-

cess I/0, using an 1/O descriptor generated WithnitiISADesc . The

value to be written is defined al. The address of the 1/0O area is defined

by the I/O descriptor for the output signals. The process image of outputs is
updated automatically.

The function converts the value from Intel to SIMATIC format before
performing the access.

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning

M7E_PAR Data access to ISA bus is larger (in bytes) than specified in
M7InitISADesc

See Also M7StorelSAByte, M7StorelSAWord, M7InitISADesc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-203

M7StorelSAWord M7 API
M7StorelSAWord
Function Write word direct to ISA bus 1/0
Syntax #include <m7api.h>
M7ERR_CODE M7 StorelSAWord(
M7I0_DESC_PTR plODes¢
UWORD val);
Parameters Parameter Name Meaning
ploDesc Pointer to I/O descriptor initialized witd 7InitISADesc
val Value to be written
Description The function runs as a macro, performing a direct access to the ISA bus pro-

Return Value

Error Codes

See Also

5-204

cess I/0, using an 1/O descriptor generated WithnitiISADesc . The

value to be written is defined al. The address of the 1/0O area is defined

by the I/O descriptor for the output signals. The process image of outputs is
updated automatically.

The function converts the value from Intel to SIMATIC format before
performing the access.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning

M7E_PAR Data access to ISA bus is larger (in bytes) than specified in
M7InitISADesc

M7StorelSAByte, M7StorelSADWord, M7InitISADesc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7StoreObject
M7StoreObject
Function Store S7 object in BACKDIR or ROMDIR
Syntax #include <m7api.h>
M7ERR_CODE M7StoreObject(
UBYTE ObjType
UWORD Part,
BOOL Rom);
Parameters Parameter Name Meaning
ObjType Type identifier for the S7 object:
M7D_DB Data block
M7D_PAR_READ Parameter data record with read at-
tribute
M7D_PAR_WRITE Parameter data record with write at-
tribute
Part Subarea (DB number of the parameter data record)
Rom Rom = TRUE: S7 object is stored in ROMDIR.
Rom = FALSE: S7 object is stored in BACKDIR.
Description The function stores an S7 object in the directory defined by the environment

Return Value

Error Codes

See Also

variable BACKDIR or ROMDIR. Th&Romcall parameter defines the
memory area in which the S7 object is to be stored.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_PART Subarea not available.
M7E_NODIR Directory not readable or does not exist.
M7E_OBJ Object type not supported.

M7CreateObject, M7DeleteObject, M7RemoveObject, M7LocateObject

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-205

M7StorePIQ M7 API

M7StorePIQ
Function Update output signals
Syntax #include <m7api.h>
M7ERR_CODE M7StorePIQ(UWORD PIQNO);
Parameters Parameter Name Meaning
PlINo Number of process images part on M7-400.
M7-400:
0 Complete process image
1..8 Process image part
M7-300:
0 Complete process image
Process image parts are not supported
Description The function updates the output signals with the contents of the complete
process image or the specified part of the process image of outputs.
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error
M7E_HWFAULT General hardware error
M7E_PAR Parametererror
M7E_PARITY Local bus parity error
M7E_QVZ LB timeout
See Also M7LoadPIl, M7ClearPI

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-206 C79000-G7076-C852-02

[¢)

the

M7 API M7StoreRecord
M7StoreRecord
Function Transfer data record to a signal module
Syntax #include <m7api.h>
M7ERR_CODE M7 StoreRecord(
UBYTE RecordNum,
VOID_PTR pBuffer,
UBYTE Size,
UBYTE PType
M710_BASEADDR Addr);
Parameters Parameter Name Meaning
RecordNum Record number
Range: 0to 255
pBuffer Pointer to a buffer in the working memory containing th
contentsof the data record referenced®gcordNum
Size Length of the data record
PType Identifier for the I/O module:
M710_IN Input module
M710_OUT Output module
If the module is a mixed module, specify the area ID of
lowest address. If the addresses are the same, specify
M7IO_IN.
Addr 1/0 base address of signal module
Description The function transfers a data record from the data buffer referenced by the

Return Value

Error Codes

pBuffer parameter to an 1/0O module.

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.
An error occurred.

Error Code Meaning
M7E_BSY Local bus is busy
M7E_CMD Local bus command error

M7E_COM_ERROR

Error on transfer protocol handling

M7E_HWFAULT

General hardware error

M7E_PAR Parametererror
M7E_PARITY Local bus parity error
M7E_QVZ Local bus timeout

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-207

M7StoreRecord M7 API

Error Code Meaning
M7E_REC_LENGTH Module reporting incorrect record length
M7E_REC_NUMBER Module reporting incorrect record number
M7E_DPX2_FAULT Error on DP job for record transfer
M7E_DP_SLAVE_STATE DP Slave not in DATA state
M7E_INVAL_DEV Module of a DP slave is not available
See Also M7LoadRecord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-208 C79000-G7076-C852-02

M7 API M7StoreWord

M7StoreWord
Function Overwrite word in process image
Syntax #include <m7api.h>
M7ERR_CODE M7 StoreWord(
UWORD PIType
UWORD ByteOffset,
UWORD Value);
Parameters Parameter Name Meaning
PIType Identifiers for process images:
M7I10_PII Process image of inputs
M7I10_PIQ Process image of outputs
ByteOffset Offset of signal word
Value New value with which the word in the process image is|to
be overwritten.
Description The function addresses a word in the process image definetinpye and
overwrites it with the value specified Vfalue
Before the value specified byalue is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning
M7E_PAR Error inPITypeor ByteOffset
See Also M7StoreBit, M7StoreByte, M7StoreDWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-209

M7SZLRead M7 API

M7SZLRead
Function Read system state list
Syntax #include <m7api.h>
M7ERR_CODE M7SZLRead (
UDWORD flags,
M7CONNID ConniD,
UBYTE_PTR pBuffer,
UDWORD nBufsiz,
UWORD szIID,
UWORD Index,
UDWORD *pnByte3;
Parameters Parameter Name Meaning
flags Flags
A_FILE If it is enabledpBufferspecifies
the name of the file in which the
system state list item is stored;
otherwise the item is stored in me-
mory.
A_ZERO_FLAG This flag can be connected with
other options by an OR operation.
It must be set if no other flag is
used.
ConniD Connection reference from Mi7Klnitiate call.
pBuffer Receive buffer.
If A_FILE is enabledpBufferspecifies the name of the file
in which the item is stored; otherwise the item is stored|in
memory.
nBufsiz Length of the receive buffer.
Ignored if A_FILE is enabled.
SZLID ID of the SZL sublist to be read.
Index Index in the sublist.
pnBytes Pointer to the number of bytes read.
Description The M7SZLReadfunction reads out the part of the system state list specified

by szIID andindex from the destination computer. The user should specify a
buffer sufficiently large to store the system state list data. If a buffer overflow
occurs, the function returns an appropriate error code.

The structure of the system state list for an M7 is described in the User
Manual, System Software for S7-300 and S7-400, Installation and Operation.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-210 C79000-G7076-C852-02

M7 API

M7SZLRead

Return Value

Error Codes

See Also

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.
An error occurred.

Error Code

Meaning

M7E_NO_MEM

No more memory available

M7E_KSUB_PARAM

Parametererror

M7E_KSUB_NO_SUCH_CONN

Invalid connection

M7E_KSUB_CONN_CLOSED

Connection closed

M7E_KSUB_FILEIO

Error on file handling

M7E_KSUB_REMOTE

Execution error on server

M7E_KSUB_SDB_WAS_DELETED

Connection deleted by STEP7, con-
nection is no longer active

M7KInitiate, M7WriteDiagnose

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-211

M7UnLinkBatteryFailure

M7 API

M7UnLinkBatteryFailure

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

5-212

Unlink FRB for battery alarm

#include <m7api.h>

M7ERR_CODE M7UnLinkBatteryFailure(
M7BAFFRB_PTR pBAFFRB;

Parameter Name Meaning
pBAFFRB Pointer to the FRB to be unlinked.

The function unlinks the FRB on the OST server.

The FRB must previously have been linked vitiALinkBatteryFai-
lure

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_FRB_NOT_IN_LIST | FSCFRB not operational

M7LinkBatteryFailure

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7UnLinkCycle

M7UnLinkCycle
Function Unlink FRB on FC server
Syntax #include <m7api.h>
M7ERR_CODE M7UnLinkCycle(M7FSCFRB_PTR pFSCFRB;
Parameters Parameter Name Meaning
pFSCFRB Pointer to the FRB to be unlinked.
Description The function unlinks the FRB on the FC server.
The FRB must previously have been linked wWitiiLinkCycle
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning
M7E_FSC_NO_SUCH_CYCLE Unknown state
M7E_FRB_NOT_IN_LIST FRB not linked
See Also M7LinkCycle, M7ConfirmCycle

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-213

M7UnLinkDataAccess M7 API

M7UnLinkDataAccess
Function Unlink S7 object for access information via message
Syntax #include <m7api.h>
M7ERR_CODE M7UnLinkDataAccess(M7OBJFRB_PTR
pOBJFRB;
Parameters Parameter Name Meaning
pOBJFRB Pointer to the FRB to be unlinked.
Description The function unlinks the access information for an S7 object on the S7 object
server.

The FRB must previously have been linked witfiLinkDataAccess

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_FRB_NOT_IN_LIST FRB not linked
See Also M7LinkDataAccess, M7GetFlags, M7GetObjType, M7GetPart

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-214 C79000-G7076-C852-02

M7 API M7UnLinkDataAccessCB
M7UnLinkDataAccessCB
Function Unlink callback function call for S7 object access
Syntax #include <m7api.h>

M7ERR_CODE M7UnLinkDataAccessCB(M7CBFRB_PTR

pCBFRB;

Parameters Parameter Name Meaning

pCBFRB Pointer to the FRB provided for unlinking.
Description The function unlinks a callback function on the object server.

Return Value

Error Codes

See Also

The callback function must previously have been linked witiMEkink-

DataAccessCB function.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code

Meaning

M7E_FRB_NOT_IN_LIST

FRB not linked

M7LinkDataAccessCB, M7GetCBFlags, M7GetCBBuffer, M7GetCBDa-
taType, M7GetCBObjType, M7GetCBPart, M7GetCBCount, M7GetCB-
ByteOffset, M7GetCBBitOffset

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-215

M7UnLinkDate M7 API
M7UnLinkDate
Function Unlink time-controlled time message
Syntax #include <m7api.h>
M7ERR_CODE M7UnLinkDate(M7TFRB_PTR pTFRB;
Parameters Parameter Name Meaning
pTFRB Pointer to the FRB linked with the time-controlled time mes-
sage.
Description This function is used to unlink the request for a time-controlled time message

Return Value

Error Codes

See Also

5-216

on the server.

The FRB must previously have been linked with MidLinkDate function.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_FRB_NOT_IN_LIST FRB not linked

M7LinkDate

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7UnLinkDiagAlarm

M7UnLinkDiagAlarm
Function Unlink diagnostics alarm
Syntax #include <m7api.h>

M7ERR_CODE M7UnLinkDiagAlarm(
M7DIAGALARM FRB_PTR pDAFrh);

Parameters Parameter Name Meaning
pDAFrb Pointer to the FRB to be unlinked.
Description The function unlinks the specified FRB for alarm handling on the alarm ser-
ver. No more diagnostics alarms are subsequently signalled for the calling
task.

The FRB must previously have been linked WitALinkDiagAlarm

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_FRB_NOT_IN_LIST FRB not linked.
M7E_ALARM_PENDING A diagnostics alarm is still waiting on the module
involved and must be acknowledged first.

See Also M7LinkDiagAlarm, M7GetDiagAlarmAddr, M7GetDiagAlarmBusy,
M7GetDiagAlarminfo,M7GetDiagAlarmPT ype, M7ConfirmDiagAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-217

M7UnLinklOAlarm

M7 API

M7UnLinklOAlarm

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

5-218

Unlink process alarm

#include <m7api.h>

M7ERR_CODE M7UnLinklOAlarm(
M7IOALARM_FRB_PTR pPAFrb);

Parameter Name Meaning
pPAFrb Pointer to the FRB to be unlinked.

The function unlinks the specified FRB for alarm handling on the alarm
server. No more process alarms are subsequently signalled for the calling
task.

The FRB must previously have been linked WitALinkIOAlarm

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_FRB_NOT_IN_LIST FRB not linked.
M7E_ALARM_PENDING A diagnostics alarm is still waiting on the module
involved and must be acknowledged first.

M7LinkIOAlarm, M7GetlOAlarmAddr, M7GetlOAlarmMask,
M7GetlOAlarmState, M7GetlOAlarmPTye, M7ConfirmlOAlarm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API

M7UnLinkOneShotTimer

M7UnLinkOneShotTimer

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

Unlink one-shot time message

#include <m7api.h>
M7ERR_CODE M7UnLinkOneShotTimer(M7TFRB_PTR pTFRB;

Parameter Name Meaning

pTFRB Pointer to the FRB with which the one-shot time message
was linked.

The function unlinks the request for a one-shot time message on the time
server.

The FRB must previously have been linked wWitliLinkOneShotTimer

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_FRB_NOT_IN_LIST FRB not linked

M7LinkOneShotTimer

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-219

M7UnLinkPeriodicTimer M7 API

M7UnLinkPeriodicTimer

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

5-220

Unlink periodic time message

#include <m7api.h>
M7ERR_CODE M7UnLinkPeriodicTimer(M7TFRB_PTR pTFRB;

Parameter Name Meaning

pTFRB Pointer to the FRB with which the periodic time message
was linked.

The function unlinks the request for a periodic message on the time server.

The FRB must previously have been linked witfiLinkPeriodicTimer

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_FRB_NOT_IN_LIST FRB not linked.

M7LinkPeriodicTimer, M7ConfirmPeriodicTimer, M7GetLostPeriods

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

M7 API M7UnLinkPIError

M7UnLinkPIError

Function Unlink FRB for process image transfer error

Syntax #include <m7api.h>
M7ERR_CODE M7UnLinkPeriodicTimer(M7TFRB_PTR pTFRB;

Parameters Parameter Name Meaning
pTFRB Pointer to the FRB to be unlinked
Description TheM7UnLinkPIError function unlinks the FRB for the handling of pro-

cess image transfer errors in the free cycle. This FRB must already have been
linked with theM7LinkPIError function.

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_FRB_NOT_IN_LIST FRB not linked.

See Also M7LinkPeriodicTimer, M7ConfirmPeriodicTimer, M7GetLostPeriods

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-221

M7UnLinkState M7 API

M7UnLinkState
Function Unlink message about specific operating state
Syntax #include <m7api.h>
M7ERR_CODE M7UnLinkState(M7TSFRB_PTR pTSFRB;
Parameters Parameter Name Meaning
pTSFRB Pointer to the FRB to be acknowledged.
Description The function unlinks messages relating to a specific operating state on the
OST server.
The FRB must previously have been linked witiLinkState
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning
M7E_PAR Parametererror
M7E_FRB_NOT_IN_LIST FRB not linked
See Also M7LinkState, M7GetState, M7RequestState

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-222 C79000-G7076-C852-02

M7 API M7UnLinkTransition

M7UnLinkTransition
Function Unlink message about specific operating state transition
Syntax #include <m7api.h>

M7ERR_CODE M7UnLinkTransition(M7TSFRB_PTR pTSFRB;

Parameters Parameter Name Meaning
pTSFRB Pointer to the FRB to be acknowledged.
Description The function unlinks messages relating to a specific operating state transition

on the OST server.

The FRB must previously have been linked WitfiLinkTransition

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_PAR Parametererror
M7E_FRB_NOT_IN_LIST FRB not linked

See Also M7LinkTransition, M7GetTSReason, M7GetTSType,
M7ConfirmTransition

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-223

M7UnLinkZSAlarm M7 API

M7UnLinkZSAlarm
Function Unlink message about insert/remove module alarm
Syntax #include <m7api.h>
M7ERR_CODE M7UnLinkZSAlarm(
M7ZSALARM_FRB_PTR pZSFRB;
Parameters Parameter Name Meaning
pZSFRB Pointer to the FRB to be acknowledged.
Description The function unlinks messages for an insert/remove module alarm event.
The FRB must previously have been linked WtALinkZSAlarm .
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning
M7E_FRB_NOT_IN_LIST FRB not linked
See Also M7ConfirmZSAlarm, M7LinkZSAlarm, M7GetZSAlarmIMRBaddr,

M7GetZSAlarmMode, M7GetZSAlarmPType, M7GetZSAlarmAddr

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-224 C79000-G7076-C852-02

M7 API

M7Write

M7Write

Function

Syntax

Parameters

Description

Return Value

Error Codes

Write user data to S7 data area

#include <m7api.h>
M7ERR_CODE

M7Write(VOID_PTR pBuffer
UBYTE ObjType
UWORD Part,
UBYTE DataType
UWORD Count
UDWORD Addp);

Parameter Name Meaning

pBuffer Pointer to the buffer containing the user data. The user data
must be in th&IMATICformat!

ObjType Type identifier for the desired S7 object (see Table).

Part Subarea (DB number, etc.) The permissible values for the
subarea depend on the type of S7 object (see Table 2-8)

DataType Data type of an element (see Table 2-9). For the data type
M7DT_BOOL is only available the value 1 for the parameter
LENGTH.

Count Number of elements to be copied

Addr Address or offset within an object or subare®dfaType#
BOOL, Addrmust be a multiple of 8 bits.

The function copies a defined number of data elements from a user data area

to an S7 data area.

The contents of the data area are natonverted from Intel to SIMATIC
numeric representation.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror
M7E_PART Subarea not available

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-225

M7Write M7 API

Error Code Meaning
M7E_PER_BITS Bit addressing not permitted in I/O area
M7E_TYPE Data type is invalid
M7E_WRITE_PROTECT Object type under write protection
See Also M7WriteBit, M7WriteByte, M7WriteDWord, M7WriteWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-226 C79000-G7076-C852-02

M7 API

M7WriteBit

M7WriteBit

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

Set bit in S7 object

#include <m7api.h>

Y

M7ERR_CODE M7WriteBit(
UBYTE ObjType
UWORD Part,
UWORD ByteOffset
UBYTE BitOffset
BOOL Valug;
Parameter Name Meaning
ObjType Type identifier for the desired S7 object (see Table 2-7).
Part Subarea (DB number, etc.) The permissible values for the
subarea depend on the type of S7 object (see Table 2-8)
ByteOffset Offset of the byte where the desired bit is stored
BitOffset Offset of the desired bit within the byte
Value Value to which the addressed bit is to be set

The function addresses a bit, defined by the above parameters in an S7 ob-
ject, and sets it to the state specifiedMajue

= M7SUCCESS:
< M7SUCCESS:

The function was successfully executed.
An error occurred.

Error Code Meaning
M7E_BIT_OFFSET Incorrect bit offset within the byte
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OFFSET Incorrect offset
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror
M7E_PART Subarea not available
M7E_PER_BITS Bit addressing not permitted in I/O area
M7E_TYPE Data type is invalid
M7E_WRITE_PROTECT Object type under write protection

M7Write, M7WriteByte, M7WriteDWord, M7WriteReal, M7WriteWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-227

M7WriteByte M7 API

M7WriteByte
Function Overwrite byte in S7 object
Syntax #include <m7api.h>
M7ERR_CODE M7WriteByte(
UBYTE ObjType
UWORD Part,
UWORD ByteOffset
UBYTE Valug;
Parameters Parameter Name Meaning
ObjType Type identifier for the desired S7 object (see Table 2-7).
Part Subarea (DB number, etc.)
The permissible values for the subarea depend on the type of
S7 object (see Table 2-8).
ByteOffset Offset of the desired byte
Value Value with which the addressed byte is to be overwritten.
Description The function addresses a byte, defined by the above parameters in an S7 ob-
ject, and overwrites it with the value specified\ialue
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror
M7E_PART Subarea not available
M7E_TYPE Data type not supported
M7E_WRITE_PROTECT Object type under write protection
See Also M7Write, M7WriteBit, M7WriteDWord, M7WriteReal, M7WriteWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-228 C79000-G7076-C852-02

M7 API M7WriteDiagnose

M7WriteDiagnose

Function Write entry to diagnostics buffer

Syntax #include <m7api.h>

M7ERR_CODE M7WriteDiagnose
UBYTE Type
UBYTE Eventnumber
BOOL Direction,
UWORD ZI1,
UDWORD ZI123,
BOOL Seng;

Parameters Parameter Name Meaning

Type Eventclass

Eventnumber Event number

Direction If TRUE, 1 is transferred (incoming event)

Z11 Supplementary info 1

2123 Supplementary info 2 and 3

Send If TRUE, event is sent via K bus

Description The call stores a diagnostics event with the specified class/number and sup-
plementary information. The entry contains the current time stamp. If the
Sendparameter is specified, the diagnostics event is sent on to linked com-
munication partners.

Entries cannot be written to the diagnostics buffer in the STOP operating
state. This prevents existing entries from being overwritten.

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning

M7E_DIAG_NUMBER Incorrect event class
(only OxOa or 0x0b allowed)

M7E_DIAG_STATE Incorrect operating state. Entries not possible in STOP
state.

M7E_WRITE_PROTECT Object type under write protection

See Also M7SZLRead

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 5-229

M7WriteDWord M7 API

M7WriteDWord
Function Overwrite doubleword in S7 object
Syntax #include <m7api.h>
M7ERR_CODE M7WriteDWord(
UBYTE ObjType
UWORD Part,
UWORD ByteOffset
UDWORD Valug);
Parameters Parameter Name Meaning
ObjType Type identifier for the desired S7 object (see Table 2-7).
Part Subarea (DB number, etc.)
The permissible values for the subarea depend on the type of
S7 object (see Tahle 2-8)
ByteOffset Offset of the desired doubleword
Value Value with which the addressed doubleword is to be over-
written, inIntelformat.
Description The function addresses a doubleword in an S7 object, defined by the above
parameters in an S7 object, and overwrites it with the value specified by
Value.
Before the value specified byalue is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.
Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.
Error Codes Error Code Meaning
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror
M7E_PART Subarea not available
M7E_TYPE Data type not supported
M7E_WRITE_PROTECT Object type under write protection
See Also M7Write, M7WriteBit, M7WriteByte, M7WriteReal, M7WriteWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-230 C79000-G7076-C852-02

pe of

n

M7 API M7WriteReal
M7WriteReal
Function Overwrite a floating point number in S7 object
Syntax #include <m7api.h>
M7ERR_CODE M7WriteReal(
UBYTE ObjType
UWORD Part,
UWORD ByteOffset
REAL Value);
Parameters Parameter Name Meaning
ObjType Type identifier for the desired S7 object (see Table|2-7).
Part Subarea (DB number, etc.)
The permissible values for the subarea depend on the ty,
S7 object (see Taple 2:8)
ByteOffset Offset of the desired floating point number
Value Value with which the addressed word is to be overwritten
Intelformat.
Description The function addresses a floating point number in an S7 object, defined by

Return Value

Error Codes

See Also

the above parameters in an S7 object, and overwrites it with the value speci-

fied by Value

Before the value specified byalue is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

= M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Code Meaning
M7E_LENGTH Incorrectlength
M7E_OBJ Object type not supported
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror
M7E_PART Subarea not available
M7E_TYPE Data type not supported
M7E_WRITE_PROTECT Object type under write protection

M7Write, M7WriteBit, M7WriteByte, M7WriteDWord, M7WriteWord

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

5-231

M7WriteWord M7 API

M7WriteWord

Function Overwrite word in S7 object

Syntax #include <m7api.h>
M7ERR_CODE M7WriteWord(
UBYTE ObjType
UWORD Part,
UWORD ByteOffset
UWORD Value);

Parameters Parameter Name Meaning

ObjType Type identifier for the desired S7 object (see Table2-7).

Part Subarea (DB number, etc.)

The permissible values for the subarea depend on the type of
S7 object (see Table 2-8)

ByteOffset Offset of the desired word

Value Value with which the addressed word is to be overwritten, in

Intelformat.

Description The function addresses a word in an S7 object, defined by the above parame-
ters in an S7 object, and overwrites it with the value specifiedalme

Before the value specified byalue is stored, the function performs a con-
version from the Intel to the SIMATIC numeric representation.

Return Value = M7SUCCESS: The function was successfully executed.
< M7SUCCESS: An error occurred.

Error Codes Error Code Meaning
M7E_LENGTH Incorrectlength

M7E_OBJ Object type not supported
M7E_OVS_WRONG_STATE lllegal action in current operating mode
M7E_PAR Parametererror

M7E_PART Subarea not available

M7E_TYPE Data type not supported
M7E_WRITE_PROTECT Object type under write protection

See Also M7Write, M7WriteBit, M7WriteByte, M7WriteDWord, M7WriteReal

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
5-232 C79000-G7076-C852-02

RMOS API

In this chapter

Call Brief Description Page
get2ndparm Read EBX start parameter of task 6-4
getdword Read start parameter of task in long formpt 6-5
getparm Read start parameter of task as pointer 6-6
RmActivateTask Activate task 6-7
RmAlloc Allocate memory from heap 6-8
RmCatalog Enter resource in resource catalog 6-10
RmCreateBinSemaphore | Create semaphore 6-12
RmCreateChildTask Create child task 6-13
RmCreateFlagGrp Create flag group 6-15
RmCreateMailbox Create mailbox 6-16
RmCreateMemPool Create memory pool larger than 64 Kbytgs 6-17
RmCreateMessageQueue | Create message queue 6-19
RmCreateTask Createtask 6-20
RmCreateTaskEx Create a task on the opreating system 6-22
RmbDeleteBinSemaphore Delete semaphore 6-24
RmDeleteFlagGrp Delete flag group 6-25
RmDeleteMailbox Delete mailbox 6-26
RmDeleteMemPool Delete memory pool 6-27
RmDeleteMessageQueue | Delete message queue 6-28
RmDeleteTask Delete task 6-29
RmDisableScheduler Disable scheduler 6-30
RmEnableScheduler Enable scheduler 6-31
RmEndTask End task 6-32
RmFree Free a memory area 6-33
RmFreeAll Free all memory areas of a task 6-34
RmGetAbsTime Get absolute system time 6-35
RmGetBinSemaphore Test and set semaphore 6-36
RmGetEntry Find entry in catalog 6-37
RmGetFlag Test event flag 6-39
RmGetintHandler Read out interrupt handler 6-41

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1 6.1

C79000-G7076-C852-02

RMOS API

6-2

Call Brief Description Page
RmGetMemPoollnfo Check memory pool information 6-42
RmGetName Search catalog for entry 6-43
RmGetSize Get the size of a memory area 6-45
RmGetTaskID Gettask ID 6-46
RmGetTaskPriority Get task priority 6-47
RmGetTaskState Get task state 6-48
RmIOClose Close unit 6-51
RmlIOControl Control function for loadable drivers 6-52
RmIOOpen Open unit 6-60
RmIORead Read from a unit 6-62
RmIOWrite Write to unit 6-64
RmKillTask End task 6-66
RmList List entries in resource catalog 6-68
RmLoadDevice Load driver 6-70
RmMapMemory Address physical memory 6-72
RmMemPoolAlloc Allocate memory area from memory pool| 6-73
RmPauseTask Pause for time interval 6-75
RmQueueStartTask Add task to queue. The task is started im} 6-7€

mediately it switches to the DORMANT

state
RmReadMessage Read message from message queue 6-78
RmReAlloc Change the size of a memory area 6-80
RmReceiveMail Receive message from local mailbox 6-82
RmReleaseBinSemaphore | Resetsemaphore 6-84
RmResetFlag Reset event flag 6-85
RmRestartTask Terminate task and restart after time interja6-86€
RmResumeTask Resume task halted ®BmPauseTask or 6-88

RmSuspendTask
RmSendMail Send message to a mailbox 6-89
RmSendMailCancel Cancel message started wkmSend- 6-91

MailDelayed
RmSendMailDelayed Send mail to a mailbox after a delay 6-92
RmSendMessage Add message to message queue 6-94
RmSetFlag Set event flag 6-96€
RmSetFlagDelayed Set event flag after interval 6-97
RmSetintDefHandler Install default interrupt handler 6-98
RmSetintISHandler Initialize S or I interrupt handler 6-99
RmSetIntMailboxHandler Initialize mailbox interrupt handler 6-101

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

RMOS API

Call Brief Description Page
RmSetIntTaskHandler Initialize interrupt handler for task start 6-103
RmSetMailboxSize Define limit values for mailboxes 6-105
RmSetMessageQueueSize | Define length of message queue 6-106
RmSetTaskPriority Change task priority 6-107
RmStartTask Start request for tasks in DORMANT statg 6-108
RmSuspendTask Set task from READY to BLOCKED statg 6-110
RmuUncatalog Delete resources from catalog 6-111
SerialCheckChar Read in single character from unit 6-112
SerialCheckString Read string from unit 6-113
SerialClose Close a connection to a unit of a driver 6-114
SerialGetChar Read in single character from unit 6-115
SerialGetString Read string from unit 6-116
Seriallnit Initialize unit 6-117
SeriallnitEx Extended initialization of unit 6-118
SerialOpen Establish a connection to a unit of a drivegr |6-121
SerialPutChar Write a single character to a unit 6-122
SerialPutString Write characters to a unit 6-123
x_dos_cpyin Allocate memory area from transfer buffef |6-124

and copy in data
x_dos_cpyout Copy data from allocated memory area i 6-126

transfer buffer and free the area

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-3

getZndparm

RMOS API

get2ndparm

Function

Syntax

Description

See Also

6-4

Read EBX start parameter of task

#include <rmapi.h>
unsigned int get2ndparm (void);

get2ndparm returns the EBX of the task, overwriting the EAX register.
The functionsgetdword andgetparm can subsequently no longer be
used.

This function call must be the first within a task, since the code generated by
the compiler can, under certain circumstances, overwrite the EAX or EBX
register.

getdword, getparm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API getdword

getdword

Function Read start parameter of task in long format

Syntax #include <rmapi.h>
unsigned long getdword (void);

Description getdword returns an unsigned long variable corresponding to the EAX reg-
ister.
This function call must be the first within a task, since the code generated by
the compiler can, under certain circumstances, overwrite the EAX or EBX
register.

See Also get2ndparm, getparm

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-5

getparm RMOS API

getparm

Function Read start parameter of task as pointer

Syntax #include <rmapi.h>
int * getparm (void);

Description getparm returns a pointer corresponding to the EAX register.
This function call must be the first within a task, since the code generated by
the compiler can, under certain circumstances, overwrite the EAX or EBX
register.

See Also get2ndparm, getdword

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-6 C79000-G7076-C852-02

RMOS API RmActivateTask

RmActivateTask
Function Activate Task
Syntax #include <rmapi.h>
int RmActivateTask(uint TaskID);
Parameters Parameter Name Meaning
TaskID Task-1D (RM_OWN_TASK=own task)
Description This function switches another task to the READY state if it was in the
BLOCKED state.
TheRmActivateTask is illegal under the following conditions, and is ter-
minated with an error message:
¢ Termination/deletion througRmKillTask was already requested
¢ Page fault because stack overflow
Return Value RM_OK Function successfully executed
Error Codes Error Code Meaning
RM_INVALID_ID An invalid TasklDwas passed.
RM_INVALID_TASK_STATE Callillegal in current task state (task is in DOR-
MANT, ACTIVE, READY or BLOCKED for
end of I/O state).
See Also RmDeleteTask, RmEndTask, RmKillTask, RmPauseTask

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-7

RmAlloc

RMOS API

RmAlloc

Function

Syntax

Parameters

Description

Return Value

6-8

Allocate memory from HEAP

#include <rmapi.h>
int

RmAlloc (
ulong TimeOutValue
uint Mode
ulong Size
void ** ppMemory

Parameter Name Meaning
TimeOutValue Maximum wait time before execution

RM_CONTINUE Continue task without waiting for me-

mory allocation.

RM_WAIT Wait for memory allocation.

0..RM_MAXTIME Time interval in ms.

The values for hours, minutes and seconds can be combined

by addition for the time parameter. The maximum wait time is

231 milliseconds.

RM_HOUR(our) Wait for (hour) hours

RM_MINUTE(mIn) Wait for (min) minutes

RM_SECONDéeg Wait for (seg seconds

RM_MILLISECOND(mMg Wait for (m9g milliseconds

Mode Allocation method for memory:

RM_AUTOFREE The memory is freed automati-
cally withRmFreeAll . Itis as-
signed to a specific task.

RM_NOAUTOFREE The memory is not freed automa-
tically with RmFreeAll .

Size Size of the memory block (-1 = largest available block)
ppMemory Address of pointer to a memory area.

The function allocates a memory area of Sizfrom the HEAP*ppMe-
mory subsequently contains a valid pointer (32-bit “flat”) to the allocated

memory area.

RM_OK Function successfully executed.
RM_TASK_WAITING Function had to wait for memeoy allocation

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API RmAlloc

Error Codes Error Code Meaning

RM_GOT_TIMEOUT A suitable memory area could not be allocated injthe
specifiedtime

RM_INVALID_POINTER A pointer was invalid
RM_INVALID_SIZE Sizes0 orSizegreater than HEAP
RM_OUT_OF_MEMORY No memory of the specified size available

See Also RmCreateMemPool, RmDeleteMemPool, RmFree, RmFreeAll,
RmGetSize, RmMemPoolAlloc, RmReAlloc, RmGetMemPoolinfo

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-9

RmCatalog RMOS API
RmCatalog
Function Enter resource in resource catalog
Syntax #include <rmapi.h>
int RmCatalog (
uint Type
uint ID,
ulong IDEX,
char * pNamég
Parameters Parameter Name Meaning
Type Resource typésedD).
ID Resource ID
The possible IDs depend dgpe
0 RM_CATALOG_TASK O<id<2047
1 RM_CATALOG_DEVICE O<id<255
2 RM_CATALOG_POOL O<id<63
3 RM_CATALOG_SEMAPHORE 0<id<4095
4 RM_CATALOG_EVENTFLAG O<id<63
5 RM_CATALOG_CNTRL O<id<255
6 RM_CATALOG_LOCALMAILBOX 0<id<255
7 RM_CATALOG_MISC 0<id<65535
8 RM_CATALOG_USER 0<id<65535
10RM_CATALOG_UNIT O<id<255
11RM_CATALOG_MESSAGE 0<id<2047
IDEX Extended ID
pName Pointer to a C string containing the name of the entry in th
resource catalog. The string may be up to 15 characters +
Description The function enters the specified parameters in the resource catalog.

Return Value

Error Codes

6-10

RM_OK Function successfully executed.

Error Code

Meaning

RM_CATALOG_EXCEEDED

Catalog is full.

RM_OUT_OF MEMORY

An internal attempt to allocate memory
from the HEAP has failed.

RM_INVALID_TYPE

The specified type is illegal<Oypec1l

RM_INVALID_ID

The specified ID is illegal.

RM_INVALID_STRING

The length of the string is illegal. It is ei-
ther zero or greater than 15.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

— @

RMOS API RmCatalog

Error Code Meaning

RM_INVALID_POINTER The pointer to the string is invalid.

RM_IS_ALREADY_CATALOGED The specified string is already cataloged
See Also RmUnCatalog, RmGetName, RmGetEntry, RmList

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-11

RmCreateBinSemaphore RMOS API

RmCreateBinSemaphore

Function Create semaphore
Syntax #include <rmapi.h>
int RmCreateBinSemaphore(
char *pSemaphoreName
uint * pSemaphorell
Parameters Parameter Name Meaning

pSemaphoreName | Pointer to a C string containing the name used to catalog the
semaphore. If this pointer = NUL, the semaphore is not cata-
loged. The C string may be up to 15 characters +\0.

pSemaphorelD Pointer to semaphore ID

Description RmCreateBinSemaphore creates a semaphore. The semaphore ID is re-
turned in the specified memory area. The maximum number of semaphores is
1024.

The semaphore is cataloged automatically under the specified name. If a null
pointer is passed ipSemaphoreNam&o semaphore is cataloged.

Return Value RM_OK Function successfully executéghSemaphorelxontains
a valid semaphore ID.

Error Codes Error Code Meaning
RM_OUT_OF_SEMAPHORES The request exceeds the maximum num-
ber of semaphores.
RM_INVALID_POINTER A pointer was invalid.
RM_CATALOG_EXCEEDED Catalog is full (se&mCatalog).
RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.
RM_IS_ALREADY_CATALOGED The specified string is already cataloged.
The string must be unique, therefore it is
not possible to catalog a string more than
once.
See Also RmDeleteBinSemaphore, RmReleaseBinSemaphore,

RmGetBinSemaphore

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-12 C79000-G7076-C852-02

RMOS API

RmCreateChildTask

RmCreateChildTask

Function Create child task
Syntax #include <rmapi.h>
int RmCreateChildTask (
char * pTaskNamg
ulong TaskStackSize
uint Priority,
rmfarproc TaskEntry
uint * pTaskiD
Parameters Parameter Name Meaning
pTaskName Pointer to a C string containing the name used to catalog the
task. If this pointer = NUL, the TASK is not cataloged. The C
string may be up to 15 characters +\0.
TaskStackSize Size of the required stack in words (32 -bit).
Priority Task priority (0..255)
RM_CURPRI is the same priority as the calling task.
TaskEntry Entry address for the task.
pTaskiD Pointer to task ID
Description RmCreateChildTask declares tasks to the operating system. The task is

transferred from the NOTEXISTENT state to the DORMANT state. The task
is cataloged automatically under the specified name. If a null pointer is
passed ipTaskNamgno task is cataloged.

When it is created, the child task inherits the console, the current working
directory and the environment from the parent task.

Return Value RM_OK Function successfully executegTaskID contains the

valid task ID.

Error Codes Error Code

Meaning

RM_OUT_OF_MEMORY

Insufficient memory to create stack seg-
ment or insufficient memory foRmCa-
talog

RM_INVALID_SIZE

The length specified for the stack was 0
>1GB

RM_CATALOG_EXCEEDED

Catalog is full (se&mCatalog).

RM_INVALID_STRING

The length of the string is illegal. It is ei-
ther zero or greater than 15.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-13

or

RmCreateChildTask

RMOS API

See Also

6-14

Error Code

Meaning

RM_IS_ALREADY_CATALOGED

The specified string is already cataloged
The string must be unique, therefore iti
not possible to catalog a string more than
once.

=

RM_INVALID_TASK_ENTRY

The entry address for the task is invalid

RM_INVALID_POINTER

The pointer to the string is incorrect, or a
protection error occurred.

RmCreateTask, RmDeleteTask, RmQueueStartTask, RmStartTask

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

RMOS API RmCreateFlagGrp

RmCreateFlagGrp
Function Create flag group
Syntax #include <rmapi.h>
int RmCreateFlagGrp(
char *pFlagGrpName
uint * pFlagGrplID);
Parameters Parameter Name Meaning
pFlagGrpName Pointer to a C string containing the name used to catalpg
the flag group. If this pointer = NUL, the flag group is not
cataloged. The C string may be up to 15 characters +\Q.
pFlagGrpID Output parameter, pointer to flag group 1D
Description RmCreateFlagGrp creates a flag groupFlagGrplD contains the valid
ID of the flag group.
The flag group is cataloged automatically under the specified name. If a null
pointer is passed ipFlagGrpName no flag group is cataloged.
Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_OUT_OF_FLAGGROUPS The request exceeds the maximum num-
ber of event flags.
RM_INVALID_POINTER A pointer was invalid.
RM_CATALOG_EXCEEDED Catalog is full (se&mCatalog).
RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.
RM_IS_ALREADY_CATALOGED The specified string is already cataloged.
The string must be unique, therefore it is
not possible to catalog a string more than
once.
See Also RmSetFlag, RmResetFlag, RmSetFlagDelayed, RmGetFlag,

RmDeleteFlagGrp

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-15

RmCreateMailbox RMOS API

RmCreateMailbox

Function Create mailbox
Syntax #include <rmapi.h>
int RmCreateMailbox(
char *pMailboxName
uint * pMailboxID);
Parameters Parameter Name Meaning
pMailboxName Pointer to a C string containing the name used to catalog
the mailbox. If this pointer = NUL, the mailbox is not cata-
loged. The C string may be up to 15 characters +\0.
pMailboxID Pointer to a mailbox ID
Description RmCreateMailbox creates a a mailboxpMailboxID contains the valid
mailbox ID.

The mailbox is cataloged automatically under the specified name. If a null
pointer is passed ipMailboxName no mailbox is cataloged.

Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_CATALOG_EXCEEDED Catalog is full (seRmCatalog).
RM_INVALID_POINTER A pointer was invalid.
RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.
RM_IS_ALREADY_CATALOGED The specified string is already cataloged.

)
The string must be unique, therefore it is
not possible to catalog a string more than

once.
RM_OUT_OF_MAILBOXES The request exceeds the maximum num-
ber of mailboxes.
RM_OUT_OF_MEMORY No memory of the specified size availahle
See Also RmDeleteMailbox, RmSendMail, RmReceiveMail

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-16 C79000-G7076-C852-02

RMOS API RmCreateMem£Pool

RmCreateMemPool
Function Create memory pool larger than 64 Kbytes
Syntax #include <rmapi.h>
int RmCreateMemPool(
char *pPoolName
void *pPoolAddress
ulong Size
uint * pPoollD);
Parameters Parameter Name Meaning
pPoolName Pointer to a C string containing the name used to catalog the
memory pool. If this pointer = NUL, the memory pool is nat
cataloged. The C string may be up to 15 characters +\0.
pPoolAddress Pointer to the memory area in which the pool is to be created.
Size Length of the memory area in bytes
pPoollD Pointer to pool ID
Description RmCreateMemPool defines a memory pool located at a paragraph bound-

ary.*pPoollD contains the valid memory pool ID. The maximum number of
memory pools is 8. The minimum size of a memory area is 16 bytes.

The memory for a memory pool can be allocated from the HEAP with
RmAlloc . The address returned BymAlloc is used as the address for the
memory pool.

On initialization, the memory pools are located at the next base address di-
visible by 16. The length is reduced to the next value divisible by 16.

The memory pool is cataloged automatically under the specified name. If a
null pointer is passed pPoolName no memory pool is cataloged.

Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_OFFSET The offset pPoolAddresswas outside the
valid range.
RM_INVALID_SIZE A size parameter was invaligige< 16).
RM_INVALID_POINTER A pointer was invalid.
RM_CATALOG_EXCEEDED Catalog is full (se®RmCatalog).
RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-17

RmCreateMem£Pool RMOS API

Error Code Meaning

RM_IS_ALREADY_CATALOGED The specified string is already cataloged
The string must be unique, therefore iti
not possible to catalog a string more than
once.

RM_OUT_OF_MEMORYPOOLS The request exceeds the maximum num
ber of memory pools.

=

See Also RmDeleteMemPool, RmFree, RmFreeAll, RmMemPoolAlloc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-18 C79000-G7076-C852-02

RMOS API RmCreateMessageQueue

RmCreateMessageQueue
Function Create message queue
Syntax #include <rmapi.h>
int RmCreateMessageQueue (
char * pMessageQueueName
uint TaskiD)
Parameters Parameter Name Meaning
pMessageQueueName Pointer to a C string containing the name used to cata-
log the message queue. If this pointer = NUL, the mes-
sage queue is not cataloged. The C string may be up to
15 characters +\0.
TaskID Destinationtask-ID
Description The function creates a message queue for the task specifiesdhdip.

The message queue is cataloged automatically under the specified name. If a
null pointer is passed ipMessageQueueNameo message queue is cata-

loged.
Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID Invalid task ID.
RM_QUEUE_EXIST Message queue already exists.
RM_CATALOG_EXCEEDED Catalog is full (se®RmCatalog).
RM_INVALID_POINTER A pointer was invalid.
RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.
RM_IS_ALREADY_CATALOGED The specified string is already cataloged.
The string must be unique, therefore it is
not possible to catalog a string more than
once.
See Also RmDeleteMessageQueue, RmReadMessage, RmSendMessage

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-19

RmCreateTask RMOS API

RmCreateTask
Function Create task
Syntax #include <rmapi.h>
int RmCreateTask (
char * pTaskNamg
ulong TaskStackSize
uint Priority,
rmfarproc TaskEntry
uint * pTaskiD
Parameters Parameter Name Meaning
pTaskName Pointer to a C string containing the name used to catalog the
task. If this pointer = NUL, the task is not cataloged. The C
string may be up to 15 characters +\0.
TaskStackSize Size of the required stack in words (32 -bit).
Priority Task priority (0..255)
TaskEntry Entry address for the task.
pTaskiD Pointer to task ID
Description The function declares a task to the operating system. The task is transferred
from the NOTEXISTENT state to the DORMANT statpTaskID contains
the valid task ID.
The task is cataloged automatically under the specified hame. If a null
pointer is passed ipTaskNameno task is cataloged.
Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_OUT_OF_MEMORY Insufficient memory to create stack seg-
ment or insufficient memory for RmCata-
log.
RM_INVALID_SIZE The length specified for the stack was 0 or
>1G
RM_CATALOG_EXCEEDED Catalog is full (see RmCatalog).
RM_INVALID_STRING The length of the string is illegal. It is ei-
ther zero or greater than 15.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-20 C79000-G7076-C852-02

RMOS API RmCreateTask

Error Code Meaning

RM_IS_ALREADY_CATALOGED The specified string is already catalogec
The string must be unique, therefore iti
not possible to catalog a string more than

=

once.
RM_INVALID_TASK_ENTRY The entry address for the task is invalid
RM_INVALID_POINTER The pointer to the string is incorrect, or a

protection error occurred.

Note Unlike theRmCreateChildTask function, the console, current directory
and environment are not inherited.

See Also RmCreateChildTask, RmDeleteTask, RmQueueStartTask, RmStartTask

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-21

RmCreateTask

RMOS API

RmCreateTaskEx

Function

Syntax

Parameters

Description

Note

Return Value

6-22

Create a task on the operating system

#include <rmapi.h>

int RmCreateTaskEx(
char *pTaskNamg
RmMTCDStruct * pTCD,
uint * pTaskID);

Parameter Name Meaning

pTaskName Pointer to a C string containing the name used to
catalog the task. If this pointer = NULL, the task|is
not cataloged.

pTCD Pointer to a structure of the tyRenTCDStruct
pTaskiD Pointer to the returned task ID

RmCreateTaskEx changes the state of a dynamic task from NONEXIS-
TENT to DORMANT. The structure of tyg@mTCDStruct must be initial-

ized first. All values which are not used must be 0. The structure is no longer
required after the function call.

The task is subsequently always addressed using the returned task ID. The
task is automatically cataloged under the specified name.

The task flags (TCD.flags) define whether the task properties for the created
task are to be inherited witRM_TFL_CHILD(seeRmCreateChildTask)

The RM_TFL_STK flag must always be enabled. The size of the stack is
specified in words (32 bits) in TCD.stck (see example).

The priority of the task is specified in TCD.inpri (from 0 to 255).
The entry address of the task is specified in TCD.task.

The flag for the coprozessor (RM_TFL_NPX) is enabled automatically at the
moment that the task access to the coprozessor. For that reason the call
RmCreateTaskEx is no more necessary and exists only for the compatibil-
ity of previous versions.

RM_OK *pTasklDcontains a valid task ID.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API

RmCreateTask

Error Codes

Example

See Also

Error Code Meaning

RM_OUT_OF_MEMORY Insufficient memory to create the
stack segment dRmCatalog had
insufficient memory.

RM_INVALID_SIZE The length parameter for the stack
was 0.

RM_CATALOG_EXCEEDED Catalog is full (se®mCatalog).

RM_INVALID_STRING The length of the string is illegal. It

is either zero or greater than 15.

RM_IS_ALREADY_CATALOGED The specified string is already cata
loged. The string must be unique,
and it is not possible to catalog a
string more than once.

RM_INVALID_TASK_ENTRY The entry address for the task is in
valid.

RM_INVALID_PARAMETER The RM_TFL_DS flag cannot be
used for Flat calls.

RM_INVALID_POINTER The pointer to the string is incorregt
or a protection error has been initia-
ted.

In the following example, a task is created. Tilemset call is used to ini-
tialize the RmTCDStruct structure to 0.

main()

{

uint TaskID
RmTCDStruct Tcd;

memset(&Tcd,0,sizeof(RmTCDStruct));

Ted.stck = (void *) 0x400; [* stacksize */

Tcd.task = (rmfarproc) entry; /* taskentry */
Ted.inpri=90; [* priority */

Ted.flags = RM_TFL_STK | RM_TFL_CHILD;

Error = RmCreateTaskEx(“TaskName”,&Tcd,&TaskID);

RmCreateTask, RmCreateChildTask, RmDeleteTask

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-23

RmDeleteBinSemaphore RMOS API

RmDeleteBinSemaphore

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

6-24

Delete semaphore

#include <rmapi.h>

int RmDeleteBinSemaphore(uintSemaphoreld
Parameter Name Meaning
SemaphorelD Semaphore ID

RmDeleteBinSemaphore deletes a semaphore created wiRimCreate-
BinSemaphore .The SemaphorelDparameter specifies the ID of the sema-
phore to be deleted.

If a catalog entry was created, it is now deleted.

RM_OK Function successfully executed.
Error Code Meaning
RM_INVALID_ID Aninvalid ID was passed.

RM_RESOURCE_BUSY The semaphore is still in possession of a task.

RmCreateBinSemaphore, RmReleaseBinSemaphore,
RmGetBinSemaphore

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API RmbDeleteFlagGrp

RmDeleteFlagGrp
Function Delete flag group
Syntax #include <rmapi.h>
int RmbDeleteFlagGrp(uint FlagGrplID);
Parameters Parameter Name Meaning
FlagGrpID ID of the flag group
Description RmDeleteFlagGrp deletes a global flag group created wRimCreate-
FlagGrp . TheFlagGrplD parameter specifies the ID of the flag group to be
deleted. Deleting the local flag group wklagGrplD=0 is not allowed.
If a catalog entry was created, it is now deleted.
Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID Flag group = 0 or invalid ID
RM_RESOURCE_BUSY Tasks are still waiting for flags from this flag group
to be setRmGetFlag), or anRmSetFlagDe-
layed is still active.
See Also RmCreateFlagGrp, RmGetFlag

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-25

RmDeleteMailbox RMOS API

RmDeleteMailbox

Function Delete mailbox
Syntax #include <rmapi.h>
int RmbDeleteMailbox(uint MailboxID);
Parameters Parameter Name Meaning
MailboxID Mailbox ID
Description RmDeleteMailbox deletes a mailbox defined wimCreateMailbox

TheMailboxID parameter specifies the ID of the mailbox to be deleted.

If you delete a mailbox, which is used by an Interrupt mailbox handler, also
the corresponding handler must be deleted.

If a catalog entry was created, it is now deleted.

Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID Aninvalid ID was passed.

RM_RESOURCE_BUSY Tasks are still waiting for messages in this mailbo.
or the mailbox still contains messages, or an
RmSendMailDelayed is still active.

See Also RmCreateMailbox

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-26 C79000-G7076-C852-02

RMOS API RmDeleteMemPool

RmDeleteMemPool

Function Delete memory pool

Syntax #include <rmapi.h>
int RmbDeleteMemPool(uint PoolID);

Parameters Parameter Name Meaning
PoollD Pool ID

Description RmDeleteMempool deletes a memory pool created wkRmCreateMem-
Pool .ThePoollD parameter specifies the ID of the memory pool to be de-
leted.

If a catalog entry was created, it is now deleted.

Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID Pool ID = 0 (corresponds to heap ID) or invalid ID

RM_RESOURCE_BUSY Memory areas from this pool are still allocated.

See Also RmCreateMemPool RmMemPoolAlloc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-27

RmbDeleteMessageQueue

RMOS API

RmDeleteMessageQueue

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

6-28

Delete message queue

#include <rmapi.h>

int

RmDeleteMessageQueue (uinTaskiD

Parameter Name

Meaning

TaskID

Task ID

The RmDeleteMessageQueue function deletes the message queue for the
task specified byfaskID.

If a catalog entry was created, it is now deleted.

RM_OK Function successfully executed.
Error Code Meaning
RM_INVALID_ID Invalid task ID

RM_QUEUE_NOT_EXIST The message queue does not exist.

RM_RESOURCE_BUSY Messages are still waiting in the message queue, or

the task withraskIDis still waiting for messages.

RmCreateMessageQueue, RmSendMessage, RmReadMessage

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

RMOS API RmDelete Task

RmDeleteTask

Function Delete task
Syntax #include <rmapi.h>
int RmbDeleteTask(uint TaskID);
Parameters Parameter Name Meaning
TaskID Task ID (RM_OWN_TASK = own task)
Description RmDeleteTask deletes the task specified BgskIDif it is in the

DORMANT or ACTIVE state.

If the task was initialized for CRUN, the initialization is deleted and open
files are closed.

If you delete a task witRmDeleteTask , which was called by an Interrupt
handler, also the corresponding handler must be deleted.

If a catalog entry was created, it is now deleted.

Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_TASK_NOT_DORMANT An attempt was made to delete a task which is
not in the DORMANT state.
RM_INVALID_ID An invalid task ID was passed.
Note The RmKillTask call can be used for tasks in other states.
See Also RmCreateTask, RmKillTask, x_cr_killtsk

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-29

RmbDisableScheduler RMOS API

RmDisableScheduler

Function Disable scheduler
Syntax #include <rmapi.h>
int RmDisableScheduler(void);
Description RmbDisableScheduler deactivates the scheduler. When the scheduler is

deactivated, only the task which called the function is active (even higher-
priority tasks are no longer allocated CPU time).

RmDisableScheduler cannot be nested, that is every call deactivates
scheduling.

When the scheduler is deactivated, RmDeleteTask and

RmRestartTask functions cannot be called. RMOS- API- calls should also
be avoided in cases where a task may have to wait for another task to finish
executing. This includes:

RmAlloc , RmGetEntry , RmQueueStartTask , RmReceiveMail ,
RmSendMail , RmStartTask , RmGetFlag andRmGetBinSemaphore .

A CLI job cannot be canceled with <Ctrl>+<C> when the scheduler is deac-
tivated.

If the scheduler is deactivated too long, the real-time capability of the system
can suffer. This applies particularly to the usé&afRestartTask and
RmPauseTask.

Note The scheduling lock is deactivated automatically as soon as a task blocks
(e.g. Functions with wait option, runtime error, printf)

Return Value RM_OK RM_OK is always returned.

See Also RmEnableScheduler scheduler description in the Programming Manual.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-30 C79000-G7076-C852-02

RMOS API

RmEnableScheduler

RmEnableScheduler

Function

Syntax

Description

Return Value

See Also

Enable scheduler

#include <rmapi.h>
int RmEnableScheduler(void);

RmEnableScheduler activates the scheduler deactivated iRthDisa-
bleScheduler

RmEnableScheduler cannot be nested, that is every call reactivates sche-
duling.

RM_OK RM_OK is always returned.

RmDisableScheduler scheduler description in the Programming Manual.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-31

RmEndTask RMOS API

RmEndTask

Function End task

Syntax #include <rmapi.h>
void RmEndTask(void);

Description RmEndTask terminates execution of the task. The task is switched to the
DORMANT state if no further task start requests are waiting.

Note This function can also be used for tasks which use the functions of the ANSI
library. The C library functiorexit(x) can also be used instead of
RmEndTask

Return Value The call has no return value.

See Also RmDeleteTask, RmQueueStartTask, RmStartTaskstarting, interruption

and termination of tasks.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-32 C79000-G7076-C852-02

RMOS API RmFree
RmFree
Function Free a memory area
Syntax #include <rmapi.h>

int RmFree(void *pMemory;
Parameters Parameter Name Meaning

pMemory Pointer to the memory area to be freed.

Description RmFree is used to free a memory area allocated by a task RittAlloc

Return Value

Error Codes

See Also

or RmMemPoolAlloc .

It is not possible to free part of a memory area.

RM_OK Function successfully executed.
Error Code Meaning
RM_INVALID_MEMORYBLOCK Memory area was not allocated.
RM_INVALID_POINTER A pointer was invalid.

RmAlloc, RmCreateMemPool, RmDeleteMemPool, RmFreeAll,
RmMemPoolAlloc, RmReAlloc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-33

RmFreeAll RMOS API

RmFreeAll

Function Free all memory areas of a task

Syntax #include <rmapi.h>
int RmFreeAll(uint TaskID);

Parameters Parameter Name Meaning

TaskID ID of the task whose entire memory area is to be freed
(RM_OWN_TASK = own task).

Description RmFreeAll is used to free all memory areas allocated by a task with
RmAlloc or RmMemPoolAlloc . RmFreeAll frees also memory areas
which was allocated with the C Runtime library functiomslloc , calloc
or realloc
It is not possible to free part of any memory area.

Return Value RM_OK Function successfully executed.

Error Codes Error Code Meaning

RM_INVALID_ID Invalid TasklD
RM_INVALID_POINTER A pointer was invalid.

Note An error message is not output if the task has not allocated any memory. Me-
mory which the task has allocated with RM_NOAUTOFREE is not freed.

See Also calloc, malloc, realloc, RmAlloc, RmCreateMemPool, RmDeleteMem-

Pool, RmFree, RmMemPoolAlloc, RmReAlloc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-34 C79000-G7076-C852-02

RMOS API RmGetAbsTime

RmGetAbsTime
Function Get absolute system time
Syntax #include <rmapi.h>
int RmGetAbsTime(RmAbsTimeStruct *pAbsTimg
Parameters Parameter Name Meaning
pAbsTime Pointer to a structure of ty@mAbsTimeStruct containing
the absolute system time.
Description RmGetAbsTime copies the absolute system time in milliseconds since the
last complete restart to a structure of tfpraAbsTimeStruct.
Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_POINTER Invalid pAbsTime
See Also RmAbsTimeStruct

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-35

RmGetBinSemaphore

RMOS API

RmGetBinSemaphore

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

6-36

Test and set semaphore

#include <rmapi.h>

int RmGetBinSemaphore(
ulong TimeOutValue
uint Semaphorel

Parameter Name | Meaning

TimeOutValue Maximum time to wait for execution

RM_CONTINUE Continue task and do not wait for sema
phore

RM_WAIT Wait for semaphore

0..RM_MAXTIME Time interval in ms. The task waits until

receives the semaphore or the time has
expired.

The values for hours, minutes and seconds can be combined by
addition for the time parameter. The maximum wait time is 2°31

-

milliseconds.

RM_HOUR(our) Wait for (hour) hours
RM_MINUTE(min) Wait for (min) minutes
RM_SECONDéeg¢ Wait for (se¢ seconds

RM_MILLISECOND(mMg Wait for (mg milliseconds

SemaphorelD Semaphore ID

RmGetBinSemaphore tests and sets a semaphore.

RM_OK Function successfully executed.
RM_TASK_WAITING Task had to wait for semaphore.
Error Code Meaning
RM_INVALID_ID An invalid SemaphorelDvas passed.
RM_GOT_TIMEOUT The call was canceled after the con-
figured timeout time.
RM_RESOURCE_NOT_AVAILABLE The desired resource is not available.

The allocation and release of semaphores are not task-specific.

RmCreateBinSemaphore, RmDeleteBinSemaphore, RmReleaseBinSema-
phore

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API RmGetEntry

RmGetEntry
Function Find entry in catalog
Syntax #include <rmapi.h>
int RmGetEntry (
ulong TimeOutValue
char *pName
RmEntryStruct * pEntry)
Parameters Parameter Name Meaning
TimeOutValue Maximum time to wait for execution
RM_CONTINUE Continue task and do not wait for the
entry to be cataloged
RM_WAIT Wait for the entry to be cataloged
0..RM_MAXTIME Time interval in ms. The task waits
until either the entry is cataloged or
the time has expired.
The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
231 milliseconds.
RM_HOUR(our) Wait for (hour) hours
RM_MINUTE(min) Wait for (min) minutes
RM_SECOND§e¢ Wait for (seg seconds
RM_MILLISECOND(mMg Wait for (m9g milliseconds
pName Address of the name to be found in the catalog. The string can
also be defined using C or PLM notation.
pEntry Address of a structure of the tyBenEntryStruct, see chap-
ter 3.
Description RmGetEntry searches for an entry in the resource catalog.
Return Value RM_OK Function successfully executed.
RM_TASK_WAITING The task had to wait for entry to
be cataloged.
Error Codes Error Code Meaning
RM_INVALID_STRING The length of the string is illegal. Itis either zero
or greater than 15.
RM_IS_NOT_CATALOGED The specified string is not cataloged

(only if TimeOutValue == RM_CONTINUE)

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-37

RmGetEntry RMOS API

Error Code Meaning

RM_GOT_TIMEOUT The time has expired but the string has not been
cataloged.

RM_INVALID_POINTER The pointer to the string or structure is incorrect,
or a protection error occurred.

See Also RmCatalog, RmUncatalog, RmGetName

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-38 C79000-G7076-C852-02

et

ned
eis

RMOS API RmGetFlag
RmGetFlag
Function Test event flag
Syntax #include <rmapi.h>
int RmGetFlag(
ulong TimeOutValue
uint Type
uint FlagGrplD,
uint TestMask
uint * pFlagMasg;;
Parameters Parameter Name Meaning
TimeOutValue Maximum time to wait for execution
RM_CONTINUE Continue task without waiting for
event flag to be set.
RM_WAIT Wait for the event flag to be set
0..RM_MAXTIME Time interval in ms. The task waits
until either the event flag has been g
or the time has expired.
The values for hours, minutes and seconds can be combi
by addition for the time parameter. The maximum wait tim
231 milliseconds.
RM_HOUR(our) Wait for (hour) hours
RM_MINUTE(mIn) Wait for (min) minutes
RM_SECONDéeg¢ Wait for (seg¢ seconds
RM_MILLISECOND(mMg Wait for (m9g milliseconds
Type RM_TEST_ALL Test if all the specified bits have bee
set
RM_TEST_ONE Test if at least one bit has been set
FlagGrpID ID of the flag group. 0 specifies the local flag group.
TestMask The mask defines which bits are tested
pFlagMask Pointer to alint which returns the values of all bits in the
flag group.
Description RmGetFlag tests a flag group to establish whether all (RM_TEST_ALL) or

Return Value

at least one (RM_TEST_ONE) of the specified bits have been set. If a wait
time is specified, the task waits for the bits to be set. The bits of a flag group
are ANDed with TestMask, and returnedpiRlagMask

RM_OK

RM_TASK_WAITING

Function successfully executed.

RM_FLAG_ALREADY_SET The flag was already set.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-39

Call had to wait for the flag to be set.

RmGetFlag RMOS API

Error Codes Error Code Meaning
RM_TEST_NOT_OK One or more flags imestMaskot set (only with
RM_CONTINUE)
RM_INVALID_ID An invalid FlagGrpID was passed.
RM_GOT_TIMEOUT The call was canceled after the configured timeout
expired.
RM_INVALID_POINTER The pointer tgpFlagMaskis invalid, or a protection
error occurred.
See Also RmSetFlag, RmSetFlagDelayed, RmResetFlag

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-40 C79000-G7076-C852-02

RMOS API RmGetintHandler

RmGetintHandler

Function Read out interrupt handler
Syntax #include <rmapi.h>
int RmGetIntHandler (
uint IntNum

rmfarproc *pHandlerEntry);

Parameters Parameter Name Meaning

INtNum Interrupt Number (0—255)

IRQX (x=0 to 63) Hardware interrupt

IRQ(n) (n=0 to 63) Hardware interrupt

The hardware interrupts in PC hardware are at 0 to 15.

pHandlerEntry Entry address of interrupt handler

Description RmGetintHandler is used to read the current interrupt handler from the
IDT.

Return Value RM_OK Function successfully executegHandlerEntry contains

the entry address of the associated interrupt handler.

Error Codes Error Code Meaning
RM_INVALID_INTERRUPT_NUMBER Invalid interrupt number
RM_INVALID_IRQ_NUMBER IRQx invalid, PIC not defined
RM_INVALID_POINTER Invalid pointer

See Also RmSetintDefHandler, RmSetintiISHandler, RmSetIintMailboxHandler,

RmSetIntTaskHandler,

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-41

RmGetMemPoollnfo RMOS API

RmGetMemPoollnfo

Function Check memory pool information
Syntax #include <rmapi.h>
int RmGetMemPoollnfo (
uint PoollD,

RmMemPoolInfoStruct *pinfo)

Parameters Parameter Name Meaning

PoollD ID of the memory pool (RM_HEAP for heap)

pinfo Pointer to structure of the tyamMemPoollnfoStruct.
Description The RmGetMemPoolinfo function returns the size of the pool, of the avail-

able memory, and of the largest available bid®RknAlloc (Size=-1)).The
information about the pool specified BwolID is stored in thd(RmMem-
PoolinfoStruct structurepinfo points to this structure.

Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID Pool ID invalid

RM_INVALID_POINTER pinfois an invalid pointer

See Also RmMemPoollnfoStruct

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-42 C79000-G7076-C852-02

RMOS API RmGetName

RmGetName
Function Search catalog for entry
Syntax #include <rmapi.h>
int RmGetName (
uint Type
uint ID,
ulong IDEX,
char * pNamé
Parameters Parameter Name Meaning
Type Resource type (séb)
ID Resource ID
0 RM_CATALOG_TASK (xid<2047
1 RM_CATALOG_DEVICE &id<255
2 RM_CATALOG_POOL &id<63
3 RM_CATALOG_SEMAPHORE 8id<4095
4 RM_CATALOG_EVENTFLAG id<63
5 RM_CATALOG_CNTRL &id<255
6 RM_CATALOG_LOCALMAILBOX 0<id<255
7 RM_CATALOG_MISC &id<65535
8 RM_CATALOG USER Qid<65535
10RM_CATALOG_UNIT &id<255
11 RM_CATALOG_MESSAGE Rid<2047
255 RM_CATALOG_ALL (xid<65535
IDEX Extended resource ID (-1 = not specified)
pName Address of a buffer in which the string is to be stored. The
length of the buffer must be at least 15 characters +\0.
Description The RmGetName searches through a catalog and returns the name belong-
ing to Type, ID and IDEX.
Return Value RM_OK Function successfully executed, the buffer contains the
valid name of the specified resource.
Error Codes Error Code Meaning
RM_INVALID_TYPE The specified type is illegal<Oype<il
RM_INVALID_ID The specified ID is illegal.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-43

RmGetName RMOS API

Error Code Meaning

RM_IS_NOT_CATALOGED A matching entry was not found.

RM_INVALID_POINTER The pointer to the string is invalid.
See Also RmCatalog, RmUncatalog, RmGetEntry

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-44 C79000-G7076-C852-02

RMOS API RmGetSize
RmGetSize
Function Get the size of a memory area
Syntax #include <rmapi.h>
int RmGetSize(
void *pMemory
ulong *pSizé;
Parameters Parameter Name Meaning
pMemory Pointer to the memory area
pSize Pointer to the memory location where the length of the
memory area is returned.
Description This function can be used to determine the length of a memory area pre-

Return Value

Error Codes

See Also

viously allocated wittRmAlloc or RmMemPoolAlloc . *pSize contains
the length of the specified memory area.

RM_OK Function successfully executed.
Error Code Meaning
RM_INVALID_MEMORY_BLOCK Memory area was invalid.
RM_INVALID_SIZE A size was invalid.
RM_INVALID_POINTER A pointer was invalid.

RmAlloc, RmCreateMemPool, RmDeleteMemPool, RmFree, RmFreeAll,
RmMemPoolAlloc, RmReAlloc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-45

RmGetTaskID

RMOS API

RmGetTaskID

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

6-46

Get task ID

#include <rmapi.h>

int RmGetTaskID(
uint Tch,
uint * pTaskID);

Parameter Name

Meaning

Tcb

Only RM_OWN_TASK (= own task) allowed

pTaskiD

Pointer to task ID

RmGetTaskID can be used to determine the task ID of the present
task*pTaskID contains the valid task ID of the present task.

RM_OK Function successfully executed.

Error Code

Meaning

RM_INVALID_POINTER

A pointer was invalid.

RM_PARAMETER_ERROR

A parameter other than RM_OWN_TASK was
passed.

RmCreateTask, RmCreateChildTask

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

RMOS API RmGetTaskPriority
RmGetTaskPriority
Function Get task priority
Syntax #include <rmapi.h>
int RmGetTaskPriority(
uint TasklID,
uint * pPriority);
Parameters Parameter Name Meaning
TaskID Task ID (RM_OWN_TASK = own task)
pPriority Pointer to a memory location containing the priority of t
task.
Description RmGetTaskPriority returns the task prioritypPriority contains the
priority of the specified task.
Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID TaskID invalid

See Also

he

RM_INVALID_POINTER

A pointer was invalid.

RmGetTaskState

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-47

RmGetTaskState

RMOS API

RmGetTaskState(

uint TasklID,

uint * pTaskStatg

Meaning

Task ID (RM_OWN_TASK = own task)

RmGetTaskState
Function Get task state
Syntax #include <rmapi.h>
int
Parameters Parameter Name
TaskID
pTaskState

Pointer to a memory location containing the state of the ta
Possible task states are:

RM_READY
RM_DORMANT
RM_ACTIVE
RM_BLOCKED

The reason for the state is coded in the 6 most significant
of *pTaskState*pTaskStatean have one of the following

values:
RM_STA EF
RM_STA_SEMA
RM_STA_LOAD

RM_STA_STRT
RM_STA_ENDT
RM_STA_MSG

RM_STA_MSGRCVD

RM_STA_POOL
RM_STA_HLT

RM_STA_BREAK

Task in READY state
Task in DORMANT state
Task in ACTIVE state
Task in BLOCKED state

Waiting for event flag
Waiting for semaphore

Waiting until destination task is
loaded

Waiting for destination task to start
Waiting for destination task to end
Waiting for a message to be receive

Waiting for a dispatched message tg
be received

Waiting for memory to be allocated
from a memory pool

Halted by DEBUGGER or by
RmSuspendTask

Interrupted by DEBUGGER breakp
int

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

6-48

sk.

bits

o

(@]
T

RMOS API RmGetTaskState
Parameter Name Meaning

RM_STA_PAUSE Waiting for expiry of a time interval
(RmPauseTask)

RM_STA_WAIT Waiting for time interval to expire

RM_STA_ERRO Runtime error, type 0
(Division by 0 Interrupt)

RM_STA_ERR1 Runtime error, type 1
(Single Step Interrupt)

RM_STA_ERR2 Runtime error, type 3
(Breakpoint Interrupt)

RM_STA_ERR3 Runtime error, type 4
(Overflow Interrupt)

RM_STA_ERR4 Runtime error, type 5
(Array Bound Interrupt)

RM_STA_ERRS5 Runtime error, type 6
(Unused Opcode)

RM_STA_ERRG6 Runtime error, type 7
(Escape Opcode)

RM_STA_ERR7 Runtime error, type 8
(Double Fault)

RM_STA_ERRS8 Runtime error, type 9
(NDP Segment Overrun)

RM_STA_ERR9 Runtime error, type 10
(Invalid TSS)

RM_STA_ERR10 Runtime error, type 11
(Segment Not Present)

RM_STA_ERR11 Runtime error, type 12
(Stack Fault)

RM_STA_ERR12 Runtime error, type 13
(General Protection)

RM_STA_ERR13 Runtime error, type 14
(Page Fault)

RM_STA_ERR14 Runtime error, type 16
(Floating Point Error)

RM_STA_ERR15 Runtime error, type 17
(Alignment Check)

RM_STA_LOOK Waiting for catalog entry

RM_STA_KEND Task terminated BymKillTask
(after completion of a running 1/0 op
eration)

RM_STA_KDEL Task deleted bRmKillTask (after
completion of a running I/O opera-
tion)

RM_ACTIVE Task in ACTIVE state.

Description RmGetTaskState returns the task state.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-49

RmGetTaskState

RMOS API

Return Value

Error Codes

See Also

Note

6-50

RM_OK Function successfully executeg,TaskStatecontains the
state of the specified task.

Error Code

Meaning

RM_INVALID_ID

TaskID invalid

RM_INVALID_POINTER

A pointer was invalid.

RmGetTaskPriority

If a task does not exi®@mGetTaskState

returns RM_INVALID_ID.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

RMOS API RmIOClose
RmIOClose
Function Close unit
Syntax #include <rmapi.h>
int RmIOClose(RmIOHandle Handlg);
Parameters Parameter Name Meaning
Handle Descriptor
Description RmIOClose closes the unit specified tbyandle Handleis a descriptor that

Return Value

Error Codes

See Also

was generated witRmIOOpen If the unit was reserved for the calling task,
it is released again (by the driver), and waiting requests of other tasks are

processed.

The RmIOClose call does not have a blocking effect if the unit is reserved

for another task.

RM_OK The function was successfully executed

Error Code

Meaning

RM_BOUND_REACHED

Message queue of unit full

RM_EIO_UNIT_RESET

Request canceled by control function
RM_IOCTL_RESET

RM_INVALID_HANDLE

Descriptor is invalid

RM_OUT_OF_MEMORY

Not enough memory available in heap

RM_QUEUE_NOT_EXIST

Message queue of unit has not yet been set up

RmlOControl, RmIOOpen, RmIORead, RmIOWrite, RmLoadDevice

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-51

RmiIOControl RMOS API
RmlIOControl
Function Control function for loadable drivers
Syntax #include <rmapi.h>
int RmlOControl(
uint Wait,
uint FlagMask
RmIOHandle Handle
uint Control,
void *pBuffer
int * plOStatu$;
Parameters Parameter Name Meaning
Wait Specifies whether the control function is to be executed with
or without waiting.
RM_CONTINUE Continue task without waiting
for control function to finish
RM_WAIT Wait for control function to finish
FlagMask Bit mask to be enabled in the local flag group of the calling
task on termination of the control function (with RM_CON-
TINUE)
Handle Descriptor
Control Function code of the control function, see below
pBuffer Pointer to parameter block for the control function.
plOStatus Pointer toint with error status of the operation or NULL
pointer
Description RmIOControl executes a control function on the unit specifiedHaydle

6-52

Handleis a descriptor that was generated vigtnlOOpen

The Wait parameter specifies whether the task is to wait for the control
function to finish (RM_WAIT), or whether it is to continue
(RM_CONTINUE).

The FlagMask parameter can be used to specify a bit mask in the local flag
group (FlagGroupld=0) which will be enabled after termination of the control
function when a call without wait is executed. If 0 is specified, no bit mask is
enabled.

The Control parameter specifies the control function to be executed. If the
unit does not support the specified control function, the control function is
terminated with RM_EIO_INVALID_CONTROL.

pBufferis used to pass a parameter block, the structure of which depends on
the specified control function.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API

RmIOControl

Control Functions

On termination of the control function, the status is entered imtheto

which plOStatuspoints. In requests with wait, this status is identical to the
return value of the call. If the request is executed without wait, the value
RM_IO_QUEUED is stored there while the request is located in the queue.
During processing by the driver, the value RM_IO_IN_PROGRESS is stored
there. After processing, the error status of the operation is stored there. If the
return value of the status piOStatusis not required (e.g. because of a call

with RM_WAIT), a NULL pointer can be passed. In this case, the status is
only reported as the return value of the function.

Below you will find the control functions available for the serial interface
driver SER8250.DRV and the 3964(R) driver 3964.DRV.

Control functions for SER8250.DRV

RM_IOCTL_BUFFER_FLUSH
Flush background buffepBufferis ignored.

RM_IOCTL_BUFFER_GETSIZE
Find out the size of the background buffer. The buffer size in number of
characters is written tolong , to whichpBuffer points.

RM_IOCTL_BUFFER_SETSIZE

Set the size of the background buffer. Data already stored in the background
buffer are deleted. In the event of an error (e.g. not enough free memory), the
background buffer remains unchangpBuffer points to aulong which

specifies the new buffer size in number of characters.

RM_IOCTL_BUFFER_USED
Determine the number of characters in the background buffer. The number is
stored in aulong to whichpBuffer points.

RM_IOCTL_CANCEL
Cancel current I/O requesiBufferis ignored.

RM_IOCTL_GET_PROPERTIES
Determine the function scope of the driyeBBuffer points to a structure of
the typeRmIOCTLPropertiesStruc t.

RM_IOCTL_GET_VERSION
Find out version of the drivepBuffer points to a structure of the type
RmIOCTLVersionStruct

RM_IOCTL_INIT
Configure unit with new valuegBuffer points to a structure of the type
Ser8250InitStruct , Which is used to pass the configuration data.

RM_IOCTL_INIT_ASCII

Configure unit with new values. The new configuration values are passed in
the form of ASCII stringspBuffer points to an array of pointers which point

to the configuration parameters. The last element of the array must be a
NULL pointer.

The following configuration parameters are permitted:

“IRQ:<irg humber>"
<irg number> IRQ number of the interface (e.g. 4 for COM1).

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-53

RmIOControl RMOS API

This parameter is only permitted in the first RM_IOCTL_INIT_ASCII or
RM_IOCTL_INIT call for a unit (e.g. DEVICE command).

“BASE:<i/o address>"

<i/o address> I/O base address of the 8250 (e.g. Ox3F8 for COM1)
This parameter is only permitted in the first RM_IOCTL_INIT_ASCII or
RM_IOCTL_INIT call for a unit (e.g. DEVICE command).

“MODE:<baud rate>—<parity>—<data bit>—<stop bit>"
Configuration of the communication parameters. The meanings are as
follows:

<baud rate> Baud rate.
All values by which 115200 can be divided without remainder are permitted.

<parity> Parity. The following parameters are permitted:

N No parity check

E Even parity

@] Odd parity

S Parity bit always set to 0 (space)

M Parity bit always set to 1 (mark)

<data bit> Number of data bits. The following numbers are permitted: 5, 6, 7,
8

<stop bhit> Number of stop bits. The following settings are permitted:
1 1 stop bit

2 2 stop bits (not with 5 data bits)

15 1.5 stop bits (only with 5 data bits)

“BUFFER:<size>"
<size> Size of the background buffer

Example

char *parameter[5];
int status

int iostatus;
parameter[0] = “IRQ:4";
parameter[1] = “BASE:0x3F8";

parameter[2] = “MODE:19200-n-8-1";

parameter[3] = “BUFFER:512";

parameter[4] = NULL;

status = RmIOControl(RM_WAIT, 0, handle, RM_IOCTL_INIT_ASCII,
parameter, &iostatus);

RM_IOCTL_INIT_GET
Read in the current configuration of the upiBuffer points to a buffer with
the structure of typ&er8250InitStruct

RM_IOCTL_MODE
Configure unit with new values for communication (e.g. baud rpBy)ffer
points to a structure of tyd@mIOCTLModeSerialStruct

RM_IOCTL_READLEN

Define the number of characters after which read requests are terminated
automatically (only valid when activated by RM_IOCTL_READSTOP).
pBuffermust point to allong which contains the number of characters.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-54 C79000-G7076-C852-02

RMOS API RmIOControl

RM_IOCTL_READLEN_GET
Read in the number of characters defined by RM_IOCTL_READLEN. The
number of characters is written to thieng to whichpBuffer points.

RM_IOCTL_READ_MODE
Select the mode ®mIORead pBuffer points to a ulong in which either
RM_WAIT or RM_CONTINUE is specified.

When RM_WAIT is specified, a read request is not completed until the end
condition (number of characters, stop character, timeout, ...) has been
attained or an error occurs. When RM_CONTINUE is specified, the read
request is terminated with RM_IO_NO_DATA when no data (including the
end condition) are stored in the background buffer.

The default setting is RM_WAIT.

RM_IOCTL_READSTOP

Define which end condition is used for read requests. The stop character(s) is
(are) not written to the user buffer. The end condition is defined bghtre

to whichpBuffer points. The following values are permitted:

SER8250 READSTOP_OFF
Do not use end condition

SER8250 READSTOP_CHAR_1
Use stop character 1

SER8250 READSTOP_CHAR_ 1 2
Use stop characters 1 and 2, that is cancel when the 1st
character is followed by the 2nd stop character.

SER8250 READSTOP_LEN
Terminate read request when the number of characters defined
by RM_IOCTL_READLEN have been read in.

SER8250 READSTOP_CHAR_1 or SER8250 READSTOP_CHAR_1 2
and SER8250 _READSTOP_LEN can be combined using OR logic.

The default setting is SER8250_READSTOP_OFF.

RM_IOCTL_READSTOP1

Define stop character 1 that terminates the read request. Only valid when
activated by RM_IOCTL_READSTORBuffermust point to a&har which
contains the stop character.

RM_IOCTL_READSTOP2

Define stop character 2 that terminates the read request. Only valid when
activated by RM_IOCTL_READSTORBuffermust point to a&har which
contains the stop character.

RM_IOCTL_READSTOP_GET

Read in the end condition activated by RM_IOCTL_READSTOP and the
entered stop charact@Buffer must point to an array with 3 char in which
the current values of RM_IOCTL_READSTOP, RM_IOCTL_READSTOP1
and RM_IOCTL_READSTOP2 are entered.

RM_IOCTL_READTIMEOUT
Define a time span (in ms) specifying the maximum pause between two

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-55

RmIOControl

RMOS API

6-56

characters during read requests. If the pause is longer, the read request is
terminated. Specifying RM_CONTINUE deactivates the timepBtffer
must point to allong which specifies the time span.

The default setting is RM_CONTINUE.

RM_IOCTL_READTIMEOUT_GET
Read in the time span specified by RM_IOCTL_READTIMEOQUT. The time
span is written to thalong to whichpBuffer points.

RM_IOCTL_RELEASE
Release the unit. I/0O requests which were blocked while the unit was
reserved are now executgBufferis ignored.

RM_IOCTL_RESERVE
Reserve unit for calling task. 1/0O requests of other tasks are accepted, but are
not executed until the unit is releasp8ufferis ignored.

RM_IOCTL_RESET

Reset and restart the unit. All I/O requests of the unit which have not yet
been executed are rejected with RM_EIO_UNIT_RESET. The unit must
subsequently be reinitialized (with control functions RM_IOCTL_INIT or

RM_IOCTL_INIT_ASCII). pBufferis ignored.

RM_IOCTL_WRITEDELAY

Define a time span (in ms) specifying the minimum pause observed after
transmission of the last character during write requests by the driver, before
the request is terminated and a new request is processed. Specifying
RM_CONTINUE deactivates the timeout.

pBuffer must point to allong in which the time span is specified.
The default setting is RM_CONTINUE.

RM_IOCTL_WRITEDELAY_GET
Read in the time span specified by RM_IOCTL_WRITEDELAY. The time
span is written to thalong to whichpBuffer points.

RM_IOCTL_WRITESTOP

Define which end condition is used for write requests. The stop character(s)
is (are) transferred in addition to the data sent by the user. The end condition
is defined by thehar to whichpBuffer points. The following values are
permitted:

SER8250 WRITESTOP_OFF
Do not use end condition

SER8250 WRITESTOP_CHAR_1
Use stop character 1

SER8250 WRITESTOP_CHAR_1 2
Use stop character 1 followed by stop character 2

The default setting is SER8250_WRITESTOP_OFF.

RM_IOCTL_WRITESTOP1

Define stop character 1 for write requests. Only valid when activated by
RM_IOCTL_WRITESTOPpBuffermust point to ahar which contains the
stop character.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API

RmIOControl

RM_IOCTL_WRITESTOP2

Define stop character 2 for write requests. Only valid when activated by
RM_IOCTL_WRITESTOPpBuffermust point to ahar which contains the
stop character.

RM_IOCTL_WRITESTOP_GET

Read in the end condition activated by RM_IOCTL_WRITESTOP and the
entered stop charact@Buffer must point to an array with 3 char in which
the current values of RM_IOCTL_WRITESTOP,
RM_IOCTL_WRITESTOP1 and RM_IOCTL_WRITESTOP2 are entered.

Control functions for 3964.DRV

RM_IOCTL_CANCEL
Cancel current I/O requestBufferis ignored.

RM_IOCTL_GET_PROPERTIES
Determine the function scope of the driyeBuffer points to a structure of
the typeRmIOCTLPropertiesStruc t.

RM_IOCTL_GET_VERSION
Find out version of the drivepBuffer points to a structure of the type
RmIOCTLVersionStruct

RM_IOCTL_INIT
Configure unit with new valuegBuffer points to a structure of the type
Rm3964InitStruct , Which is used to pass the configuration data.

RM_IOCTL_INIT_ASCII

Configure unit with new values. The new configuration values are passed in
the form of ASCII stringspBuffer points to an array of pointers which point

to the configuration parameters. The last element of the array must be a
NULL pointer.

The following parameters are permitted:

“IRQ:<irg number>"

<irg number> IRQ number of the interface over which the driver is to
communicate (e.g. 4 for COM1). This parameter is only permitted in the first
RM_IOCTL_INIT_ASCII or RM_IOCTL_INIT call for a unit (e.g. DEVICE
command).

“BASE:<i/o address>"

<i/o address> I/O base address of the interface over which the driver is to
communicate (e.g. 0x3F8 for COML1). This parameter is only permitted in the
first RM_IOCTL_INIT_ASCII or RM_IOCTL_INIT call for a unit (e.g.

DEVICE command).

“MODE:<baud>—<parity>—<data>—<stop>"

Communication parameters:

<baud rate> Baud rate.

All values by which 115200 can be divided without remainder are permitted.

<parity> Parity.

The following parameters are permitted:
N No parity check

E Even parity

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-57

RmIOControl

RMOS API

Return Value

6-58

@] Odd parity
S Parity bit always set to 0 (space)
M Parity bit always set to 1 (mark)

<data bit> Number of data bits. The following numbers are permitted: 5, 6, 7,
8

<stop bit> Number of stop bits.
The following settings are permitted:

1 1 stop bit
2 2 stop bits (not with 5 data bits)
15 1.5 stop bits (only with 5 data bits)

“PROT:<protocol>—<master>"
Protocol parameters:

<protocol> Selection of protocol 3964 or 3964R: 1 for 3964R, 0 for
3964

<master> Selection of master or slave: 1 for master, 0 for slave
Example:

char *parameter[5];

int status

int iostatus;

parameter[0] = “IRQ:4”

parameter[1] = “BASE:0x3F8";

parameter[2] = "MODE:19200-n-8-1";

parameter[3] = “PROT:1-1%

parameter[4] = NULL,;

status = RmIOControl(RM_WAIT, 0, handle, RM_IOCTL_INIT_ASCII,
parameter, &iostatus);

RM_IOCTL_INIT_GET
Read in the current configuration of the upiBuffer points to a buffer with
the structurdcRm3964InitStruct

RM_IOCTL_MODE

Configure unit with new values for communication (e.g. baud rate).

pBuffer points to the configuration data, which are to be passed to a structure
RmIOCTLModeSerialStruct

RM_IOCTL_RELEASE
Release the unit. I/0O requests which were blocked while the unit was
reserved are now executgBufferis ignored.

RM_IOCTL_RESERVE
Reserve unit for calling task. 1/0O requests of other tasks are accepted, but are
not executed until the unit is releasp8ufferis ignored.

RM_IOCTL_RESET

Reset and restart the unit. All I/O requests of the unit which have not yet
been executed are rejected with RM_EIO_UNIT_RESET. The unit must
subsequently be reinitialized (with control functions RM_IOCTL_INIT or

RM_IOCTL_INIT_ASCII). pBufferis ignored.

RM_OK The function was successfully executed

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API RmIOControl

Error Codes Error Code Meaning
RM_BOUND_REACHED Message queue of unit full.
RM_EIO_INVALID_CONTROL The specified control function is not sup-
ported
RM_EIO_UNIT_RESET Request canceled by RM_IOCTL_RESET
control function
RM_EIO_xxx Other error codes of the operation
RM_INVALID_POINTER Pointer invalid
RM_INVALID_TYPE Invalid value forWait
RM_INVALID_HANDLE Handleinvalid
RM_IO_QUEUED Request waiting in message queue
RM_IO_IN_PROGRESS Request is being processed
RM_OUT_OF_MEMORY Not enough free memory available in heap
RM_QUEUE_NOT_EXIST Message queue of unit has not yet been se
up
See Also RmIOClose, RmIOOpen, RmIORead, RmIOWrite, RmLoadDevice

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-59

—

RmIOOpen RMOS API
RmIOOpen
Function Open unit
Syntax #include <rmapi.h>
int RmIOOpen(
const char * pUnitName
uint Mode
RmlIOHandle * pHandlg;
Parameters Parameter Name Meaning
pUnitName Name of the unit in the RMOS resource catalog
Mode Mode for opening the unit
RM_IO_READ Open unit for read access
RM_IO_WRITE Open unit for write access
RM_IO_RESERVE Reserve unit for task
pHandle Pointer to a variable in which the descriptor for addressing
unit is stored.
Description RmIOOpenopens the unit specified pUnitNamefor processing with the

Return Value

Error Codes

6-60

callsRmIORead RmIOWrite andRmIOControl . RmIOOpenreturns the
descriptor of the open unit to the memory addressgoHandle

The Mode parameter specifies what type of accesses are to be performed on
the unit. RM_IO_READ signifies read accesses and RM_IO_WRITE
signifies write accesses.

Specifying RM_I0_RESERVE additionally means that only requests of the
calling task are processed. Requests of other tasks are accepted, but are not
executed until the unit is released with the ta&k(OControl with
RM_IOCTL_RELEASE)or closed wit(RmlOClose .

If necessary, the values can be combined using OR logic (e.g.
RM_IO_READ | RM_IO_WRITE | RM_IO_RESERVE; the unit is opened
for read and write access exclusively by the calling task).

RM_OK The function was successfully executed
Error Code Meaning
RM_BOUND_REACHED Message queue of unit full.
RM_EIO_UNIT_RESERVED Unit is already reserve@®MmIOOpenwith
RM_IO_RESERVE oRmIOControl with
RM_IOCTL_RESERVE).

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API RmIOOpen

Error Code Meaning

RM_EIO_UNIT_RESET Request canceled by control function
RM_IOCTL_RESET

RM_INVALID_POINTER Pointer invalid

RM_INVALID_TYPE Invalid value foMode

RM_INVALID_UNIT UnitNameis not the unit of a loadable driver

RM_IS_NOT_CATALOGED Unit is not cataloged with the specified name

RM_OUT_OF_MEMORY Not enough free memory available in heap

RM_QUEUE_NOT_EXIST Message queue of unit has not yet been set

See Also RmIOClose, RmIOControl, RmIORead, RmIOWrite, RmLoadDevice

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-61

RmIORead

RMOS API

RmIORead

Function

Syntax

Parameters

Description

6-62

Read from unit

#include <rmapi.h>

int

RmIORead(
uint Wait,
uint FlagMask
RmIOHandle Handle
ulong Length
void *pBuffer
ulong BlockAddress
ulong *plOCount
int * plOStatu$;

Parameter Name

Meaning

Wait

Specifies whether the request is to be executed with or wj
out waiting.

RM_CONTINUE Continue task without waiting for
read request to finish

RM_WAIT Wait for read request to finish
FlagMask Bit mask to be enabled in the local flag group of the callin
task on termination of the request (with RM_CONTINUE
Handle Descriptor
Length Length of the memory area in bytes/blocks (numerical)
pBuffer Pointer to the memory area
BlockAddress Address of the first block for block—oriented drivers
plOCount Pointer to allong for the number of bytes/blocks read
(valid only after completion of the read request)
plOStatus Pointer taint for error status of the operation or NULL

pointer

ith-

The RmIORead call readd_engthbytes (for character—oriented drivers) or
blocks (for block—oriented drivers) from the unit specifiedHandle into the
memory area specified pBuffer Handleis a descriptor that was generated

with RmIOOpen

With block—oriented drivers, the address of the first block to be read is also
passed irBlockAddressWith character—oriented drivers (SER8250.DRY,
3964.DRV),BlockAddresss ignored.

Wait specifies whether the task is to wait for the read request to finish
(RM_WAIT), or whether it is to continue (RM_CONTINUE).

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API RmIORead

The FlagMask parameter can be used to specify a bit mask in the local flag
group (FlagGroupld=0) which will be enabled after termination of the
request when a call without wait is executed. If O is specified, no bit mask is
enabled.

After completion of the read request, the humber of transferred bytes/blocks
is stored in thallong to whichplOCountpoints.

On termination of the read request, the status is entered iimt théo which
plOStatuspoints. In requests with wait, this status is identical to the return
value of the call. If the request is executed without wait, the value
RM_IO_QUEUED is stored there while the request is located in the queue.
During processing by the driver, the value RM_IO_IN_PROGRESS is stored
there. After processing, the error status of the operation is stored there. If the
return value of the status piOStatusis not required (e.g. because of a call

with RM_WAIT), a NULL pointer can be passed. In this case, the status is
only reported as the return value of the function.

Return Value RM_OK The function was successfully executed

Error Codes Error Code Meaning
RM_BOUND_REACHED Message queue of unit full
RM_EIO_INVALID_ACCESS Descriptor is not open for read
RM_EIO_UNIT_RESET Request canceled by control function

RM_IOCTL_RESET

RM_INVALID_HANDLE Descriptor is invalid
RM_INVALID_POINTER Invalid pointer
RM_INVALID_TYPE The value foWaitis invalid
RM_IO_IN_PROGRESS Request is being processed
RM_IO_QUEUED Request waiting in queue
RM_OUT_OF_MEMORY Not enough free memory available in heap
RM_QUEUE_NOT_EXIST Message queue of unit has not yet been set up.

See Also RmIOClose, RmIOControl, RmIOOpen, RmIOWrite, RmLoadDevice

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-63

RmIOWrite

RMOS API

RmIOWrite

Function

Syntax

Parameters

Description

6-64

Write to unit

#include <rmapi.h>

int

RmIOWrite(
uint Wait,
uint FlagMask
RmIOHandle Handle
ulong Length
void *pBuffer
ulong BlockAddress
ulong *plOCount
int * plOStatu$;

Parameter Name

Meaning

Wait

Specifies whether the request is to be executed with or wj
out waiting.

RM_CONTINUE Continue task without waiting for
write request to finish

RM_WAIT Wait for write request to finish
FlagMask Bit mask to be enabled in the local flag group of the callin
task on termination of the request (with RM_CONTINUE
Handle Descriptor
Length Length of the memory area in bytes/blocks (numerical)
pBuffer Pointer to the memory area
BlockAddress Address of the first block for block—oriented drivers
plOCount Pointer to allong for the number of bytes/blocks written
(valid only after completion of the read request)
plOStatus Pointer taint for error status of the operation or NULL

pointer

ith-

The RmIOWrite call writesLengthbytes (for character—oriented drivers) or
blocks (for block—oriented drivers) from the memory area specified by
pBufferto the unit specified bidandle Handleis a descriptor that was
generated witiRmIOOpen

With block—oriented drivers, the address of the first block to be written is
also passed iBlockAddressWith character—oriented drivers
(SER8250.DRV, 3964.DRVBlockAddresss ignored.

Wait specifies whether the task is to wait for the write request to finish
(RM_WAIT), or whether it is to continue (RM_CONTINUE).

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API RmIOWrite

The FlagMask parameter can be used to specify a bit mask in the local flag
group (FlagGroupld=0) which will be enabled after termination of the
request when a call without wait is executed. If O is specified, no bit mask is
enabled.

After completion of the read request, the humber of transferred bytes/blocks
is stored in thallong to whichplOCountpoints.

On termination of the write request, the status is entered intthg¢o which
plOStatuspoints. In requests with wait, this status is identical to the return
value of the call. If the request is executed without wait, the value
RM_IO_QUEUED is stored there while the request is located in the queue.
During processing by the driver, the value RM_IO_IN_PROGRESS is stored
there. After processing, the error status of the operation is stored there. If the
return value of the status piOStatusis not required (e.g. because of a call

with RM_WAIT), a NULL pointer can be passed. In this case, the status is
only reported as the return value of the function.

Return Value RM_OK The function was successfully executed

Error Codes Error Code Meaning
RM_BOUND_REACHED Message queue of unit full.
RM_EIO_INVALID_ACCESS Descriptor not open for Write
RM_EIO_UNIT_RESET Request canceled by control function

RM_IOCTL_RESET

RM_INVALID_HANDLE Descriptor is invalid
RM_INVALID_POINTER Invalid pointer
RM_INVALID_TYPE The value foWaitis invalid
RM_IO_IN_PROGRESS Request is being processed
RM_IO_QUEUED Request waiting in queue
RM_OUT_OF_MEMORY Not enough free memory available in heap
RM_QUEUE_NOT_EXIST Message queue of unit has not yet been set up.

See Also RmIOClose, RmIOControl, RmIOOpen, RmIORead, RmLoadDevice

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-65

RmKillTask RMOS API

RmKillTask
Function End task
Syntax #include <rmapi.h>
int RmKillTask(
uint Mode
uint TaskID);
Parameters Parameter Name Meaning
Mode Desired task state:
RM_TASK_END Switch task to DORMANT state
(same effect aRmEndTask
RM_TASK_DELETE Delete task (same effectas
RmDeleteTask)
TaskID ID of task to be deleted (RM_OWN_TASK = own task)
Description The function switches any task (even the calling task) to the DORMANT or

NOTEXISTENT state, irrespective of the state before the function call.
Special conditions arise when the destination task is in the BLOCKED state.

RmKillTask is illegal under the following circumstances, and is terminated
with an error message:

¢ Termination/deletion througRmKillTask was already requested (call-
ing RmKillTask twice for the same task)

¢ Page fault because stack overflow

In the following situation, the task does not switch immediately to the
DORMANT or NOTEXISTENT state, but is merely registered:

Waiting for completion of an 1/O job:

The task involved remains in the BLOCKED state. The state change is not
activated until the I/O job has been completed. It is thus possible that the task
will remain visible in a passive (blocked) state following the call. In this

case, the task is in the block state RM_STA_KEND or RM_STA_KDEL.

RM_TASK_DELETE option

All start requests are deleted from the queue. If the destination task was
started with the coordination option “Wait until ready” or “Wait until ter-
mination”, all related tasks which have been initiatedRyStartTask

or RmQueueStartTask are informed of the premature termination/dele-
tion of the destination task.

RM_TASK_END option

All start requests remain in the queue. The calling task continues to run as if
the destination task had initiatedmEndTask. If the destination task was

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-66 C79000-G7076-C852-02

RMOS API

RmKillTask

Return Value

Error Codes

Note

See Also

started with the coordination option “Wait until ready” or “Wait until ter-
mination”, all related tasks which have been initiatedRbyStartTask or
RmQueueStartTask are informed of the premature termination/deletion
of the destination task.

RM_OK Function successfully executed.
Error Code Meaning
RM_INVALID_TYPE An invalid parameterMode was passed.
RM_INVALID_ID An invalid TaskID was passed.
RM_INVALID_TASK_STATE Callillegal in present task state.

Resources, such as memory pools, mailboxes or semaphores, which are still
in possession of the task, are not automatically freed when the task is
switched to the DORMANT state or deleted. These resources must, if pos-
sible, be freed by another task, otherwise they will no longer be available
during subsequent operation.

RmDeleteTask, x_cr_Killtsk,

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-67

RmList RMOS API

RmList
Function List entries in resource catalog
Syntax #include <rmapi.h>
int RmList (
uint Type
uint Count
uint * pindex
uint * pNumEntries
RmEntryStruct * pEntry)
Parameters Parameter Name Meaning
Type Resource type (sé&mGetNamég
Count Number of resource entries to be read out in a call.
NumEntrieseturns the number of entries which were found
and stored ipEntry.
If Count > 1 pEntrymust point to an array witlumEntries
elements of thRmEntryStruct structure.
pindex This parameter is used as both an input and output parameter.
Input parameter:
*pIndexspecifies the value from which the resource entries
are to be read out.
*pIndex must be 0 on the first call. If further calls are re-
quired,*pIndexshould not be changed.
Output parameter:
In *pIndexthe function returns the next entry which has nat
yet been read out.
This index is only used internally for system purposes and can
not be evaluated by the user.
pNumEntries Number of entries found.
pEntry Pointer to a structure or (depending@wsun) an array of
structures of the typ@mEntryStruct, see chapter 3:
Description TheRmList function reads out a number of entries from the catalog and

stores them in the specified buffer whose start address is specifigthby.

The first entry to be read out can be specified irfpthedex parameter (start
of the list = 0). When the call return$pindex contains a reference to the
next entry which has not yet been read*plitdex may not be changed.

The end of the catalog has been reached when the number of entries actually
read out {pNumEntrieg is less than the number requestédyny.

You can limit the read-out to a specific resource type Wyibe

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-68 C79000-G7076-C852-02

RMOS API RmList

Return Value RM_OK Function successfully executed, the buffer contains valid
entries.
Error Codes Error Code Meaning
RM_INVALID_TYPE The specified type is illegal<Oype<11
RM_INVALID_POINTER The pointer to the string is incorrect, or a protection
error has occurred.
See Also RmCatalog, RmGetEntry, RmGetName, RmUncatalog

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-69

RmLoadDevice RMOS API

RmLoadDevice

Function Load driver

Syntax #include <rmapi.h>
int RmLoadDevice(
const char *pDeviceName
const char *pArgumenty

Parameters Parameter Name Meaning

pDeviceName Pointer to the name of the driver

pArguments Pointer to arguments (separated by spaces)

Description RmLoadDevice loads and starts the driver specifiedpgiyeviceNameor
generates a new unit for the driver specifiecoBDgviceNamef
pDeviceNamas entered in the RMOS resource catalog as a loadable driver
(SER8250, 3964).

The driver must be specified by an absolute path the first time it is loaded.
The name of the driver must be specified (SER8250.DRV, 3964.DRV). The
driver is cataloged after it is loaded.

The name entered in the resource catalog must be used in further calls
(SER8250, 3964).

pArgumentsspecifies the arguments for initializing the driver or unit. The
individual arguments are separated by spacesR88®Control with
control function RM_IOCTL_INIT_ASCII for more detailed information.

The RMFCRIFB.LIB library is required when the application is linked.

Return Value RM_OK Function successful

Error Codes Error Code Meaning

RM_INVALID_DEVICE Invalid pDeviceNamée.g. catalog entry is not a
loadable driver or driver not found).

RM_OUT_OF_MEMORY No free memory available.

RM_EIO_INIT_FAILED The driver has terminated due to an error, and has
been removed from the system.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-70 C79000-G7076-C852-02

RMOS API RmLoadDevice

Example Load driver SER8250 without arguments:
RmLoadDevice("\M7RMOS32\\ser8250.drv”, NULL);

Load driver 3964 with unit 3964 _COMZ1 and initialization values:
RmLoadDevice("\M7RMOS32\\3964.drv",
“3964 COM1 IRQ:4 BASE:0x3F8 MODE:19200-N-8-1 PROT:1-1");

Create unit COM2 for already loaded driver SER8250 with initialization

values:
RmLoadDevice("SER8250",
“COM2 IRQ:3 BASE:0x2F8 MODE:19200-N—8-1");

See Also RmIOClose, RmIOControl, RmIOOpen, RmIORead, RmIOWrite

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-71

RmMapMemory RMOS API

RmMapMemory

Function Address physical memory

Syntax #include <rmapi.h>
int RmMapMemory (

ulong PhysAddress
ulong Length
void **pPointer);
Parameters Parameter Name Meaning
PhysAddress Physical startaddress
Length Length of the memory area to be mapped
pPointer Address of a pointer variable in which the linear address of the
newly initialized memory area is entered.
Programs can ugePointerfor direct access to the mapped
addressarea.
If the linear address, thattigPointer, is equal to NUL, the
memory area could not be mapped.

Description The RmMapMemoryfunction maps a physical memory area (for example
dual-port RAM or memory mapped I/O) onto a linear address space (start
address*pPointer, length:Length. User programs can use the returned
pointer*pPointer to access the memory (access is READ/WRITE).

Return Value RM_OK Function successfully executed.

Error Codes Error Code Meaning

RM_INVALID_POINTER A pointer was invalid.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-72 C79000-G7076-C852-02

RMOS API RmMemPoolAlloc

RmMemPoolAlloc

Function Allocate memory area from memory pool
Syntax #include <rmapi.h>
int RmMemPoolAlloc (
ulong TimeOutValue
uint Mode
uint PoollD,
ulong Size

void ** ppMemory

Parameters Parameter Name Meaning

TimeOutValue Maximum time to wait for execution

RM_CONTINUE Continue task without waiting for me
mory allocation

RM_WAIT Wait for memory allocation

0..RM_MAXTIME Time interval in ms. The task waits un

til either the memory has been alloca
ted or the time has expired.

The values for hours, minutes and seconds can be combined by
addition for the time parameter. The maximum wait time is
2731 milliseconds.

RM_HOUR(our) Wait for (hour) hours
RM_MINUTE(mIn) Wait for (min) minutes
RM_SECONDéeg¢ Wait for (seg¢ seconds
RM_MILLISECOND(mMg Wait for (m9g milliseconds

Mode Allocation method for memory:
RM_AUTOFREE The memory is freed automatically

with RmFreeAll . Itis assigned
to a specific task.

RM_NOAUTOFREE The memory is not freed automati
cally withRmFreeAll

PoollD ID of the memory pool from which the memory is requested.
Size Size of the memory area
ppMemory Address of pointer to a memory area.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-73

RmMemPoolAlloc

RMOS API

Description

Return Value

Error Codes

See Also

6-74

The function allocates a memory area of Sizefrom the specified me-
mory area*ppMemory contains a valid pointer to the allocated memory

area.

RM_OK Function successfully executed.

RM_TASK_WAITING Function had to wait for memeoy allocation

Error Code

Meaning

RM_INVALID_SIZE

Size=0 or Sizegreater than memory pool

RM_INVALID_ID

No memory pool exists for the specified ID

RM_OUT_OF MEMORY

No memory area of the specified size is available

RM_GOT_TIMEOUT

A suitable memory area could not be allocated in|the
specifiedtime

RmAlloc, RmCreateMemPool, RmDeleteMemPool, RmFree, RmFreeAll,

RmGetSize, RmReAlloc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

RMOS API

RmPauseTask

RmPauseTask

Function

Syntax

Parameters

Description

Return Value

See Also

Pause for time interval

#include <rmapi.h>

int RmPauseTask(ulongTimeValug;
Parameter Name Meaning
TimeValue Duration of the pause

0..RM_MAXTIME Time interval in ms. .
The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
2731 milliseconds.

RM_HOUR(our) Wait for (hour) hours
RM_MINUTE(mIn) Wait for (min) minutes
RM_SECONDéeg Wait for (seg¢ seconds

RM_MILLISECOND(mMg Wait for (m9g milliseconds

RmPauseTask causes a task to pause for a defined time interval. If
TimeValueO, the task pauses until the start of the next system scan cycle.

A task interrupted bjRmPauseTask can be switched prematurely from the
BLOCKED state to READY wittRmResumeTask

RM_OK Function successfully executed.
RM_TASK_RESUMED Task was resumed with
RmResumeTask

RmRestartTask, RmResumeTask

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-75

RmQueueStartTask RMOS API

RmQueueStartTask

Function Add task to queue. The task is started immediately it switches to the
DORMANT state.

Syntax #include <rmapi.h>
int RmQueueStartTask(
uint Wait,
uint TasklID,
uint Priority,
uint RegVall
uint RegVal;
Parameters Parameter Name Meaning
Wait RM_NO_WAIT Start destination task and continue
task.
RM_WAIT_READY Wait until destination task is in
READY state.
RM_WAIT_END Wait until destination task has fi-
nished.
TaskID Destination task ID
Priority 0..255 Set defined value
RM_TCDPRI Take priority from TCD
RM_CURPRI Use current priority of the calling task
RM_MAXPRI Set maximum (RM_TCDPRI,
RM_CURPRI)
RegVall Parameter 1 (passed in EAX of destination task)
RegVal2 Parameter 2 (passed in EBX of destination task)
Description RmQueueStartTask starts a task. The function requires the same parame-

ters aRmStartTask

This function differs frorRmStartTask in that the start call is entered in
an internal system queue, and is executed as soon as the task switches to the
DORMANT state.

If the task to be started is already in the DORMANT state, the effect of
RmQueueStartTask is identical toRmStartTask

Return Value RM_OK Function successfully executed; the destination task
switched from the DORMANT state to READY, or the
start request was entered in the internal system queue.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-76 C79000-G7076-C852-02

RMOS API RmQueueStartTask

Error Codes Error Code Meaning
RM_INVALID_ID An invalid TaskiDwas passed.
RM_TASK_KILLED The destination task was switched to the DORMANT

state or deleted before the READY state was attained
or before it was terminated wiRmKillTask

RM_INVALID_TYPE An invalid parameteRriority)was passed.

See Also RmEndTask, RmStartTask

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-77

RmReadMessage RMOS API

RmReadMessage
Function Read message from message queue
Syntax #include <rmapi.h>
int RmReadMessage (
ulong TimeOutValue
uint * pMessage
void *pMessageParajn
Parameters Parameter Name Meaning
TimeOutValue Specifies how long to wait for the arrival of a message when
the message queue is empty.
RM_CONTINUE Continue task without waiting for the
message to arrive.
RM_WAIT Wait for the message to arrive.
0..RM_MAXTIME Time interval in ms. The task waits
until either the message has arrived|or
the time has expired.
The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
2731 milliseconds.
RM_HOUR(our) Wait for (hour) hours
RM_MINUTE(mIn) Wait for (min) minutes
RM_SECOND§e¢ Wait for (seg seconds
RM_MILLISECOND(mMg Wait for (m9g milliseconds
pMessage Address of a variable in which the message ID is stored.
pMessageParam Address of a pointer to the message parameter.
Description Fetches the message with the highest priority from the message queue of the
calling task.
The memory locations for the message ID and a pointer to the message pa-
rameters must be allocated by the calling task.
RmReadMessage enters the message ID*ipMessage and enters the
pointer to the actual message parameterplitessageParam
If no messages exist, the function waits for TmaeOutValuelf a message is
not received during this period, the function is canceled with a timeout.
Return Value RM_OK Function successfully executed; a message was read out

from the message queue. TipMessageparameter con-
tains the message ID anpMessageParancontains a
valid pointer to the transmitted message.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-78 C79000-G7076-C852-02

RMOS API RmReadMessage

if

Error Codes Error Code Meaning
RM_GOT_TIMEOUT A message was not received within the specified
time.
RM_INVALID_POINTER A pointer was invalid.
RM_NO_MESSAGE The message does not contain a message (only i
TimeOutValue = RM_CONTINUE)
RM_QUEUE_NOT_EXIST The message queue does not exist.

See Also RmCreateMessageQueue, RmDeleteMessageQueue, RmSendMessage

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-79

RmReAlloc

RMOS API

RmReAlloc

Function

Syntax

Parameters

Description

Return Value

6-80

Change the size of a memory area

#include <rmapi.h>
int

RmReAlloc (
ulong TimeOutValue
uint Mode
ulong NewSize
void ** ppMemory

Parameter Name

Meaning

TimeOutValue

Maximum time to wait for execution

RM_CONTINUE Continue task without waiting for m
mory allocation.

RM_WAIT Wait for memory allocation.
0..RM_MAXTIME Time interval in ms.

The values for hours, minutes and seconds can be combi
by addition for the time parameter. The maximum wait tim
2731 milliseconds.

RM_HOUR(our) Wait for (hour) hours
RM_MINUTE(mIn) Wait for (min) minutes
RM_SECONDéeg Wait for (seg seconds
RM_MILLISECOND(mMg Wait for (m9g milliseconds

12
I

ned
eis

Mode

Allocation method for memory:

RM_AUTOFREE The memory is freed automati-
cally withRmFreeAll . Itis as-
signed to a specific task.

RM_NOAUTOFREE The memory is not freed autom
tically with RmFreeAll

NewSize

New size of the memory area.

ppMemory

Address of pointer to a memory area.

The function increases or reduces the memory area specifiggpblemory
without changing its content§ppMemorycontains a valid pointer to the
modified memory area. This pointer does not have to match the passed
pointer, because the memory area may have been moved in certain circum-

stances.

If the original memory are®ppMemorywas requested from a pool, the same
pool is used foRmReAlloc .

RM_OK Function successfully executed.

RM_TASK_WAITING Function had to wait for memeoy allocation

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API RmReAlloc

Error Codes Error Code Meaning
RM_INVALID_POINTER A pointer was invalid.
RM_INVALID_SIZE Size=0 orSizegreater than heap/memory pool

RM_OUT_OF_MEMORY No memory area of the specified size is available

RM_GOT_TIMEOUT A suitable memory area could not be allocated injthe
specifiedtime

See Also RmAlloc, RmCreateMemPool, RmDeleteMemPool, RmFree, RmFreeAll,
RmGetSize, RmMemPoolAlloc

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-81

RmReceiveMail

RMOS API

RmReceiveMail

Function

Syntax

Parameters

Description

Return Value

6-82

Receive message from local mailbox

#include <rmapi.h>
int

RmReceiveMail(
ulong TimeOutValue

uint MailboxID,
void *pMail);
Parameter Name Meaning
TimeOutValue Maximum time to wait for execution

RM_CONTINUE Continue task without waiting for

message to arrive.

RM_WAIT Wait for message to arrive.

0..RM_MAXTIME Time interval in ms. The task waits

until either the message has arrived|or
the time has expired.

The values for hours, minutes and seconds can be combined

by addition for the time parameter. The maximum wait time is

231 milliseconds.

RM_HOUR(our) Wait for (hour) hours

RM_MINUTE(mIn) Wait for (min) minutes

RM_SECONDéeg¢ Wait for (seg¢ seconds

RM_MILLISECOND(mMg Wait for (m9g milliseconds

Mode Allocation method for memory:

RM_AUTOFREE The memory is freed automati-
cally withRmFreeAll . Itis as-
signed to a specific task.

RM_NOAUTOFREE The memory is not freed automa-
tically with RmFreeAll

MailboxID Mailbox ID
pMail Pointer to 12-byte buffer

RmReceiveMail copies the 3-word message with the highest priority from
a mailbox to a user buffer, and deletes the message from the mailbox.

A user buffer with a capacity of 3 words must be allocated by the calling

task.

RM_OK Contents of pMail contain message.

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API

RmReceiveMail

Error Codes

Note

See Also

Error Code

Meaning

RM_INVALID_ID

Mailbox ID invalid.

RM_INVALID_POINTER

A pointer was invalid.

RM_NO_MESSAGE

The mailbox does not contain a message (only if
TimeOutValue = RM_CONTINUE).

RM_GOT_TIMEOUT

The call was canceled after the configured timeou
time.

t

A 3-word message normally contains either the actual message or a pointer to
the actual message block. In the latter case, the sender task fetches the mes-
sage block for the actual information from a memory pool, and the task

which reads the message from the mailbox returns it to the memory pool.

The word length is 32 bits.

RmCreateMailbox, RmDeleteMailbox, RmSendMail,
RmSendMailCancel, RmSendMailDelayed

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-83

RmReleaseBinSemaphore RMOS API

RmReleaseBinSemaphore

Function Reset semaphore
Syntax #include <rmapi.h>

int RmReleaseBinSemaphore(uinSemaphoreld
Parameters Parameter Name Meaning

SemaphorelD Semaphore ID
Description RmReleaseBinSemaphore resets th&emaphorelDsemaphore.
Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning

RM_INVALID_ID An invalid SemphorelQvas passed.
Note The allocation and release of semaphores are not task-specific.
See Also RmCreateBinSemaphore, RmDeleteBinSemaphore,

RmGetBinSemaphore automatic priority change through semaphore pos-
session in the Programming Manual

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-84 C79000-G7076-C852-02

RMOS API RmResetFlag
RmResetFlag
Function Reset event flag
Syntax #include <rmapi.h>
int RmResetFlag(
uint FlagGrplD,
uint FlagMasR);
Parameters Parameter Name Meaning
FlagGrpID Event flag group ID. 0 specifies the local flag group.
FlagMask The mask defines which bits are reset.
Description RmResetFlag resets the event flags specified in the flag mask, and indi-

Return Value

Error Codes

See Also

cates whether they were already set.

RM_OK Function successful no bits reset.
RM_FLAG_RESET At least one bit was reset.

Error Code Meaning

RM_INVALID_ID An invalid FlagGrplD was passed.

RmCreateFlag, RmDeleteFlag, RmGetFlag, RmSetFlag,
RmSetFlagDelayed

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-85

RmRestartTask RMOS API

RmRestartTask
Function Terminate task and restart after time interval
Syntax #include <rmapi.h>
int RmRestartTask(
uint Mode,
ulong TimeValug;
Parameters Parameter Name Meaning
Mode RM_LAST_READY_TIME Refer time calculation to
last change to READY
state
RM_CURRENT_TIME Refer time calculation to
currenttime
TimeValue Wait time until restart
0... RM_MAXTIME Time interval in ms.
The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time is
2731 milliseconds.
RM_HOUR(our) Wait for (hour) hours
RM_MINUTE(min) Wait for (min) minutes
RM_SECOND§e¢ Wait for (seg seconds
RM_MILLISECOND(mY Wait (9 Sekunden
Description RmRestartTask terminates execution of the task and restarts it when a
time interval has expired.
If TimeValueO, the task is switched to the READY state on the next timer
interrupt.
Return Value RM_OK Function successfully executed.
Note RmRestartTask switches a task to the BLOCKED state and not to the

DORMANT state. In contrast tBmPauseTask, the task is started when the
time defined inRmRestartTask expires; that is program execution begins
at the entry address of the task.

A task interrupted byRmRestartTask can only be switched to the
READY state once the time interval has expired.

It is not possible to pass parameters in EAX or EBX to a task on restart with
RmRestartTask .The parameters can be passed and stored the first time the
task is started (with another start command). These parameters can then be
reused following any subsequent task start initiate®imnRestartTask

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-86 C79000-G7076-C852-02

RMOS API RmRestartTask

If a task (ain()) was started by the CLI, it may not be restarted with
RmRestartTask

See Also RmActivateTask, RmPauseTask, RmResumeTaslstarting, interruption,
termination of tasks

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-87

RmResumeTask RMOS API

RmResumeTask
Function Resume task halted byRmPauseTask or RmSuspendTask.
Syntax #include <rmapi.h>
int RmResumeTask(uint TaskID);
Parameters Parameter Name Meaning
TaskID Task ID
Description RmResumeTaskswitches a task, which has been changed to the BLOCKED
state byRmSuspendTask or RmPauseTask call.
In contrast tdRmRestartTask , program execution resumes immediately
after theRmSuspendTask or RmPauseTask call.
Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID An invalid TasklDwas passed.
RM_TASK_NOT_PAUSED Task to be resumed lymResumeTaskwas
not halted byRmPauseTask or is no longer in
the BLOCKED state.
See Also RmActivateTask, RmPauseTask, RmRestartTask, RmSuspendTask

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
6-88 C79000-G7076-C852-02

RMOS API RmSendMail

RmSendMall
Function Send message to a mailbox
Syntax #include <rmapi.h>
int RmSendMail(
ulong TimeOutValug
uint Priority,
uint MailboxID,
void *pMail);
Parameters Parameter Name Meaning
TimeOutValue Maximum time to wait for execution
RM_CONTINUE Continue task without waiting for
message to be fetched.
RM_WAIT Wait for message to be fetched.
0..RM_MAXTIME Time interval in ms. The task waits
until either the message has been fet-
ched or the time has expired.
The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time
is 2°31 milliseconds.
RM_HOUR(hour) Wait for (hour) hours
RM_MINUTE(min) Wait for (min) minutes
RM_SECONDéeg Wait for (seq seconds
RM_MILLISECOND(mg Wait (mg Sekunden
Priority 0..255 Set defined value
RM_TCDPRI Take priority from TCD
RM_CURPRI Use current priority of the calling
task
MailboxID Mailbox 1D
pMail Pointer to 3-word buffer
Description RmSendMail copies a 3-word-long prioritized message to a mailbox. The

task can be switched to the BLOCKED state until the message has been
fetched or the call has been canceled by a timeout.

The message format is freely selectable. For example, a 3-word (32-bit) long
message or the address and length of a message with the following configura-
tion can be specified:

Message word 1: Address of the message block
Message word 2: Anything
Message word 3: Length of the message block in byte

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-89

RmSendMail RMOS API

Return Value RM_OK Function successfully executed, the message was copied
to the mailbox.

Error Codes Error Code Meaning
RM_INVALID_ID An invalid MailboxID was passed.
RM_INVALID_TYPE An invalid parameterRriority) was passed.
RM_INVALID_POINTER A pointer was invalid.
RM_GOT_TIMEOUT The call was canceled after the configured timeout.
RM_BOUND_REACHED The request exceeds the limit entered for the majl-
box (seeRmSetMailboxSize) a[

See Also RmCreateMailbox, RmDeleteMailbox, RmReceiveMail, RmSetMailbox-
Size

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-90 C79000-G7076-C852-02

RMOS API RmSendMailCancel

RmSendMailCancel

Function Cancel message started witRmSendMailDelayed
Syntax #include <rmapi.h>
int RmSendMailCancel (
RmMaillDStruct * pMaillD,
void *pMail);
Parameters Parameter Name Meaning
pMaillD Pointer to a structure of the typenMaillDStruct (see chap-

ter 3). TheRmSendMailDelayed function returns the
pointer to the accompanyirmMaillDStruct .

pMail Pointer to a buffer to which the previously dispatched mes
sage is written back. The length of the message is 12 bytes.

Description The function cancels a message started RittSendMailDelayed . It is
only possible to cancel the message before the time interval has expired or the
specified message has been fetched. In the latter case, the message is deleted
from the mailbox.

The precedingRmSendMailDelayed call returns information in an
RmMaillDStruct structure. The address of this structure must be passed with
theRmSendMailCancel call.

The contents of the message are returned to the calling task, so that the infor-
mation in the message can be evaluated if necessary.

Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID An invalid message was passedgMaillD.This

error is also output if a dispatched message has @l-
ready been fetched. The memory definegbail
is undefined.

RM_INVALID_POINTER A pointer was invalid.

See Also RmCreateMailbox, RmDeleteMailbox, RmReceiveMail, RmSendMail,
RmSendMailDelayed, RmSetMailboxSize

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-91

RmSendMailDelayed RMOS API

RmSendMailDelayed

Function Send mail to a mailbox after a delay
Syntax #include <rmapi.h>
int RmSendMailDelayed (
ulong TimeValue
uint Priority,
uint MailboxID,
void *pMail,

RmMaillDStruct * pMaillD);

Parameters Parameter Name Meaning

TimeValue Time until message is sent.
0..RM_MAXTIME Time interval in ms.

The values for hours, minutes and seconds can be comhbined
by addition for the time parameter. The maximum wait time
is 2731 milliseconds.

RM_HOURhour) Wait for (hour) hours

RM_MINUTE(min) Wait for (min) minutes

RM_SECONDéeq Wait for (seg seconds

RM_MILLISECOND(m9 Wartet (n9 Sekunden
Priority 0..255 Set defined value

RM_TCDPRI Take priority from TCD
RM_CURPRI Use current priority of the calling task

MailboxID Mailbox ID
pMail Pointer to message. The length of the message is 12 bytes.
pMaillD Pointer to a structure of the tyg@mMaillDStruct (see
chapter 3).
Description RmSendMailDelayed sends mail to a mailbox after a delay. The calling

task must pass the address of a memory area of th&tgp&illDStruct.

The function enters an identification code in this memory area. The identifica-
tion code can be used to cancel the action RittSendMailCancel

Return Value RM_OK Function successfully executed, RMaillDStruct
variable contains the identification of the accompanying
job.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-92 C79000-G7076-C852-02

RMOS API RmSendMailDelayed
Error Codes Error Code Meaning
RM_INVALID_TYPE An invalid parameterRriority) was passed.
RM_INVALID_ID Invalid flag group.
RM_INVALID_POINTER A pointer was invalid.

Note

See Also

A limit, defined byRmSetMailboxSize , that restricts the number of mes-
sages waiting to be fetched from a mailbox, is ignored when the message is
dispatched witiRmSendMailDelayed

It is possible for the mailbox to which the message is dispatched to be deleted
by the system caRmDeleteMailbox before the time interval has expired.
In this case, the message is discarded without an error being indicated.

RmCreateMailbox, RmDeleteMailbox, RmReceiveMail, RmSendMail,
RmSendMailCancel, RmSetMailboxSize

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-93

RmSendMessage

RMOS API

RmSendMessage

Function

Syntax

Parameters

Description

6-94

Add message to message queue

#include <rmapi.h>

int

RmSendMessage (
ulong TimeOutValug
uint Priority,
uint TaskiD
uint Message
void *pMessageParajn

Parameter Name

Meaning

TimeOutValue

Specifies how long to wait for message to be fetched.

RM_CONTINUE Continue task without waiting for th
message to be fetched.

RM_WAIT Wait for the message to be fetched

0..RM_MAXTIME Time interval in ms. The task waits
until either the message has been f
ched or the time has expired.

The values for hours, minutes and seconds can be comhi
by addition for the time parameter. The maximum wait tir
is 2731 milliseconds.

RM_HOUR(hour) Wait for (hour) hours
RM_MINUTE(min) Wait for (min) minutes
RM_SECONDéeq Wait for (seQ seconds
RM_MILLISECOND(mM9 Wait for (mg milliseconds

@

Priority

0..255 Set defined value
RM_TCDPRI Take priority from TCD

RM_CURPRI Use current priority of the calling
task

TaskID

Destination task ID

Message

Message identifier
The message identifiers are defined as follows:

RM_MSG_USER..RM_MSG_MAX
reserved for the user

pMessageParam

Pointer to the contents of the message.

The call insertdlessagetogether with the pointer to the message parameters
and with the defined priority, at the appropriate point in the message queue of
the task specified byaskiD TheTimeOutValugparameter specifies whether
the task is to wait for the message to be fetched and, if so, how long.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

RMOS API RmSendMessage

Note When callingRmSendMessageith TimeOutValue=RM_WAIT the following
may occur:

If the task is woken up (e.g. wiRmActivateTaskwhile RmSendMessage
waiting for the message to be fetchRthSendMessageeturns success al-
though it is not sure wether the message has been fetched or not.

Return Value RM_OK Function successfully executed, the message was copied
to the task’s own message queue.

Error Codes Error Code Meaning

RM_GOT_TIMEOUT The message was not fetched within the specj-
fied period.

RM_INVALID_ID Task ID invalid
RM_INVALID_POINTER Invalid pointer
RM_INVALID_TYPE An invalid parameterRriority) was passed.
RM_QUEUE_NOT_EXIST The message queue does not exist.
RM_BOUND_REACHED The message queue is full.

See Also RmCreateMessageQueue, RmDeleteMessageQueue, RmReadMessage,

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-95

RmSetFlag

RMOS API

RmSetFlag

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

6-96

Set event flag

#include <rmapi.h>
int

RmSetFlag(
uint FlagGrplD,
uint FlagMasR;

Parameter Name

Meaning

FlagGrpID

Flag group ID. 0 specifies the local flag group.

FlagMask

The mask specifies which bits are set

RmSetFlag sets the event flags specified in the flag mask, and indicates
whether they were already set.

RM_OK Function successful, no bits set.
RM_FLAG_SET At least one bit was set.

Error Code

Meaning

RM_INVALID_ID

An invalid FlagGrpID was passed.

RmCreateFlagGrp, RmDeleteFlagGrp, RmGetFlag, RmResetFlag

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

RMOS API RmSetFlagDelayed

RmSetFlagDelayed
Function Set event flag after interval
Syntax #include <rmapi.h>
int RmSetFlagDelayed(
ulong TimeValue
uint FlagGrplD,
uint FlagMash;
Parameters Parameter Name Meaning
TimeValue Delay time until flag is set
0...RM_MAXTIME Time interval in ms.
The values for hours, minutes and seconds can be combined
by addition for the time parameter. The maximum wait time
is 2°31 milliseconds.
RM_HOURhour) Wait for (hour) hours
RM_MINUTE(min) Wait for (min) minutes
RM_SECONDéeg Wait for (seq seconds
RM_MILLISECOND(m9 Wait for (mg milliseconds
FlagGrpID Flag group ID. 0 specifies the local flag group.
FlagMask The mask defines which bits are manipulated.
Description RmSetFlagDelayed clears the bits specified IBfagMask, and sets them

when the time interval has expired. Bits which are not set and bits specified
byFlagMaskwith the samé&lagGrplD are checked. The timer values of these
bits are set to the new value if necessary.

A secondRmSetFlagDelayed function with an identicaFlagGrplD and
FlagMaskoverwrites the firsRmSetFlagDelayed if the time parameter is
positive and deletes it if the time parameter = 0.

An RmResetFlag has no effect oRmSetFlagDelayed

Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID An invalid FlagGrpID was passed.
RM_PARAMETER_ERROR Incorrect parameters were passed to the func-
tion (FlagMask=0).

See Also RmCreateFlagGrp, RmDeleteFlagGrp, RmGetFlag, RmResetFlag,
RmSetFlag

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-97

RmSetIntDefHandler RMOS API

RmSetIintDefHandler

Function Install default interrupt handler
Syntax #include <rmapi.h>
int RmSetintDefHandler (uint IntNun);
Parameters Parameter Name Meaning
INtNum SW-Interrupt Number (0-255)

IRQX (x=0 to 63) Hardware interrupt
IRQ(N) (n=0 to 63) Hardware interrupt
The hardware interrupts on M7-300/400 are at 0 to 15.

Description This function is used to deinstall a dedicated interrupt handler for the specified
interruptintNum, and reallocate the default interrupt handler to this interrupt.

The interrupt number indexes the entries in the interrupt descriptor table, that
is the interrupt number corresponds to the selector of the associated descriptor.
The entry address of the associated interrupt handler is entered in the descrip-

tor.

Return Value RM_OK Function successfully executed, the dedicated interrupt

handler was deinstalled.

Error Codes Error Code Meaning
RM_INVALID_INTERRUPT_NUMBER Invalid interrupt number
RM_INVALID_IRQ_NUMBER IRQx invalid, PIC not defined

See Also RmGetintHandler, RmSetIintiISHandler, RmSetintMailboxHandler,

RmSetintTaskHandler

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-98 C79000-G7076-C852-02

RMOS API RmSetintISHandler

RmSetIntiISHandler

Function Initialize S or | interrupt handler
Syntax #include <rmapi.h>
int RmSetIntiISHandler (
uint IntNum

rmfarproc IHandlerEntry
rmfarproc SHandlerEntry;

Parameters Parameter Name Meaning

INtNum SW-Interrupt Number (0-255)

IRQx (x=0 to 63) Hardware interrupt

IRQ(n) (n=0 to 63) Hardware interrupt

The hardware interrupts on M7-300/400 are at O to 15.

IHandlerEntry Entry address of the | interrupt handler
SHandlerEntry Entry address of the S interrupt handler
Description The call defines an | and/or S interrupt handler.

If the interrupt is a hardware interrupt, such as IRQ1, this is masked automati-
cally.

While a new interrupt handler is being initialized, an interrupt must not occur
for this handler.

The interrupt handler specified linandlerEntry or SHandlerEntryis activated in
| or S state immediately after an interrupt. If a handler is not to be installed,
NUL should be specified.

The SHandlerEntryis only called if the return value of the | st&t®. If the re-
turn value is equal to 0, a transition to the S state does not occur.

The interrupt number indexes the entries in the interrupt descriptor table, that
is the interrupt number corresponds to the selector of the associated descriptor.
The entry address of the associated interrupt handler is entered in the descrip-
tor.

RmSetIntiISHandler enters an interrupt gate in the IDT.

The header and trailer are generated by the operating system kernel. The han-
dlers can be simple procedures. The memory required for an interrupt handler
is approximately 130 bytes, and is allocated from the heap.

Return Value RM_OK Function successfully executed.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-99

RmSetintISHandler RMOS API

Error Codes Error Code Meaning
RM_OUT_OF_MEMORY Insufficient memory available
RM_INVALID _INTERRUPT_NUMBER Invalid interrupt number
RM_INVALID_IRQ_NUMBER IRQx invalid, PIC not defined
RM_INVALID_POINTER Invalid pointer

Note If the function call is not successfully executed, the previous interrupt handler

remains active.

A user program runs on the M7 system at the "user level”. Write access is pos-
sible only for the user data whereas code and system areas are write—protected
for a user task.

An | handler or S handler is executed at "system level”, i.e. memory protection
is removed within an interrupt handler.

See Also RmGetintHandler, RmSetintDefHandler, RmSetintMailboxHandler,
RmSetIntTaskHandler

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-100 C79000-G7076-C852-02

RMOS API

RmSetintMailboxHandler

RmSetIntMailboxHandler

Function

Syntax

Parameters

Description

Return Value

Initialize mailbox interrupt handler

#include <rmapi.h>

int RmSetIntMailboxHandler (
uint IntNum
uint MailboxID,
uint MailPriority);

Parameter Name Meaning

INtNum SW-Interrupt Number (0-255)

IRQx (x=0 to 63) Hardware interrupt

IRQ(n) (n=0 to 63) Hardware interrupt

The hardware interrupts on M7-300/400 are at O to 15.

MailboxID Mailbox 1D

A message is sent to the mailbox specifiediajiBoxID. If
this mailbox is limited to aRmSetMailboxSize |, thatis
if only a certain number of messages can wait to be fetched
in the mailbox, and if this number has already been reached,
no message is sent. In this case, the interrupt is lost. The
RmintrhandMailStruct structure is described in chapter 3.

MailPriority Priority of the message

The call defines a handler for sending a message.

If the interrupt is a hardware interrupt, such as IRQ1, this is masked automati-
cally.

While a new interrupt handler is being initialized, an interrupt must not occur
for this handler.

If the number of messages in a mailbox is limited RexsetMailbox-
Size), no messages are sent when this limit is reached. The interrupt is lost.

RmSetIntMailboxHandler enters an interrupt gate in the IDT. Existing
entries in the IDT are retained, but can be overwritten by the call.

The code for the interrupt handler for dispatching the message is generated by
the operating system kernel. The memory required for an interrupt handler is
approximately 130 bytes, and is allocated from the heap.

RM_OK Function successfully executed.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-101

RmSetintMailboxHandler RMOS API

Error Codes Error Code Meaning
RM_OUT_OF_MEMORY Insufficient memory available
RM_INVALID _INTERRUPT_NUMBER Invalid interrupt number
RM_INVALID_IRQ_NUMBER IRQx invalid, PIC not defined
RM_INVALID_ID Invalid mailbox 1D

Note If the function call is not successfully executed, the previous interrupt handler

remains active.

See Also RmGetintHandler, RmSetintDefHandler, RmSetIntiISHandler,
RmSetIntTaskHandler

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-102 C79000-G7076-C852-02

RMOS API

RmSetintTaskHandler

RmSetIntTaskHandler

Function

Syntax

Parameters

Description

Return Value

Error Codes

Initialize interrupt handler for task start

#include <rmapi.h>

int RmSetIntTaskHandler (
uint IntNum
uint TasklD);
Parameter Name Meaning
INtNum SW-Interrupt Number (0-255)

IRQx (x=0 to 63) Hardware interrupt
IRQ(n) (n=0 to 63) Hardware interrupt
The hardware interrupts on M7-300/400 are at O to 15.

TaskID Task ID (RM_OWN_TASK = ID of the calling task)

The call defines a handler for an interrupt-driven task start.

If the interrupt is a hardware interrupt, such as IRQ1, this is masked automati-
cally.

While a new interrupt handler is being initialized, an interrupt must not occur
for this handler.

The task specified iMaskIDis activated immediately after an interrupt.

The interrupt number corresponds to the selector of the associated descriptor in
the IDT.

RmSetIntTaskHandler enters an interrupt gate in the IDT.

The code for the interrupt handler for starting the task is generated by the oper-
ating system kernel. The memory required for an interrupt handler is approxi-
mately 130 bytes, and is allocated from the heap.

RM_OK Function successfully executed.
Error Code Meaning
RM_OUT_OF_MEMORY Insufficient memory available
RM_INVALID_INTERRUPT_NUMBER Invalid interrupt number
RM_INVALID_IRQ_NUMBER IRQx invalid, PIC not defined
RM_INVALID_ID Invalid task ID

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-103

RMOS API

RmSetintTaskHandler

Note If the function call is not successfully executed, the previous interrupt handler
remains active.

See Also RmGetintHandler, RmSetintDefHandler, RmSetintiISHandler, RmSe-

tintMailboxHandler

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-104 C79000-G7076-C852-02

RMOS API RmSetMailboxSize

RmSetMailboxSize

Function Define limit values for mailboxes
Syntax #include <rmapi.h>
int RmSetMailboxSize (
uint MailboxID
uint Limit);
Parameters Parameter Name Meaning
MailboxID Mailbox ID
Limit 1-OFFFFH Maximum number of messages in queue
0 Indicates that the limit is to be canceled
Description The function sets a limit for the number of messages which can wait in a mail-
box. The limit value can be modified as required and can be subsequently can-
celed.

When the limit is exceeded, all subsequent attempts to send a message to this
mailbox with theRmSendMail call are rejectedRmSendMail calls are not
accepted again until enough messages are fetched for the number of messages
to fall below the limit again.

Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID Mailbox ID invalid
Note The limit set for mailboxes has no effect during RreSendMailDelayed
system call.
See Also RmReceiveMail, RmSendMail, RmSendMailCancel, RmSendMailDelayed

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-105

RmSetMessageQueueSize RMOS API

RmSetMessageQueueSize

Function Define length of message queue
Syntax #include <rmapi.h>
int RmSetMessageQueueSize (
uint TaskiD
uint Limit)
Parameters Parameter Name Meaning
TaskID Destination task ID
Limit Number of free places in the message queue
Description The call defines the size of the message queue of the task specifas#Iin
Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID Task ID invalid
RM_INVALID_TYPE An invalid parameterL{mit) was passed.
RM_QUEUE_NOT_EXIST The message queue does not exist.

See Also RmCreateMessageQueue, RmDeleteMessageQueue, RmReadMessage,
RmSendMessage

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-106 C79000-G7076-C852-02

RMOS API RmSetTaskPriority

RmSetTaskPriority
Function Change task priority
Syntax #include <rmapi.h>
int RmSetTaskPriority(
uint TaskiD
uint Priority);
Parameters Parameter Name Meaning
TaskID Destination task ID (RM_OWN_TASK= own)
Priority 0..255 Set defined value
RM_TCDPRI Take priority from TCD
RM_CURPRI Use current priority of the calling task
RM_INCPRI Increase task priority by 1
RM_DECPRI Decrease task priority by 1
Description RmSetTaskPriority is used to change the priority of any task.
Return Value RM_OK Function successfully executed.
Error Codes Error Code Meaning
RM_INVALID_ID TaskID invalid
RM_INVALID_TYPE An invalid parameterRriority) was passed.
RM_PRI_NOT_CHANGED Priority has not been changed.
RM_TASK_DORMANT Task currently in DORMANT state
See Also RmsStartTask, RmQueueStartTask description of the task priorities in the

Programming Manual

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-107

RmStartTask RMOS API
RmStartTask
Function Start request for tasks in DORMANT state
Syntax #include <rmapi.h>
int RmStartTask(
uint Wait,
uint TaskiD
uint Priority,
uint RegVall
uint RegVal;
Parameters Parameter Name Meaning
Wait RM_NO_WAIT Start and continue destination
task.
RM_WAIT_READY Wait until destination task is in
READY state.
RM_WAIT_END Wait until destination task has fi
nished.
TaskID Destination task ID (RM_OWN_TASK = own task).
Priority 0..255 Set defined value
RM_TCDPRI Take priority from TCD
RM_CURPRI Use current priority of the calling task
RM_MAXPRI Set maximum (RM_TCDPRI,
RM_CURPRI)
RegVall Parameter 1 (passed in eax of destination task)
RegVal2 Parameter 2 (passed in ebx of destination task)
Description RmStartTask starts a task. The function requires the same parameters as

Return Value

Error Codes

6-108

RmQueueStartTask

The difference between this function dRohQueueStartTask is that
RmQueueStartTask enters the start request in a queue if the task is not in
the DORMANT state. ThBmStartTask call has no effect in this case,

however.
RM_OK Function successfully executed; the destination task
switched to the READY state.
Error Code Meaning

RM_INVALID_ID

An invalid TaskIDwas passed.

RM_INVALID_TYPE

An invalid parameterWait) was passed.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

RMOS API RmStartTask

Error Code Meaning

RM_TASK_NOT_DORMANT An attempt was made to start a task which
was not in the DORMANT state.

RM_TASK_KILLED The destination task was switched to the

DORMANT state or deleted before the
READY state was attained or before it was
terminated witlRmK:illTask

See Also RmQueueStartTask

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-109

RmSuspendTask

RMOS API

RmSuspendTask

Function

Syntax

Parameters

Description

Return Value

Error Codes

See Also

6-110

Set task from READY to BLOCKED state

#include <rmapi.h>

int RmSuspendTask(uintTaskID);
Parameter Name Meaning
TaskID Task ID

RmSuspendTask suspends the task specifiedTaskliD The suspended task
must be in the READY state, and is subsequently switched to the BLOCKED
state. A task can suspend itself.

RM_OK Function successfully executed.
Error Code Meaning
RM_INVALID_ID TaskID invalid

RM_TASK_NOT_READY Task was not in READY state

RmResumeTask

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API RmUncatalog
RmUncatalog
Function Delete resources from catalog
Syntax #include <rmapi.h>
int RmUncatalog (char*pNamé

Parameters Parameter Name Meaning

pName Pointer to a character string (the string can be defined in|C or

PLM notation).

Description RmUncatalog deletes the resource identified by a character string from the

Return Value

Error Codes

Note

See Also

catalog.

RM_OK Function successfully executed.
Error Code Meaning
RM_IS_NOT_CATALOGED Entry not found
RM_INVALID_POINTER pName pointer was invalid
RM_INVALID_STRING String length = 0 or > 15

If a resource with various strings is cataloged more than once, all entries for
this resource are deleted from the catalog.

RmCatalog, RmGetEntry, RmGetName, RmList

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-111

SerialCheckChar

RMOS API

SerialCheckChar

Function

Syntax

Parameters

Description

Return Value

Error Codes

Note

See Also

6-112

Read in single character from unit

#include <serial.h>

int SerialCheckChar(
RmlOHandle Handlg
char *Char);
Parameter Name Meaning
Handle Descriptor
Char Address of a&har where the read character is stored
SerialCheckChar reads a single character from the unit specified by

Handleand stores it at the address specifie€hgir. Handleis a descriptor
that was generated wierialOpen

Unlike theSerialGetChar call, SerialCheckChar does not wait for
the character to arrive. If there is no character in the background buffer of the
unit, SerialCheckChar terminates.

RM_OK The function was successfully executed

Error Code
RM_IO_NO_DATA

Meaning

No data exist

See “Error Codes for Loadable Drivers” for further error messages

This call can only be used for the SER8250.DRYV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialChecksString, SerialGetChar, SerialGetString, SerialOpen

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

RMOS API SerialCheckString

SerialCheckString
Function Read string from unit
Syntax #include <serial.h>
int SerialChecksString(
RmIOHandle Handle
ulong MaxLen
char *String
ulong *Count);
Parameters Parameter Name Meaning
Handle Descriptor
MaxLen Maximum number of characters to be read
String Address of memory area where the read characters are stored
Count Address of allong in which the number of characters read
is stored.
Value >0 Number of characters read
Value = 0 Error or no characters exist
Description SerialCheckString readsMaxLencharacters from the unit specified by
Handleand stores them at the address specifie8ttigg Handleis a
descriptor that was generated waérialOpen
If the read request is successfiibuntcontains the number of characters read.
If the read request was not successful or no characters were found, the
parameter contains the value 0.
Unlike SerialGetString , SerialCheckString does not wait for the
character to arrive. If there is no character in the background buffer of the unit,
SerialCheckString terminates.
Return Value RM_OK The function was successfully executed
Error Codes Error Code Meaning
RM_IO_NO_DATA No data exist
See “Error Codes for Loadable Drivers” for further error messages
Note This call can only be used for the SER8250.DRYV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.
See Also SerialCheckChar, SerialGetChar, SerialGetString, SerialOpen

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-113

SerialClose RMOS API

SerialClose
Function Close a connection to a unit of a driver
Syntax #include <serial.h>
int SerialClose(RmIOHandle Handlg;
Parameters Parameter Name Meaning
Handle Descriptor
Description SerialClose closes the connection specifiedigndle Handleis a
descriptor that was generated wlérialOpen
Return Value RM_OK The function was successfully executed
Error Codes See “Error Codes for Loadable Drivers”
Note This call can only be used for the SER8250.DRYV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.
See Also SerialOpen

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-114 C79000-G7076-C852-02

RMOS API SerialGetChar

SerialGetChar
Function Read in single character from unit
Syntax #include <serial.h>
int SerialGetChar(
RmIOHandle Handle
char *Char);
Parameters Parameter Name Meaning
Handle Descriptor
Char Address of &har where the read character is stored
Description SerialGetChar reads a single character from the unit specifieHéaydle
and stores it at the address specifie€Chgr. Handleis a descriptor that was
generated witlserialOpen . The call waits for the character to arrive.
Return Value RM_OK The function was successfully executed
Error Codes See “Error Codes for Loadable Drivers”
Note This call can only be used for the SER8250.DRYV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.
See Also SerialCheckChar, SerialCheckString, SerialGetString, SerialOpen

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-115

SerialGetString RMOS API

SerialGetString
Function Read string from unit
Syntax #include <serial.h>
int SerialGetString(
RmlOHandle Handlg
ulong MaxLen
char *String,
ulong *Count);
Parameters Parameter Name Meaning
Handle Descriptor
MaxLen Maximum number of characters to be read
String Address of a memory area where the read characters are
stored
Count Address of allong in which the number of characters read
is stored.
Value >0 Number of characters read
Value = 0 Error or no characters exist
Description SerialGetString reads a maximum dflaxLencharacters from the unit
specified byHandleand stores them at the address specifie8tbgg Handle
is a descriptor that was generated v@dtrialOpen
If the read request is successfiiquntcontains the number of characters read.
If the read request was not successful or no characters were found, the
parameter contains the value 0.
The call waits for the characters to arrive.
Return Value RM_OK The function was successfully executed
Error Codes See “Error Codes for Loadable Drivers”
Note This call can only be used for the SER8250.DRYV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.
See Also SerialCheckChar, SerialCheckString, SerialGetChar, SerialOpen

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-116 C79000-G7076-C852-02

Seriallnit

RMOS API
Seriallnit
Function Initialize unit
Syntax #include <serial.h>
int Seriallnit(
RmIOHandle Handle
ulong Baud
uint Data,
uint Parity,
uint Stop;
Parameters Parameter Name Meaning
Handle Descriptor
Baud Baud rate as numeric value (e.g. 19200)
Data Number of data bits as numeric value (e.g. 8)
Parity Parity
SERIAL_PARITYNONE No parity check
SERIAL_PARITYEVEN Even parity
SERIAL_PARITYODD Odd parity
SERIAL_PARITYO Parity bit always 0
SERIAL_PARITY1 Parity bit always 1
Stop Number of stop bits. The following are permitted:
SERIAL_STOP1 1 stop bit
SERIAL_STOP2 2 stop bits
SERIAL_STOP15 1.5 stop bits
Description Seriallnit is used to initialize the unit of a driver for a serial interface.

Return Value

Error Codes

Note

See Also

The unit is specified bidandle Handleis a descriptor that was generated with
SerialOpen . TheBaudparameter specifies the baud rate. The parameters
Data andStopspecify the number of data and stop bits. Phety parameter

is used to control the parity.

RM_OK The function was successfully executed

See “Error Codes for Loadable Drivers”

This call can only be used for the SER8250.DRYV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialClose, SeriallnitEx, SerialOpen

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-117

SeriallnitEx

RMOS API

SeriallnitEx

Function

Syntax
int

#include <serial.h>

Extended initialization of unit

SeriallnitEx(

RmlOHandle Handlg
ulong Baud

uint Data,

uint Parity,

uint Stop

ulong BufferSize
uchar SendStopMode
uchar SendStopl
uchar SendStop2
ulong SendDelay
uchar RecStopMode
uchar RecStopl
uchar RecStop2
ulong RecTimeoyt
ulong RecLey;

Parameters Parameter Name

Meaning

Handle

Descriptor

Baud

Baud rate as numeric value (e.g. 19200)

Data

Number of data bits as numeric value (e.g. 8)

Parity

Parity

SERIAL_PARITYNONE
SERIAL_PARITYEVEN
SERIAL_PARITYODD
SERIAL_PARITYO
SERIAL_PARITY1

No parity check
Even parity

Odd parity

Parity bit always 0
Parity bit always 1

Stop

Number of stop bits. The following are permitted:

SERIAL_STOP1
SERIAL_STOP2
SERIAL_STOP15

1 stop bit
2 stop bits
1.5 stop bits

BufferSize

Size of background buffer (number of characters)

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

6-118

C79000-G7076-C852-02

RMOS API

SeriallnitEx

Parameter Name

Meaning

SendStopMode

Specifies which stop character is to terminate write re-
quests. The stop character(s) is (are) transferred after th
user data.

SERIAL_SENDSTOP_OFF

Do not use stop character.
SERIAL_SENDSTOP_CHAR_1

Use stop character 1

SERIAL_SENDSTOP_CHAR_1 2

Use stop characters 1 and 2, that is cancel when the 1s
character is followed by the 2nd stop character.

stop

SendStopl

1st stop character for write requests

SendStop2

2nd stop character for write requests

SendDelay

Minimum pause between two write requests (in ms). Sp
fying O deactivates the function

eCi-

RecStopMode

Specifies which stop character is to terminate read requ
The stop character(s) is (are) not transferred to the user|
buffer.

SERIAL_RECSTOP_OFF

Do not use stop character.
SERIAL_RECSTOP_CHAR_1

Use stop character 1

SERIAL_RECSTOP_CHAR_1 2

Use stop characters 1 and 2, that is cancel when the 1s
character is followed by the 2nd stop character.
SERIAL_RECSTOP_LEN

Terminate read request when the number of characters
fined byRecLenrhas been read in.

ests.

stop

de-

RecStopl

1st stop character for write requests

RecStop2

2nd stop character for write requests

RecTimeout

Maximum time span which is allowed to elapse betweer
reading of two characters (ms). If this time span is ex-
ceeded, the read request is canceled.

Specifying 0 deactivates the function

the

ReclLen

Number of characters after which read requests are terrn
nated

=
=

Description SeriallnitEx

serial interface. The unit is specified Handle Handleis a descriptor that
was generated witBerialOpen

The Baudparameter specifies the baud rate. The parameatasandStop
specify the number of data and stop bits. Phaty parameter is used to

control the parity.

TheBufferSizeparameter specifies the size of the background buffer.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-119

is used for extended initialization of the unit of a driver for a

SeriallnitEx RMOS API

ParameterSendStopMod&endStopandSendStopdefine the use and type
of stop characters for write requests. BamdDelayparameter specifies the
minimum pause between two write requests.

ParameterRecStopModdrecStoplindRecStop2lefine the use and type of
stop characters for read requests. ReeTimeouparameter specifies the time
after which a read request is canceled.

TheRecLerparameter specifies the number of characters after which read
requests are terminated.

Return Value RM_OK The function was successfully executed
Error Codes See “Error Codes for Loadable Drivers”
Note This call can only be used for the SER8250.DRYV driver for serial interfaces.

The RMFSERB.LIB library is required when the application is linked.

See Also SerialClose, Seriallnit, SerialOpen

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-120 C79000-G7076-C852-02

RMOS API SerialOpen
SerialOpen
Function Establish a connection to a unit of a driver
Syntax #include <serial.h>
int SerialOpen(
const char *UnitName
RmIOHandle *Handle);
Parameters Parameter Name Meaning
UnitName Name of the unit in the RMOS resource catalog. This name
is assigned when the unit is created.
Handle Pointer to a variable of the type RmIOHandle in which a
descriptor for addressing the unit is stored.
Description SerialOpen establishes a connection to the unit identifiedUnjtName

Return Value

Error Codes

Note

See Also

RM_OK The function was successfully executed

See “Error Codes for Loadable Drivers”

This call can only be used for the SER8250.DRYV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.

SerialClose

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

6-121

SerialPutChar RMOS API

SerialPutChar
Function Write a single character to a unit
Syntax #include <serial.h>
int SerialPutChar(
RmlOHandle Handlg
char Char);
Parameters Parameter Name Meaning
Handle Descriptor
Char Character to be written
Description SerialPutChar writes the characteZharto the unit specified bidandle
Handleis a descriptor that was generated V@#rialOpen
Return Value RM_OK The function was successfully executed
Error Codes See “Error Codes for Loadable Drivers”
Note This call can only be used for the SER8250.DRYV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.
See Also SerialGetChar, SerialGetString, SerialPutString

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-122 C79000-G7076-C852-02

RMOS API SerialPutString

SerialPutString
Function Write characters to the unit
Syntax #include <serial.h>
int SerialPutString(
RmIOHandle Handlg
char *String
ulong MaxLen);
Parameters Parameter Name Meaning
Handle Descriptor
String Address of a memory area with the characters to be wriften
MaxLen Number of characters to be written
Description SerialPutString writesMaxLencharacters from the addreSsingto the
unit specified byHandle Handleis a descriptor that was generated with
SerialOpen
Return Value RM_OK The function was successfully executed
Error Codes See “Error Codes for Loadable Drivers”
Note This call can only be used for the SER8250.DRYV driver for serial interfaces.
The RMFSERB.LIB library is required when the application is linked.
See Also SerialGetChar, SerialGetString, SerialPutChar

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-123

Xx_dos_cpyin RMOS API

x_dos_cpyin

Function Allocate memory area from transfer buffer and copy in data

Syntax #include <rm3dos.h>
char * x_dos_cpyin (
char *buffer
int len) ;

Parameters Parameter Name Meaning

buffer Pointer to data to be copied into the transfer buffer. Enter
NUL if you only want to allocate the memory area.

len Length in bytes of the memory area to be allocated.

Description This function first allocates a memory area from the transfer buffer. It then
copies data to the allocated memory.

The transfer buffer is located below 1 Mbyte and is required for data exchange
with the DOS task and with DOS/BIOS system calls.

The allocated memory area can be freed again witk thes_cpyout
function.

The size of the transfer buffer can be specified when loading the RM3_TSR
terminate-and-stay-resident program. It can be up to 30 bytes. All areas of the
transfer buffer which are not required should always be freed to ensure that
memory is always available.

The transfer is reinitialized after a warm start, and allocated memory is freed.
In certain circumstances, the transfer buffer may now be located at another
point and data may be lost.

Return Value The return value is a pointer.

If bit 31 of the return value is set, that is if the value is negative, the required
memory could not be allocated. In this case, the lower 16 bits specify the larg-
est memory area currently available.

If the pointer is positive (bit 31=0), it contains the physical start address of the
allocated memory area.

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-124 C79000-G7076-C852-02

RMOS API Xx_dos_cpyin

Note The value returned by the function can not be passed to MS-DOS or the BIOS
in this format. The pointer must first be converted to a real-mode pointer, com-
prising a segment plus offset.

const char filename="c:\clistart.bat”;
char *pptr;

unsigned short dos_seg;
unsigned short dos_off;

pptr=x_dos_cpyin (filename,strlen(filename));
dos_seg=(unsigned short) (pptr>>4)
dos_off=(unsigned short) (pptr&0xF)

See Also Xx_dos_cpyout

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 6-125

X_dos_cpyout RMOS API

x_dos_cpyout

Function Copy data from allocated memory area in transfer buffer and free the
area
Syntax #include <rm3dos.h>
int x_dos_cpyout (
char *addr,
char *anwenderpuffer
int len) ;
Parameters Parameter Name Meaning
addr Pointer to data area in the transfer buffer. This value corre-

sponds to the return value of tkedos_cpyin function.

anwenderpuffer Pointer to the area to which the data from the transfer buffer
are to be copied. If this value is NUL, the memory area to
which addr points is freed without copying the data.

len Length in bytes of the memory area to be copied. If this
value is less than the actual length of memory allocated, |the
entire area is still freed.

Description This function first copies data from a memory area in the transfer buffer. It
then frees the area.

Return Value Length of the freed area.

If this value is 0, an invalid value was passed ireithdr parameter.

See Also x_dos_cpyin

System Software for M7-300 and M7-400, System and Standard Functions, Volume 1
6-126 C79000-G7076-C852-02

Index

A Configured connections
asynchronous reading, 5-148
Application link asynchronous sending, 5-157
close/ 5-83 cancel running send or receive job, 5-147
enter password, 5-87 get job number, 5-44
set up, 5-86 get length of received daia, 543
get status of remote partrer, 5-161
receive data, 5-143
B request cold start, 5-160
Battery failure request STOP, 5-152
initialize FRB, 5-90 send data, 5-145
unlink FRB/ 5-212 uncoordinated receive, 5-163

uncoordinated send, 5-165
warm start request, 5-159

C Control user LEDs, 5-194
Cycle time, retrigger, 5-189
C runtime library Cyclical read
character management functions, 1-29 delete job, 5-12
control functions, 1-34 set up job, 5{9
error handling functions, 1-34 start job/ 5-13
Function classes, 1-24 stop job| 5-14

input/output functions, 1-26
mathematical functions, 1-32

memory allocation operations, 1-31 D

memory operations, 1-31 . o ‘
other functions, 1-35. 1-38 Data, send with format description, 5-155
string operations, 1-30 Data record

time and date functions. 1433 read from signal modulg, 5-122, 5-124
Catalog : transfer data record to a signal module,

delete resources, 6-111 5-201
find entry, 6-37

list entries, 6-68

search catalog for entry, 6{43

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 Index-1

Index

Data structures Diagnostics buffer, write entry, 5-229
M7BLKINF, 3-24 Driver, serial interface
M7BLKLIST, 3-25 close unit, 6-114
M7CBRet, 3-26 initialize unit, 6-117, 6-118
M7KTIME, 3-27 open unit, 6-121
M70BJ_INFO, 3-29 read character, 6-112, 6-115
M7PBKSTATUS, 3-30 read string, 6-113, 6-116
M7TIME_DATE, 3-31 write character, 6-122, 6-123

M7VARADDR, 3-32

M7VARDATA, 3-33

Rm3964nitStruct, 3/3 =
RmAbsTimeStruct, 3:5
RmEntryStruct, 36
RmintrhandMailStruct, 3-8) .
RmIOCTLModeSerialStruct, 3-9 C runtime I|_brary‘ 4',17
RmIOCTLPropertiesStruct, 3-10 L‘Z?d,i‘ﬁ'.ecgﬂ'sveﬁg“LS
RmIOCTLVersionStruct, 3-13 '

RmMailboxStruct] 3-14 o MOS API cats 246 0532 kerfaTl4.2
RmMaillDStruct, 3-15 fror messages, ermell4-

errno, errno2, 1-34
Error codes

RmMemPoolinfoStruct, 3-16 Exception interrupt handler, 4-2
Ser8250InitStruct, 3-17
STDSTRUCT, 3-19 F
Date
read, 5-71 FC server
set, 5-193 confirm message, 5-21
Diagnostic Interrupt, IF 961-Al0, 3-38 initialize FRB, 5-91
Diagnostics, link or unlink, 5-32 read type of message, 5-55
Diagnostics alarm unlink FRB, 5-213
check status, 5-49 Fetch data of asynchronous messages, 5-84
confirm, 5-22 Flag
get access type within a callback function, reset, 6-85
5-40 set, 6-95
get bit offset within a callback function, 5:35 set after interval, 6-97
get buffer address within a callback function, test, 6-39
5-36 Flag group
get byte offset within a callback function, create| 6-15
5-37 delete, 6-25
get data type within a callback function, FLAT addresses, 1-3
5-39 FLAT memory model, 143
get number of elements within a callback FRB
function, 5-33 _ additional error messages, 5-22
get the subarea number of the S7 object read additional error messages, 5-24
within a callback functior), 5-42 read FRBs, 5-53
get type identifier of S7 object within a call- read identifier, 5-54
' back func.tion‘ 5-41 read registered access type from FRB, 5-52
link for handling, 5-97 set identifier, 5-192

read diagnostics information from FRB, 5-50
read identifier for the signal module from

FRB, 5-51 G
read logical base address from FRB, 5-48))
send diagnostics alarm to S7 CPU, 5:190 Get standard diagnostics for a DP slave, 5-34
unlink, 5-217

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
Index-2 C79000-G7076-C852-02

Index

I M7 functions
access to process I/0s, 1-13
I/O area alarm handling, 1-14, 1-16
read byte directly, 5-114 application management, 118
read directly, 5-112 communications, 1-19
read doubleword directly, 5-115 diagnostics, 1-21
read word directly, 5-11.6 FRB handling, 1-14
write byte directly, 5-198 free cycle| 1-18
write data directly, 5-197 initialization,| 1-12
write doubleword directly, 5-199 management of callback functions, 1-15
write word directly, 5-200 management of S7 objects, 1-14
I/O descriptor, create from logical address, 5-82 MMI functions, 1-19
Initialize M7 API, 5-81 object management functions, 1-20
Insert/remove alarm, confirm , 5-28 operating state handling, 117
Insert/remove module alarm other functions, 1-21
define base address of IM module, 5-78 setting the time, 1-20
get base address of an 1/0O module, 5-76 time handling, 1-17
get I/O type of an I1/0O module, 5-80 user LED/ 1-18
get identifier of an 1/0O module, 5-77 Mailbox
get mode of an I/0O module, 5-79 cancel delayed message, 6-91
link message, 5-108 create| 6-16
unlink message, 5-224 define limit values, 6-105
Intel/SIMATIC representation delete, 6-26
convert doubleworc, 5-7 receive message, 682
convert word, 5-8 send message, 6-89
Interrupt handler Memory
for mail, 6-101 address physical memory, 6:72
for task start, 6-103 allocate memory area, 6-73
initialize S or | interrupt handler, 6-99 allocate memory from HEAP, €-8
install default interrupt handler, 6-98 free all memory areas of a task, 6-34
read out, 6-41 get the size of a memory area, 6-45
ISA bus I/0 Memory area
read byte directly, 5-118 change size, 6-80
read doubleword directly, 5-119 free, 6-33
read word directly, 5-120 Memory managemerit, 1-22
write byte directly, 5-202 Memory pool
write doubleword directly, 5-203 check information, 6-42
write word directly, 5-204 create| 6-17
delete| 6-27
Message, send mail after a delay, 6-92
L Message queue
Loadable driver add message to message queue, 6-94

control functions, 6-52 create| 6-19
open unit, 6-60 de}‘me length, 6-106
read unit| 6-62 delete/ 6-28
release unif, 6-51 read message, 6-78
write to unit, 6-64 MMI variable

read/ 5-15

write,| 5-17

M

M7 API, data types, 1-12

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02 Index-3

Index

MS DOS communication
header files, 19
mailboxes| 1-11
RMOS API, 1-9

N

Non—configured connections
asynchronous reading, 5-151, 5-169
asynchronous writing, 5-153, 5-171
cancel receive request, 5-1.68
close application link, 5-150, 5-167
receive data, 5-173
send data, 5-175

O

Objects supported on the V7, 2-5
One-shot time message
link, 5-100
unlink,|5-219
Operating state
check/ 5-70
read from an FRB, 5-74
request changz, 5-187
request message, 5-1.05
unlink message, 5-222
Operating state transition
confirm message, 5-27
read reason, 5-73
request message, 5-1.06
unlink message, 5-223
oVvs
compress memory, 5-128
copy block| 5-141
delete blocks, 5-129
link blocks, 5-135
load block| 5-137
read first entry, 5-131
resume reading, 5-134
set memory mode, 5-136

P

Parameter

IF 961-Al0, 3-38

IF 961-DIO,| 3-38
Pause for time interval, 6-75
PDU, check maximum size, 5165

Periodic time message
check number of periodic time messages
lost, 5-61
confirm, 5-26
link, |5-102
unlink,|5-220
Process alarm
check status, 5-57
confirm, 5-24
link for handling| 5-98
read alarm mask, 5-58
read identifier for the signal module from
FRB, 5-60
read logical base address from FRB, 5-56
read supplementary information from FRB,
5-5¢
send process alarm to S7 CPU, 5/191
unlink,|5-218
Process image
clear, 5-20
load bit, 5-110
load byte, 5-111
load doubleword, 5-117
load word| 5-126
overwrite byte, 5-1¢6
overwrite word, 5-209
set bit state, 5-195
update output signals, 5-206
update process image of inputs, 5{121
write doubleword, 5-201
Process image transfer error, initialize, 51104
Process Interrupts, IF 961-Al0, 338
Process Interrupts at the End of Cycle, IF
961-Al0O,|3-38

R

Read start parameter, 6-4-6-7
Read system state list, 5-210
Reset, query cause, 569

Resource, enter resource in resource catalog,

6-10
RMOS API exception handler, 4-5

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

Index-4

C79000-G7076-C852-02

Index

RMOS functions
cataloging, 1-7
DOS communication, 1-22
flags, 1-8
interrupt, 1-3| 1-9
memory management, 1-5
message exchange, 1-7
message exchange (via mailboxes)| 1-7
other functions, 19
semaphore, 1-8
task control, 1-6

S

S7 data area
copy user data, 5-225
read| 5-178
S7 object
check start address, 5-127
create, 5-29
delete from working memory and delete
BACKDIR, |5-31
delete S7 object from BACKDIR or ROM-
DIR, 5-186
get subarea number, 5:64
get type identifier, 5-63
link callback function, 5-94
overwrite byte, 5-228
overwrite doubleworc, 5-230
overwrite word, 5-231, 5-232
read bit from S7 object, 5-180
read byte from S7 object, 5-181
read doubleword from S7 object, 5-182
read information about data structure, 5-62
read word from S7 object, 5-183, 5-184
report access, 5-92
set bit| 5-227
set header, 5-139
store S7 object in BACKDIR or ROMDIR,
5-205
unlink callback function, 5-215
unlink S7 object for access information via
message, 5-214
S7 objects, subarea numbers, 2-6
Scheduler
disable| 6-30
enable, 6-31
Semaphore
create, 6-12
delete, 6-24
reset, 6-84
test and set, 6-36

Serial interface functions, 1-37
System memory block (SMR), 4-2
System messages

alarm server, 2:4

FC server, 243

K bus subsystem, 2-4

object server, 2:3

OST server, 22

time server, 2-3
System request block (SRB), 4-2

T
Task

activate, 6-7
add start task to queue, 6-76
change task priority, 6-107
create, 6-13, 6-20
delete, 6-29
end, 6-32
get task 1D, 6-46
get task priority, 6-47
get task state, 6-48
resume halted task, 6-88
set task from READY to BLOCKED state,
6-110
start tasks in DORMANT state, 6-108
terminate task and restart after time interval,
6-86
Time
read, 5-71), 5-88
set,5-89, 5-193
time, get absolute system time, €-35
Time alarm
get multiple of time base, 5-66
get time base, 5-72
Time-controlled time message
link, 5-96
unlink, 5-216
Transfer buffer
allocate memory area from transfer buffer
and copy in data, 6-124
Copy data from allocated memory area in
transfer buffer and free the area, 6-126

U

Unexpected interrupts, 4-4

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1

C79000-G7076-C852-02

Index-5

System Software for M7-300 and M7—-400, System and Standard Functions, Volume 1
C79000-G7076-C852-02

	Title
	Preface
	Table of Contents
	1 Function Groups
	1.1 Overview
	1.2 RMOS API Functions
	1.2.1 Information on RMOS API Functions
	1.2.2 Brief Description of the RMOS API Functions
	1.2.3 RMOS API Calls in MS-DOS Applications

	1.3 M7 API Functions
	1.3.1 Information on M7 API Functions
	1.3.2 Brief Description of the M7 API Functions

	1.4 DOS Interface Functions
	1.5 Functions of the C Runtime Library
	1.5.1 Overview
	1.5.2 I/O Operations
	1.5.3 Character Management Functions
	1.5.4 String Operations
	1.5.5 Memory Operations
	1.5.6 Memory Allocation
	1.5.7 Mathematical Functions
	1.5.8 Time and Date Functions
	1.5.9 Control Functions
	1.5.10 Error Handling
	1.5.11 Other Functions

	1.6 Functions of the Socket Interface
	1.7 Serial Interface Functions
	1.8 Other Functions
	1.8.1 Functions for interrupt working
	1.8.2 Functions for hardware–orientated I/O–operations

	2 Type Identifiers
	2.1 System Messages of the M7 Server
	2.2 Identifiers for S7 Objects and Data Types

	3 Data Structures
	3.1 Data Types of the RMOS API
	3.2 Data Structures of the RMOS API
	Rm3964InitStruct
	RmAbsTimeStruct
	RmEntryStruct
	RmIntrhandMailStruct
	RmIOCTLModeSerialStruct
	RmIOCTLPropertiesStruct
	RmIOCTLVersionStruct
	RmMailboxStruct
	RmMailIDStruct
	RmMemPoolInfoStruct
	Ser8250InitStruct
	STDSTRUCT

	3.3 Data Types of the M7 API
	3.3.1 General Data Types of the M7 API
	3.3.2 FRB – Data Types of the M7 Server
	3.3.3 Other Data Types of the M7 Server

	3.4 Data Structures of the M7 API
	M7BLKINFO
	M7BLKLIST
	M7CBRet
	M7KTIME
	M7OBJ_INFO
	M7PBKSTATUS
	M7TIME_DATE
	M7VARADDR
	M7VARDATA

	3.5 Data Structures of the Socket Interface
	HOSTENT
	SERVENT
	SOCKADDR
	SOCKSEL

	3.6 Parameter Data Records for the IF 961-AIO/DIO Interface Modules

	4 Error Codes and Messages
	4.1 Error Messages of the M7 RMOS32 Kernel
	4.2 M7 RMOS32 Exception Handler
	4.3 Error Codes of RMOS API Calls
	4.4 Error Codes of M7 API Calls
	4.5 Error Codes for Loadable Drivers
	4.6 Error codes of C Runtime Library
	4.7 Error Codes of the Socket Interface

	5 M7 API
	M7_SWAP_DWORD
	M7_SWAP_WORD
	M7BUBCycRead
	M7BUBCycReadDelete
	M7BUBCycReadStart
	M7BUBCycReadStop
	M7BUBRead
	M7BUBWrite
	M7CheckResource
	M7ClearPI
	M7ConfirmCycle
	M7ConfirmDiagAlarm
	M7ConfirmIOAlarm
	M7ConfirmPeriodicT imer
	M7ConfirmTransition
	M7ConfirmZSAlarm
	M7CreateObject
	M7DeleteObject
	M7DiagMode
	M7DPNormDiagnose
	M7GetCBBitOffset
	M7GetCBBuffer
	M7GetCBByteOffset
	M7GetCBCount
	M7GetCBDataType
	M7GetCBFlags
	M7GetCBObjType
	M7GetCBPart
	M7GetCommRcvLen
	M7GetCommRequest
	M7GetCommStatus
	M7GetConnStatus
	M7GetDiagAlarmAddr
	M7GetDiagAlarmBusy
	M7GetDiagAlarmInfo
	M7GetDiagAlarmPType
	M7GetFlags
	M7GetFRBErrCode
	M7GetFRBTag
	M7GetFSCType
	M7GetIOAlarmAddr
	M7GetIOAlarmBusy
	M7GetIOAlarmMask
	M7GetIOAlarmState
	M7GetIOAlarmPType
	M7GetLostPeriods
	M7GetObjectInfo
	M7GetObjType
	M7GetPart
	M7GetPduSize
	M7GetPeriod
	M7GetPIErrorAddr
	M7GetPIErrorPIType
	M7GetResetCause
	M7GetState
	M7GetTime
	M7GetTimeBase
	M7GetTSReason
	M7GetTSType
	M7GetZSAlarmAddr
	M7GetZSAlarmIdent
	M7GetZSAlarmIMRBaddr
	M7GetZSAlarmMode
	M7GetZSAlarmPType
	M7InitAPI
	M7InitISADesc
	M7KAbort
	M7KEvent
	M7KInitiate
	M7KPassword
	M7KReadTime
	M7KWriteTime
	M7LinkBatteryFailure
	M7LinkCycle
	M7LinkDataAccess
	M7LinkDataAccessCB
	M7LinkDate
	M7LinkDiagAlarm
	M7LinkIOAlarm
	M7LinkOneShotT imer
	M7LinkPeriodicT imer
	M7LinkPIError
	M7LinkState
	M7LinkTransition
	M7LinkZSAlarm
	M7LoadBit
	M7LoadByte
	M7LoadDirect
	M7LoadDirectByte
	M7LoadDirectDW ord
	M7LoadDirectW ord
	M7LoadDW ord
	M7LoadISAByte
	M7LoadISADWord
	M7LoadISAWord
	M7LoadPII
	M7LoadRecord
	M7LoadRecordEx
	M7LoadW ord
	M7LocateObject
	M7OVSCompress
	M7OVSDelete
	M7OVSFindFirst
	M7OVSFindNext
	M7OVSLinkIn
	M7OVSMemMode
	M7OVSRead
	M7OVSSetObjectHeader
	M7OVSWrite
	M7PBKBrcv
	M7PBKBsend
	M7PBKCancel
	M7PBKGet
	M7PBKIAbort
	M7PBKIGet
	M7PBKIPut
	M7PBKPrint
	M7PBKPut
	M7PBKResume
	M7PBKStart
	M7PBKStatus
	M7PBKStop
	M7PBKURcv
	M7PBKUSend
	M7PBKXAbort
	M7PBKXCancel
	M7PBKXGet
	M7PBKXPut
	M7PBKXRcv
	M7PBKXSend
	M7Read
	M7ReadBit
	M7ReadByte
	M7ReadDWord
	M7ReadReal
	M7ReadWord
	M7RelocateObject
	M7RemoveObject
	M7RequestState
	M7RetriggerCycle
	M7SendDiagAlarm
	M7SendIOAlarm
	M7SetFRBTag
	M7SetTime
	M7SetUserLED
	M7StoreBit
	M7StoreByte
	M7StoreDirect
	M7StoreDirectByte
	M7StoreDirectDWord
	M7StoreDirectWord
	M7StoreDWord
	M7StoreISAByte
	M7StoreISADWord
	M7StoreISAWord
	M7StoreObject
	M7StorePIQ
	M7StoreRecord
	M7StoreWord
	M7SZLRead
	M7UnLinkBatteryFailure
	M7UnLinkCycle
	M7UnLinkDataAccess
	M7UnLinkDataAccessCB
	M7UnLinkDate
	M7UnLinkDiagAlarm
	M7UnLinkIOAlarm
	M7UnLinkOneShotT imer
	M7UnLinkPeriodicT imer
	M7UnLinkPIError
	M7UnLinkState
	M7UnLinkTransition
	M7UnLinkZSAlarm
	M7Write
	M7WriteBit
	M7WriteByte
	M7WriteDiagnose
	M7WriteDWord
	M7WriteReal
	M7WriteWord

	6 RMOS API
	get2ndparm
	getdword
	getparm
	RmActivateTask
	RmAlloc
	RmCatalog
	RmCreateBinSemaphore
	RmCreateChildTask
	RmCreateFlagGrp
	RmCreateMailbox
	RmCreateMemPool
	RmCreateMessageQueue
	RmCreateTask
	RmCreateTaskEx
	RmDeleteBinSemaphore
	RmDeleteFlagGrp
	RmDeleteMailbox
	RmDeleteMemPool
	RmDeleteMessageQueue
	RmDeleteTask
	RmDisableScheduler
	RmEnableScheduler
	RmEndTask
	RmFree
	RmFreeAll
	RmGetAbsTime
	RmGetBinSemaphore
	RmGetEntry
	RmGetFlag
	RmGetIntHandler
	RmGetMemPoolInfo
	RmGetName
	RmGetSize
	RmGetTaskID
	RmGetTaskPriority
	RmGetTaskState
	RmIOClose
	RmIOControl
	RmIOOpen
	RmIORead
	RmIOWrite
	RmKillTask
	RmList
	RmLoadDevice
	RmMapMemory
	RmMemPoolAlloc
	RmPauseTask
	RmQueueStartTask
	RmReadMessage
	RmReAlloc
	RmReceiveMail
	RmReleaseBinSemaphore
	RmResetFlag
	RmRestartTask
	RmResumeTask
	RmSendMail
	RmSendMailCancel
	RmSendMailDelayed
	RmSendMessage
	RmSetFlag
	RmSetFlagDelayed
	RmSetIntDefHandler
	RmSetIntISHandler
	RmSetIntMailboxHandler
	RmSetIntTaskHandler
	RmSetMailboxSize
	RmSetMessageQueueSize
	RmSetTaskPriority
	RmStartTask
	RmSuspendTask
	RmUncatalog
	SerialCheckChar
	SerialCheckString
	SerialClose
	SerialGetChar
	SerialGetString
	SerialInit
	SerialInitEx
	SerialOpen
	SerialPutChar
	SerialPutString
	x_dos_cpyin
	x_dos_cpyout

	Index

